1
|
Ni D, Hong X, Liu D, Li X, Li L, Liu W, Sun Z, Liu G. Insights into IrtAB: Iron Transport Facilitates Ultrasensitive Detection of Mycobacteria in Both Cellular and Clinical Environments. ACS CENTRAL SCIENCE 2025; 11:261-271. [PMID: 40028350 PMCID: PMC11869132 DOI: 10.1021/acscentsci.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mycobacterium tuberculosis (Mtb) utilizes a heterodimeric ABC transporter (IrtAB) to extract Fe3+ ions from host cells. This study demonstrates that ultrasensitive fluorescent probes, achieved through the conjugation of fluorophores with the ligand of IrtAB, N14G and N14G-Fe can detect Mycobacterium smegmatis at concentrations as low as 1-10 nM within an incubation period of less than 5 min. Furthermore, these probes effectively label Mycobacterium bovis Bacille Calmette-Guérin BCG and the wild-type Mtb strain H37Rv at a concentration of 0.1 μM after 10 min of incubation, achieving a limit of detection of 34 Colony-Forming Unit for the wild-type Mtb strain H37Rv. Both N14G and N14G-Fe successfully identified Mtb in sputum samples from patients diagnosed with tuberculosis, exhibiting exceptional fluorescence.
Collapse
Affiliation(s)
- Dianmo Ni
- School
of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xiaoqiao Hong
- School
of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Dingyi Liu
- Translational
Medicine Center, Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing 101149, P. R. China
- Beijing
Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research
Institute, Tongzhou District, Beijing 101149, P. R. China
| | - Xueyuan Li
- School
of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Li Li
- Institute
of Materia Medica, Chinese Academy of Medical
Sciences & Peking Union Medical College, Xicheng District, Beijing 100050, P. R. China
| | - Wenwu Liu
- School
of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Zhaogang Sun
- Translational
Medicine Center, Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing 101149, P. R. China
- Beijing
Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research
Institute, Tongzhou District, Beijing 101149, P. R. China
| | - Gang Liu
- School
of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Hong X, Geng P, Tian N, Li X, Gao M, Nie L, Sun Z, Liu G. From Bench to Clinic: A Nitroreductase Rv3368c-Responsive Cyanine-Based Probe for the Specific Detection of Live Mycobacterium tuberculosis. Anal Chem 2024; 96:1576-1586. [PMID: 38190499 DOI: 10.1021/acs.analchem.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Tuberculosis (TB), characterized by high mortality and low diagnosis, is caused by a single pathogen, Mycobacterium tuberculosis (Mtb). Imaging tools that can be used to track Mtb without pre-labeling and to diagnose live Mtb in clinical samples can shorten the gap between bench and clinic, fuel the development of novel anti-TB drugs, strengthen TB prevention, and improve patient treatment. In this study, we report an unprecedented novel nitroreductase-responsive cyanine-based fluorescent probe (Cy3-NO2-tre) that rapidly and specifically labels Mtb and detects it in clinical samples. Cy3-NO2-tre generated fluorescence after activation by a specific nitroreductase, Rv3368c, which is conserved in the Mycobacteriaceae. Cy3-NO2-tre effectively imaged mycobacteria within infected host cells, tracked the infection process, and visualized Mycobacterium smegmatis being endocytosed by macrophages. Cy3-NO2-tre also detected Mtb in the sputum of patients with TB and exhibited excellent photostability. Furthermore, the Cy3-NO2-tre/auramine O percentage change within 7 ± 2 days post drug treatment in the sputum of inpatients was closely correlated with the reexamination results of the chest computed tomography, strongly demonstrating the clinical application of Cy3-NO2-tre as a prognostic indicator in monitoring the therapeutic efficacy of anti-TB drugs in the early patient care stage.
Collapse
Affiliation(s)
- Xiaoqiao Hong
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Mengqiu Gao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lihui Nie
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
3
|
Nabeta P, Seshadri P, Havumaki J, Mbhele S, Hendricks L, Perkins MD, Nicol MP, Denkinger CM. First clinical assessment of a prototype assay to detect the enzymatic activity of β-lactamase as a marker for pulmonary tuberculosis. Diagn Microbiol Infect Dis 2020; 97:115026. [PMID: 32173144 PMCID: PMC7262578 DOI: 10.1016/j.diagmicrobio.2020.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 10/29/2022]
Abstract
The objective was to evaluate the sensitivity and specificity of a novel prototype test, TB REaD™, a reporter enzyme fluorescence-based assay, for pulmonary tuberculosis and to determine the optimal threshold for test positivity. This blinded, prospective study enrolled 250 patients, of which 23.2% were Mycobacterium tuberculosis complex (MTB) culture-positive. At the manufacturer-set threshold, sensitivity of the assay was 93.1% (95% confidence interval [CI] 83.3-98.1) and specificity was 8.9% (95% CI 5.2-13.8). The highest accuracy was seen at a higher threshold: sensitivity 58.6% (95% CI 44.9-71.4), specificity 59.4% (95% CI 52.1%-66.4%), with sensitivity by smear status being 40.0% (95% CI 21.1-61.3) for smear-negative and 72.7% (95% CI 54.5-86.7) for smear-positive. This study demonstrated limited accuracy of the TB REaD™ prototype for detection of pulmonary TB. Further improvements are necessary, potentially exploring probes that are more specific to MTB.
Collapse
Affiliation(s)
- Pamela Nabeta
- FIND, Chemin des Mines 9, 1202, Geneva, Switzerland.
| | - Pratibha Seshadri
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Ave, 02215, Boston, USA.
| | | | - Silindile Mbhele
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa and National Health Laboratory Service, South Africa.
| | - Layla Hendricks
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa and National Health Laboratory Service, South Africa.
| | | | - Mark P Nicol
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa and National Health Laboratory Service, South Africa; School of Biomedical Sciences, University of Western Australia, Hackett Drive, Crawley, Perth, Australia 6009.
| | - Claudia M Denkinger
- FIND, Chemin des Mines 9, 1202, Geneva, Switzerland; Division of Tropical Medicine, Center of Infectious Diseases, University Hospital of Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019; 7:125-138. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
5
|
Rodriguez DC, Ocampo M, Salazar LM, Patarroyo MA. Quantifying intracellular Mycobacterium tuberculosis: An essential issue for in vitro assays. Microbiologyopen 2018; 7:e00588. [PMID: 29484835 PMCID: PMC5911991 DOI: 10.1002/mbo3.588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Many studies about intracellular microorganisms which are important regarding diseases affecting public health have been focused on the recognition of host–pathogen interactions, thereby ascertaining the mechanisms by which the pathogen invades a cell and makes it become its host. Such knowledge enables understanding the immunological response triggered by these interactions for obtaining useful information for developing vaccines and drugs. Quantitative cell infection assay protocols are indispensable regarding studies involving Mycobacterium tuberculosis, which takes the lives of more than 2 million people worldwide every year; however, sometimes these are limited by the pathogen's slow growth. Concerning such limitation, a detailed review is presented here regarding the different methods for quantifying and differentiating an intracellular pathogen, the importance of mycobacteria aggregate dissociation and multiplicity of infection (MOI) in infection assays. The methods’ differences, advantages, and disadvantages are discussed regarding intra and extracellular bacteria (on cell surface) differentiation, current problems are outlined, as are the solutions provided using fluorophores and projections made concerning quantitative infection assays.
Collapse
Affiliation(s)
- Deisy Carolina Rodriguez
- Universidad Nacional de Colombia, Bogotá, Colombia.,Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Sharan R, Yang HJ, Sule P, Cirillo JD. Imaging Mycobacterium tuberculosis in Mice with Reporter Enzyme Fluorescence. J Vis Exp 2018:56801. [PMID: 29553533 PMCID: PMC5931367 DOI: 10.3791/56801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reporter enzyme fluorescence (REF) utilizes substrates that are specific for enzymes present in target organisms of interest for imaging or detection by fluorescence or bioluminescence. We utilize BlaC, an enzyme expressed constitutively by all M. tuberculosis strains. REF allows rapid quantification of bacteria in lungs of infected mice. The same group of mice can be imaged at many time points, greatly reducing costs, enumerating bacteria more quickly, allowing novel observations in host-pathogen interactions, and increasing statistical power, since more animals per group are readily maintained. REF is extremely sensitive due to the catalytic nature of the BlaC enzymatic reporter and specific due to the custom flourescence resonance energy transfer (FRET) or fluorogenic substrates used. REF does not require recombinant strains, ensuring normal host-pathogen interactions. We describe the imaging of M. tuberculosis infection using a FRET substrate with maximal emission at 800 nm. The wavelength of the substrate allows sensitive deep tissue imaging in mammals. We will outline aerosol infection of mice with M. tuberculosis, anesthesia of mice, administration of the REF substrate, and optical imaging. This method has been successfully applied to evaluating host-pathogen interactions and efficacy of antibiotics targeting M. tuberculosis.
Collapse
Affiliation(s)
- Riti Sharan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center
| | - Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center;
| |
Collapse
|
7
|
Yang HJ, Kong Y, Cheng Y, Janagama H, Hassounah H, Xie H, Rao J, Cirillo JD. Real-time Imaging of Mycobacterium tuberculosis, Using a Novel Near-Infrared Fluorescent Substrate. J Infect Dis 2017; 215:405-414. [PMID: 27421748 PMCID: PMC6061879 DOI: 10.1093/infdis/jiw298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/06/2016] [Indexed: 11/14/2022] Open
Abstract
Slow growth of Mycobacterium tuberculosis, the causative agent of tuberculosis, hinders advancement in all areas of research toward prevention and treatment. Real-time imaging with reporter enzyme fluorescence (REF) that uses custom fluorogenic substrates for bacterial enzymes allows rapid and specific detection of M. tuberculosis in live animals. We have synthesized a novel REF substrate, CNIR800, that carries a near-infrared (NIR) fluorochrome IRDye 800CW, with a quencher connected through the lactam ring that is hydrolyzed by the enzyme BlaC (β-lactamase) that is naturally expressed by M. tuberculosis. CNIR800 produces long-wavelength emission at 795 nm upon excitation (745 nm) and exhibits significantly improved signal to noise ratios for detection of M. tuberculosis. The detection threshold with CNIR800 is approximately 100 colony-forming units (CFU) in vitro and <1000 CFU in the lungs of mice. Additionally, fluorescence signal from cleaved CNIR800 reaches maximal levels 4-6 hours after administration in live animals, allowing accurate evaluation of antituberculous drug efficacy. Thus, CNIR800 represents an excellent substrate for accurate detection of M. tuberculosis rapidly and specifically in animals, facilitating research toward understanding pathogenic mechanisms, evaluation of therapeutic outcomes, and screening new vaccines.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan
| | - Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| | - Yunfeng Cheng
- Department of Radiology, Stanford University, California
| | - Harish Janagama
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan
| | - Hany Hassounah
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan
| | - Hexin Xie
- Department of Radiology, Stanford University, California
| | - Jianghong Rao
- Department of Radiology, Stanford University, California
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan
| |
Collapse
|
8
|
Nooshabadi F, Yang HJ, Cheng Y, Durkee MS, Xie H, Rao J, Cirillo JD, Maitland KC. Intravital excitation increases detection sensitivity for pulmonary tuberculosis by whole-body imaging with β-lactamase reporter enzyme fluorescence. JOURNAL OF BIOPHOTONICS 2017; 10:821-829. [PMID: 27753271 PMCID: PMC5703064 DOI: 10.1002/jbio.201600132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/08/2016] [Accepted: 09/18/2016] [Indexed: 05/08/2023]
Abstract
Tuberculosis is a pulmonary disease with an especially high mortality rate in immuno-compromised populations, specifically children and HIV positive individuals. The causative agent, Mycobacterium tuberculosis (Mtb), is a very slow growing and difficult organism to work with, making both diagnosis and development of effective treatments cumbersome. We utilize a fiber-optic fluorescence microendoscope integrated with a whole-body imaging system for in vivo Mtb detection. The system exploits an endogenous enzyme of Mtb (β-lactamase, or BlaC) using a BlaC-specific NIR fluorogenic substrate. In the presence of BlaC, this substrate is cleaved and becomes fluorescent. Using intravital illumination of the lung to excite this probe, sensitivity of the optical system increases over trans- and epi-illumination methods of whole-body fluorescence imaging. We demonstrate that integration of these imaging technologies with BlaC-specific fluorescent reporter probe improves the level of detection to ∼100 colony forming units, a 100× increase in sensitivity in comparison to epi-illumination and a 10× increase in sensitivity in comparison to previous work in intravital excitation of tdTomato-expressing Mtb. This lower detection threshold enables the study of early stage bacterial infections with clinical strains of Mtb and longitudinal studies of disease pathogenesis and therapeutic efficacy with multiple time points in a single animal.
Collapse
Affiliation(s)
- Fatemeh Nooshabadi
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX 77843, United States
| | - Hee-Jeong Yang
- Microbial Pathogenesis and Immunology Department, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Yunfeng Cheng
- Radiology Department, Stanford University, Stanford, CA 94304, United States
| | - Madeleine S. Durkee
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX 77843, United States
| | - Hexin Xie
- Radiology Department, Stanford University, Stanford, CA 94304, United States
| | - Jianghong Rao
- Radiology Department, Stanford University, Stanford, CA 94304, United States
| | - Jeffrey D. Cirillo
- Microbial Pathogenesis and Immunology Department, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Kristen C. Maitland
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
9
|
Nooshabadi F, Yang HJ, Cheng Y, Durkee MS, Xie H, Rao J, Cirillo JD, Maitland KC. Intravital excitation increases detection sensitivity for pulmonary tuberculosis by whole-body imaging with β-lactamase reporter enzyme fluorescence. JOURNAL OF BIOPHOTONICS 2017; 10:821-829. [PMID: 27753271 DOI: 10.1002/jbio.v10.6-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/08/2016] [Accepted: 09/18/2016] [Indexed: 05/22/2023]
Abstract
Tuberculosis is a pulmonary disease with an especially high mortality rate in immuno-compromised populations, specifically children and HIV positive individuals. The causative agent, Mycobacterium tuberculosis (Mtb), is a very slow growing and difficult organism to work with, making both diagnosis and development of effective treatments cumbersome. We utilize a fiber-optic fluorescence microendoscope integrated with a whole-body imaging system for in vivo Mtb detection. The system exploits an endogenous enzyme of Mtb (β-lactamase, or BlaC) using a BlaC-specific NIR fluorogenic substrate. In the presence of BlaC, this substrate is cleaved and becomes fluorescent. Using intravital illumination of the lung to excite this probe, sensitivity of the optical system increases over trans- and epi-illumination methods of whole-body fluorescence imaging. We demonstrate that integration of these imaging technologies with BlaC-specific fluorescent reporter probe improves the level of detection to ∼100 colony forming units, a 100× increase in sensitivity in comparison to epi-illumination and a 10× increase in sensitivity in comparison to previous work in intravital excitation of tdTomato-expressing Mtb. This lower detection threshold enables the study of early stage bacterial infections with clinical strains of Mtb and longitudinal studies of disease pathogenesis and therapeutic efficacy with multiple time points in a single animal.
Collapse
Affiliation(s)
- Fatemeh Nooshabadi
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX, 77843, United States
| | - Hee-Jeong Yang
- Microbial Pathogenesis and Immunology Department, Texas A&M University Health Science Center, Bryan, TX, 77807, United States
| | - Yunfeng Cheng
- Radiology Department, Stanford University, Stanford, CA, 94304, United States
| | - Madeleine S Durkee
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX, 77843, United States
| | - Hexin Xie
- Radiology Department, Stanford University, Stanford, CA, 94304, United States
| | - Jianghong Rao
- Radiology Department, Stanford University, Stanford, CA, 94304, United States
| | - Jeffrey D Cirillo
- Microbial Pathogenesis and Immunology Department, Texas A&M University Health Science Center, Bryan, TX, 77807, United States
| | - Kristen C Maitland
- Biomedical Engineering Department, 3120 TAMU, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
10
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
11
|
Sule P, Tilvawala R, Behinaein P, Walkup GK, Cirillo JD. New directions using reporter enzyme fluorescence (REF) as a tuberculosis diagnostic platform. Tuberculosis (Edinb) 2016; 101S:S78-S82. [PMID: 27729258 DOI: 10.1016/j.tube.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although tuberculosis (TB) is one of the most common causes of morbidity and mortality in humans worldwide and diagnostic methods have been in place for more than 100 years, diagnosis remains a challenge. The main problems with diagnosis relate to the time needed to obtain a definitive result, difficulty in obtaining sputum, the primary clinical material used, and the ability of the causative agent, Mycobacterium tuberculosis, to cause disease in nearly any tissue within the body. In order to decrease incidence of TB, discovery of a novel interventions will be required, since current technologies have only been able to control numbers of infections, not reduce them. Diagnostic innovation is particularly needed because there are no effective pediatric or extrapulmonary TB diagnostic methods and multiple-drug resistance is only identified in less than 25% of those patients that are thought to have it. The most common diagnostic method worldwide remains acid-fast stain on sputum, with a threshold of ∼10,000 bacteria/ml that is only reached ∼5-6 months after development of symptoms. In order to obtain definitive diagnostic results earlier during the disease process, we have developed a diagnostic method designated reporter enzyme fluorescence (REF) that utilizes BlaC produced by M. tuberculosis and custom substrates to produce a specific fluorescent signal with as few as 10 bacteria/ml in clinical samples. We believe that the unique biology of the REF technique will allow it to contribute new diagnostic information that is complementary to all existing diagnostic tests as well as those currently known to be in development.
Collapse
Affiliation(s)
- Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Center for Airborne Pathogens Research and Imaging, Medical Research & Education Building, 8447 State Hwy 47, Bryan, TX 77807, USA
| | - Ronak Tilvawala
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Center for Airborne Pathogens Research and Imaging, Medical Research & Education Building, 8447 State Hwy 47, Bryan, TX 77807, USA
| | - Parnia Behinaein
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Center for Airborne Pathogens Research and Imaging, Medical Research & Education Building, 8447 State Hwy 47, Bryan, TX 77807, USA
| | - Grant K Walkup
- Agios Pharmaceuticals, 88 Sydney St., Cambridge, MA 02139, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Center for Airborne Pathogens Research and Imaging, Medical Research & Education Building, 8447 State Hwy 47, Bryan, TX 77807, USA.
| |
Collapse
|
12
|
Magnetic resonance imaging of pathogenic protozoan parasite Entamoeba histolytica labeled with superparamagnetic iron oxide nanoparticles. Invest Radiol 2016; 50:709-18. [PMID: 26135016 DOI: 10.1097/rli.0000000000000175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to establish a noninvasive tracking of the pathogenic parasite Entamoeba histolytica (Eh) after superparamagnetic iron oxide (SPIO) labeling by magnetic resonance imaging (MRI) on a single-cell level in vitro and in vivo in a mouse model for amebic liver abscess (ALA). MATERIALS AND METHODS Local institutional review committee on animal care approved all animal experiments. Entamoeba histolytica trophozoites were labeled with SPIO nanoparticles (SPIO-Eh). The uptake of SPIO by Eh was optimized using flow cytometry and visualized by bright field, fluorescence, and transmission electron microscopy. The viability of SPIO-Eh was assessed in vitro by determination of growth and ingestion rate of red blood cells. Migration of SPIO-Eh was proven by in vitro MRI in a preclinical 7 T MRI system using continually repeated MRI scans. In vivo distribution of SPIO-Eh within the mouse liver was assessed qualitatively and quantitatively by serial respiration-triggered T2*-weighted MRI, T2-weighted MRI, and R2* MR relaxometry up to 5 days after injection and correlated with immunohistology of the liver sections after removal. RESULTS Entamoeba histolytica can be efficiently labeled with SPIO without influence on parasite growth rate or phagocytic capacity. In vitro dynamic MRI allowed real-time migration monitoring and determination of velocity of single SPIO-Eh. In vivo SPIO-Eh showed signal decrease in T2*-weighted and increase of R2* in ALA formations. Motility of SPIO-Eh was necessary to induce ALA formations. CONCLUSIONS The present study demonstrates the feasibility of an efficient magnetic labeling and a noninvasive in vitro and in vivo MR tracking of the pathogenic protozoan Eh in a mouse model for ALA, thus representing in future a noninvasive imaging tool to study parasite, as well as on host-specific pathomechanisms.
Collapse
|
13
|
Real-time bioluminescence imaging of mixed mycobacterial infections. PLoS One 2014; 9:e108341. [PMID: 25265287 PMCID: PMC4180448 DOI: 10.1371/journal.pone.0108341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2014] [Indexed: 01/18/2023] Open
Abstract
Molecular analysis of infectious processes in bacteria normally involves construction of isogenic mutants that can then be compared to wild type in an animal model. Pathogenesis and antimicrobial studies are complicated by variability between animals and the need to sacrifice individual animals at specific time points. Live animal imaging allows real-time analysis of infections without the need to sacrifice animals, allowing quantitative data to be collected at multiple time points in all organs simultaneously. However, imaging has not previously allowed simultaneous imaging of both mutant and wild type strains of mycobacteria in the same animal. We address this problem by using both firefly (Photinus pyralis) and click beetle (Pyrophorus plagiophthalamus) red luciferases, which emit distinct bioluminescent spectra, allowing simultaneous imaging of two different mycobacterial strains during infection. We also demonstrate that these same bioluminescence reporters can be used to evaluate therapeutic efficacy in real-time, greatly facilitating our ability to screen novel antibiotics as they are developed. Due to the slow growth rate of mycobacteria, novel imaging technologies are a pressing need, since they can they can impact the rate of development of new therapeutics as well as improving our understanding of virulence mechanisms and the evaluation of novel vaccine candidates.
Collapse
|
14
|
Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FWB. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem 2013; 24:1971-1989. [PMID: 24200346 DOI: 10.1021/bc4003037] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial infections have always been, and still are, a major global healthcare problem. For accurate treatment it is of upmost importance that the location(s), severity, type of bacteria, and therapeutic response can be accurately staged. Similar to the recent successes in oncology, tracers specific for molecular imaging of the disease may help advance patient management. Chemical design and bacterial targeting mechanisms are the basis for the specificity of such tracers. The aim of this review is to provide a comprehensive overview of the molecular imaging tracers developed for optical and nuclear identification of bacteria and bacterial infections. Hereby we envision that such tracers can be used to diagnose infections and aid their clinical management. From these compounds we have set out to identify promising targeting mechanisms and select the most promising candidates for further development.
Collapse
Affiliation(s)
- A Bunschoten
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center , Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Hoerr V, Tuchscherr L, Hüve J, Nippe N, Loser K, Glyvuk N, Tsytsyura Y, Holtkamp M, Sunderkötter C, Karst U, Klingauf J, Peters G, Löffler B, Faber C. Bacteria tracking by in vivo magnetic resonance imaging. BMC Biol 2013; 11:63. [PMID: 23714179 PMCID: PMC3686665 DOI: 10.1186/1741-7007-11-63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/22/2013] [Indexed: 02/03/2023] Open
Abstract
Background Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
17
|
Kong Y, Akin AR, Francis KP, Zhang N, Troy TL, Xie H, Rao J, Cirillo SLG, Cirillo JD. Whole-body imaging of infection using fluorescence. ACTA ACUST UNITED AC 2011; Chapter 2:Unit 2C.3. [PMID: 21538304 DOI: 10.1002/9780471729259.mc02c03s21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Optical imaging is emerging as a powerful tool to study physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. This unit describes the use of fluorescent reporters for biological organisms, components, or events. We describe the application of fluorescence imaging to examination of infectious processes, in particular subcutaneous and pulmonary bacterial infections, but the same approaches are applicable to nearly any infectious route. The strategies described use mycobacterial infections as an example, but nearly identical systems can be used for Pseudomonas, Legionella, Salmonella, Escherichia, Borrelia, and Staphylococus, suggesting that the approaches are generally applicable to nearly any infectious agent. Two strategies for fluorescence imaging are described: the first method uses reporter enzyme fluorescence (REF), and the second uses fluorescent proteins for fluorescence imaging. Methods are described in detail to facilitate successful application of these emerging technologies to nearly any experimental system.
Collapse
Affiliation(s)
- Ying Kong
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|