1
|
Yu HH, Wu LY, Hsu PL, Lee CW, Su BC. Marine Antimicrobial Peptide Epinecidin-1 Inhibits Proliferation Induced by Lipoteichoic acid and Causes cell Death in non-small cell lung cancer Cells via Mitochondria Damage. Probiotics Antimicrob Proteins 2024; 16:1724-1733. [PMID: 37523113 PMCID: PMC11445356 DOI: 10.1007/s12602-023-10130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is among the deadliest cancers worldwide. Despite the recent introduction of several new therapeutic approaches for the disease, improvements in overall survival and progression-free survival have been minimal. Conventional treatments for NSCLC include surgery, chemotherapy and radiotherapy. Except for surgery, these treatments can impair a patient's immune system, leaving them susceptible to bacterial infections. As such, Staphylococcus aureus infections are commonly seen in NSCLC patients receiving chemotherapy, and a major constituent of the S. aureus cell surface, lipoteichoic acid (LTA), is thought to stimulate NSCLC cancer cell proliferation. Thus, inhibition of LTA-mediated cell proliferation might be a useful strategy for treating NSCLC. Epinecidin-1 (EPI), a marine antimicrobial peptide, exhibits broad-spectrum antibacterial activity, and it also displays anti-cancer activity in glioblastoma and synovial sarcoma cells. Furthermore, EPI has been shown to inhibit LTA-induced inflammatory responses in murine macrophages. Nevertheless, the anti-cancer and anti-LTA activities of EPI and the underlying mechanisms of these effects have not been fully tested in the context of NSCLC. In the present study, we demonstrate that EPI suppresses LTA-enhanced proliferation of NSCLC cells by neutralizing LTA and blocking its effects on toll-like receptor 2 and interleukin-8. Moreover, we show that EPI induces necrotic cell death via mitochondrial damage, elevated reactive oxygen species levels, and disrupted redox balance. Collectively, our results reveal dual anti-cancer activities of EPI in NSCLC, as the peptide not only directly kills cancer cells but it also blocks LTA-mediated enhancement of cell proliferation.
Collapse
Affiliation(s)
- Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Taylor R, Zhang C, George D, Kotecha S, Abdelghaffar M, Forster T, Santos Rodrigues PD, Reisinger AC, White D, Hamilton F, Watkins WJ, Griffith DM, Ghazal P. Low circulatory levels of total cholesterol, HDL-C and LDL-C are associated with death of patients with sepsis and critical illness: systematic review, meta-analysis, and perspective of observational studies. EBioMedicine 2024; 100:104981. [PMID: 38290288 PMCID: PMC10844818 DOI: 10.1016/j.ebiom.2024.104981] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Mechanistic studies have established a biological role of sterol metabolism in infection and immunity with clinical data linking deranged cholesterol metabolism during sepsis with poorer outcomes. In this systematic review we assess the relationship between biomarkers of cholesterol homeostasis and mortality in critical illness. METHODS We identified articles by searching a total of seven electronic databases from inception to October 2023. Prospective observational cohort studies included those subjects who had systemic cholesterol (Total Cholesterol (TC), HDL-C or LDL-C) levels assessed on the first day of ICU admission and short-term mortality recorded. Meta-analysis and meta-regression were used to evaluate overall mean differences in serum cholesterol levels between survivors and non-survivors. Study quality was assessed using the Newcastle-Ottawa Scale. FINDINGS From 6469 studies identified by searches, 24 studies with 2542 participants were included in meta-analysis. Non-survivors had distinctly lower HDL-C at ICU admission -7.06 mg/dL (95% CI -9.21 to -4.91, p < 0.0001) in comparison with survivors. Corresponding differences were also seen less robustly for TC -21.86 mg/dL (95% CI -31.23 to -12.49, p < 0.0001) and LDL-C -8.79 mg/dL (95% CI, -13.74 to -3.83, p = 0.0005). INTERPRETATION Systemic cholesterol levels (TC, HDL-C and LDL-C) on admission to critical care are inversely related to mortality. This finding is consistent with the notion that inflammatory and metabolic setpoints are coupled, such that the maladaptive-setpoint changes of cholesterol in critical illness are related to underlying inflammatory processes. We highlight the potential of HDL-biomarkers as early predictors of severity of illness and emphasise that future research should consider the metabolic and functional heterogeneity of HDLs. FUNDING EU-ERDF-Welsh Government Ser Cymru programme, BBSRC, and EU-FP7 ClouDx-i project (PG).
Collapse
Affiliation(s)
- Rory Taylor
- Deanery of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK.
| | - Chengyuan Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, NHS Lothian, Edinburgh, UK
| | - Deslit George
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Sarah Kotecha
- Department of Child Health, School of Medicine, University of Cardiff, Cardiff, UK
| | | | | | | | - Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Daniel White
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - W John Watkins
- Dept of Immunity and Infection, School of Medicine, Cardiff University, Cardiff, UK
| | - David M Griffith
- Anaesthesia, Critical Care and Pain, Molecular, Genetics, and Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Ghazal
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK.
| |
Collapse
|
3
|
Kapp KL, Ji Choi M, Bai K, Du L, Yende S, Kellum JA, Angus DC, Peck-Palmer OM, Robinson RAS. PATHWAYS ASSOCIATED WITH POSITIVE SEPSIS SURVIVAL OUTCOMES IN AFRICAN AMERICAN/BLACK AND NON-HISPANIC WHITE PATIENTS WITH URINARY TRACT INFECTION. Shock 2023; 60:362-372. [PMID: 37493584 PMCID: PMC10527228 DOI: 10.1097/shk.0000000000002176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT Urinary tract infections (UTIs) are a common cause of sepsis worldwide. Annually, more than 60,000 US deaths can be attributed to sepsis secondary to UTIs, and African American/Black adults have higher incidence and case-fatality rates than non-Hispanic White adults. Molecular-level factors that may help partially explain differences in sepsis survival outcomes between African American/Black and Non-Hispanic White adults are not clear. In this study, patient samples (N = 166) from the Protocolized Care for Early Septic Shock cohort were analyzed using discovery-based plasma proteomics. Patients had sepsis secondary to UTIs and were stratified according to self-identified racial background and sepsis survival outcomes. Proteomics results suggest patient heterogeneity across mechanisms driving survival from sepsis secondary to UTIs. Differentially expressed proteins (n = 122, false discovery rate-adjusted P < 0.05) in Non-Hispanic White sepsis survivors were primarily in immune system pathways, while differentially expressed proteins (n = 47, false discovery rate-adjusted P < 0.05) in African American/Black patients were mostly in metabolic pathways. However, in all patients, regardless of racial background, there were 16 differentially expressed proteins in sepsis survivors involved in translation initiation and shutdown pathways. These pathways are potential targets for prognostic intervention. Overall, this study provides information about molecular factors that may help explain disparities in sepsis survival outcomes among African American/Black and Non-Hispanic White patients with primary UTIs.
Collapse
Affiliation(s)
- Kathryn L. Kapp
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA
| | - Min Ji Choi
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kun Bai
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Liping Du
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sachin Yende
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - John A. Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Derek C. Angus
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - Octavia M. Peck-Palmer
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Renã A. S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA
| |
Collapse
|
4
|
Radzyukevich YV, Kosyakova NI, Prokhorenko IR. Impact of Comorbidity of Bronchial Asthma and Type 2 Diabetes Mellitus on the Expression and Functional Activity of TLR2 and TLR4 Receptors. Life (Basel) 2023; 13:life13020550. [PMID: 36836906 PMCID: PMC9965069 DOI: 10.3390/life13020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Epidemiological data indicate the active progression of various forms of diabetes mellitus in patients with bronchial asthma (BA), but little is known about the mechanisms of comorbidity formation. TLR2 and TLR4 are involved in the progression of asthma and type 2 diabetes mellitus (T2DM). These receptors are involved in the inflammatory response to Gram(+) and Gram(-) bacteria, respectively, so changes in their expression may affect the predisposition of patients to bacteremia. The aim of this study was to analyze the expression and functional activity of toll-like receptor 2 and 4 (TLR2 and TLR4) on peripheral blood cells of patients with BA, T2DM, and BA + T2DM. The expression of TLR2 and TLR4 was analyzed by flow cytometry. Whole blood samples were incubated with lipopolysaccharides from E. coli (LPS) and lipoteichoic acid from S. pyogenes (LTA). The concentration of cytokines and soluble blood proteins was determined by ELISA. Patients with comorbid diseases showed a statistically significant increase in TLR2 expression on both monocytes and neutrophils compared with healthy donors and patients with BA. We found increased expression of TLR4 on the surface of blood monocytes from patients compared to donors. The activation of blood cells of patients and donors with LPS or LTA led to an increase in the expression of "fast" pro-inflammatory cytokines (TNF-α, IL-6). In patients with BA, the average production of TNF-α in response to endotoxin was two times higher than in other studied groups. The reactions of blood cells in patients with T2DM and BA + T2DM did not differ significantly. The expression and functional activity of TLR2 and TLR4 on the blood cells of patients with comorbid disease were similar to those only in patients with T2DM. The greatest increase in the synthesis of the pro-inflammatory cytokine TNF-α in response to LPS and LTA was observed in patients with BA, which can lead to an inadequate response to bacteremia.
Collapse
Affiliation(s)
- Yaroslav V. Radzyukevich
- Hospital of Pushchino Scientific Center, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Molecular Biomedicine, Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia
- Correspondence:
| | - Ninel I. Kosyakova
- Hospital of Pushchino Scientific Center, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Isabella R. Prokhorenko
- Department of Molecular Biomedicine, Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia
| |
Collapse
|
5
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
6
|
Kapp KL, Arul AB, Zhang KC, Du L, Yende S, Kellum JA, Angus DC, Peck-Palmer OM, Robinson RAS. Proteomic changes associated with racial background and sepsis survival outcomes. Mol Omics 2022; 18:923-937. [PMID: 36097965 DOI: 10.1039/d2mo00171c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intra-abdominal infection is a common cause of sepsis, and intra-abdominal sepsis leads to ∼156 000 U.S. deaths annually. African American/Black adults have higher incidence and mortality rates from sepsis compared to Non-Hispanic White adults. A limited number of studies have traced survival outcomes to molecular changes; however, these studies primarily only included Non-Hispanic White adults. Our goal is to better understand molecular changes that may contribute to differences in sepsis survival in African American/Black and Non-Hispanic White adults with primary intra-abdominal infection. We employed discovery-based plasma proteomics of patient samples from the Protocolized Care for Early Septic Shock (ProCESS) cohort (N = 107). We identified 49 proteins involved in the acute phase response and complement system whose expression levels are associated with both survival outcome and racial background. Additionally, 82 proteins differentially-expressed in survivors were specific to African American/Black or Non-Hispanic White patients, suggesting molecular-level heterogeneity in sepsis patients in key inflammatory pathways. A smaller, robust set of 19 proteins were in common in African American/Black and Non-Hispanic White survivors and may represent potential universal molecular changes in sepsis. Overall, this study identifies molecular factors that may contribute to differences in survival outcomes in African American/Black patients that are not fully explained by socioeconomic or other non-biological factors.
Collapse
Affiliation(s)
- Kathryn L Kapp
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA.,The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA.
| | - Albert B Arul
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA
| | - Kevin C Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Liping Du
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sachin Yende
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Derek C Angus
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - Octavia M Peck-Palmer
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA.,The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA.
| |
Collapse
|
7
|
Gutierrez Guarnizo SA, Tikhonova EB, Zabet-Moghaddam M, Zhang K, Muskus C, Karamyshev AL, Karamysheva ZN. Drug-Induced Lipid Remodeling in Leishmania Parasites. Microorganisms 2021; 9:microorganisms9040790. [PMID: 33918954 PMCID: PMC8068835 DOI: 10.3390/microorganisms9040790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Leishmania parasites efficiently develop resistance against several types of drugs including antimonials, the primary antileishmanial drug historically implemented. The resistance to antimonials is considered to be a major risk factor for effective leishmaniasis treatment. To detect biomarkers/biopatterns for the differentiation of antimony-resistant Leishmania strains, we employed untargeted global mass spectrometry to identify intracellular lipids present in antimony sensitive and resistant parasites before and after antimony exposure. The lipidomic profiles effectively differentiated the sensitive and resistant phenotypes growing with and without antimony pressure. Resistant phenotypes were characterized by significant downregulation of phosphatidylcholines, sphingolipid decrease, and lysophosphatidylcholine increase, while sensitive phenotypes were characterized by the upregulation of triglycerides with long-chain fatty acids and a tendency toward the phosphatidylethanolamine decrease. Our findings suggest that the changes in lipid composition in antimony-resistant parasites contribute to the physiological response conducted to combat the oxidative stress unbalance caused by the drug. We have identified several lipids as potential biomarkers associated with the drug resistance.
Collapse
Affiliation(s)
- Sneider Alexander Gutierrez Guarnizo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.A.G.G.); (E.B.T.)
- Programa de Estudio y Control de Enfermedades Tropicales, Facultad de medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Elena B. Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.A.G.G.); (E.B.T.)
| | | | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales, Facultad de medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.A.G.G.); (E.B.T.)
- Correspondence: (A.L.K.); (Z.N.K.); Tel.: +1-806-743-4102 (A.L.K.); +1-806-834-5075 (Z.N.K.)
| | - Zemfira N. Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence: (A.L.K.); (Z.N.K.); Tel.: +1-806-743-4102 (A.L.K.); +1-806-834-5075 (Z.N.K.)
| |
Collapse
|
8
|
Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings. Int J Biol Macromol 2021; 171:448-456. [PMID: 33421472 DOI: 10.1016/j.ijbiomac.2020.12.222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023]
Abstract
To investigate the effects of Hericium erinaceus polysaccharide (HEP) on immunity in Muscovy duck reovirus (MDRV)-infected ducklings and explore its mechanism of action, an MDRV contact-infection model was established. Then, we investigated the influence of HEP on morphology of main immune organs in MDRV-infected ducklings by HE staining, while antioxidant capacity (T-AOC, MDA), serum protein levels (TP, ALB, GLO), complement levels (C3, C4) and antibody levels (IgA, IgM, IgG) were detected. Apoptotic indexes (apoptosisi rate and FAS-L) were also quantified by TUNEL method and immunohistochemical staining. Meanwhile, FADD and CytC (apoptosis-related genes), were tested by quantitative RT-PCR. Results showed that HEP could reduce the injuries of immune organs caused by MDRV. Additionally, HEP markedly diminished MDA (p < 0.01), while significantly increased T-AOC, TP, ALB, GLO, C3, C4, IgA, IgM and IgG (p < 0.01 or p < 0.05). Then, HEP shifted apoptosis time to an early MDRV-infected stage and reduced apoptosis at later MDRV-infected stage. This was associated with changes of FADD and CytC. Collectively, our data suggested that HEP could reduce the immunesuppression by many ways, such as decreasing organs' injuries, improving antioxidant capacity, serum proteins levels, antibody levels and complement levels, while diminish the apoptosis by lowering the FADD and CytC.
Collapse
|
9
|
Mecatti GC, Messias MCF, de Oliveira Carvalho P. Lipidomic profile and candidate biomarkers in septic patients. Lipids Health Dis 2020; 19:68. [PMID: 32284068 PMCID: PMC7155265 DOI: 10.1186/s12944-020-01246-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a severe disease with a high mortality rate. Identification and treatment in the initial hours of the disease improve outcomes. Some biomarkers like procalcitonin and C-reactive protein are used for diagnosis and to access sepsis prognosis and they can help in clinical decision-making, but none has sufficient specificity or sensitivity to be routinely employed in clinical practice. This review seeks to evaluate lipid metabolism alterations in patients with sepsis and the possibility of using the respective metabolites as biomarkers of the disease. A search of the main electronic biomedical databases was conducted for the 20-year period ending in February 2020, focused on primary research articles on biomarkers in sepsis. The keywords included sepsis, septic shock, biomarker, metabolomic, lipidomic and lysophosphatidylcoline. . It concludes that altered lipid profiles, along with the progress of the disease should provide new insights, enabling a better understanding of the pathogenic mechanisms and making it possible to design new early diagnosis and therapeutic procedures for sepsis.
Collapse
Affiliation(s)
- Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| | - Márcia Cristina Fernandes Messias
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| |
Collapse
|
10
|
Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999⁻2004. J Clin Med 2019; 8:jcm8030365. [PMID: 30875952 PMCID: PMC6463027 DOI: 10.3390/jcm8030365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemias and leukocytosis are associated with cardiovascular disease and immune disorders. Mechanistic studies have shown lipoprotein metabolism to play a significant role in the regulation of atherosclerosis development and leukocyte activation, whereas lipid-lowering treatments have been shown to exert beneficial anti-inflammatory and immunomodulatory effects in clinical trials. However, the relationship between clinical markers of lipid metabolism and leukocyte counts has not been extensively evaluated at the population level. We aimed to determine whether clinical blood lipid measures are associated with leukocyte counts in the general U.S. population represented in the National Health and Nutrition Examination Survey (NHANES) 1999–2004, and whether differences exist between men and women (n = 5647). We observed a strong positive linear trend between serum triglycerides vs. blood lymphocyte and basophil counts in both men and women, whereas a positive trend between monocytes vs. triglycerides and lymphocytes vs. total cholesterol and LDL-cholesterol (LDL-C) was only detected in women. Conversely, HDL-C was inversely associated with a greater number of leukocyte subsets in men, whereas inverse trends between HDL-C vs. lymphocytes were observed in both men and women. In multiple regression models, a 10% increase in total cholesterol, LDL-C, and triglycerides was associated with a predicted 1.6%, 0.6%, and 1.4% increase in blood lymphocyte counts in women, respectively, whereas no relationship was observed in men. In both men and women, a 10% increase in triglycerides was additionally associated with higher lymphocyte, neutrophil, and basophil counts, whereas 10% increases in HDL-cholesterol were associated with significantly lower lymphocyte, neutrophil, eosinophil, and basophil counts in men, in addition to lower lymphocyte and monocyte counts in women. These findings suggest that clinical lipid markers may be used to predict blood leukocyte distributions, and that a gender-specific relationship exists between distinct classes of serum lipids and immune cell subsets.
Collapse
|
11
|
Larrouy-Maumus G. Lipids as Biomarkers of Cancer and Bacterial Infections. Curr Med Chem 2019; 26:1924-1932. [PMID: 30182838 DOI: 10.2174/0929867325666180904120029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. Lipids are among the primary structural and functional constituents of biological tissues, especially cell membranes. Along with membrane formation, lipids play also a crucial role in cell signalling, inflammation and energy storage. It was shown recently that lipid metabolism disorders play an important role in carcinogenesis and development. As well, the role of lipids in disease is particularly relevant for bacterial infections, during which several lipid bacterial virulence factors are recognized by the human innate immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria, and lipoglycans in mycobacteria. Compared to nucleic acids and proteins, a complete analysis of the lipidome, which is the comprehensive characterization of different lipid families, is usually very challenging due to the heterogeneity of lipid classes and their intrinsic physicoproperties caused by variations in the constituents of each class. Understanding the chemical diversity of lipids is therefore crucial to understanding their biological relevance and, as a consequence, their use as potential biomarkers for non-infectious and infectious diseases. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Andersen CJ. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018; 10:E764. [PMID: 29899295 PMCID: PMC6024721 DOI: 10.3390/nu10060764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015⁻2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.
Collapse
|
13
|
Abstract
Sepsis is a systemic inflammatory response caused by infection whose molecular mechanisms are still not completely understood. The early detection of sepsis remains a great challenge for clinicians because no single biomarker capable of its reliable prediction, hence, delayed diagnosis frequently undermines treatment efforts, thereby contributing to high mortality. There are several experimental approaches used to reveal the molecular mechanism of sepsis progression. Proteomics coupled with mass spectrometry made possible to identify differentially expressed proteins in clinical samples. Recent advancement in liquid chromatography-based separation methods and mass spectrometers resolution and sensitivity with absolute quantitation methods, made possible to use proteomics as a powerful tool for study of clinical samples with higher coverage proteome profiles. In recent years, number of proteomic studies have been done under sepsis and/or in response to endotoxin and showed various signaling pathways, functions, and biomarkers. This review enlightened the proteomic progress in the last decade in sepsis.
Collapse
|
14
|
Sharma NK, Tashima AK, Brunialti MKC, Ferreira ER, Torquato RJS, Mortara RA, Machado FR, Assuncao M, Rigato O, Salomao R. Proteomic study revealed cellular assembly and lipid metabolism dysregulation in sepsis secondary to community-acquired pneumonia. Sci Rep 2017; 7:15606. [PMID: 29142235 PMCID: PMC5688086 DOI: 10.1038/s41598-017-15755-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a life-threatening disorder characterized by organ dysfunction and a major cause of mortality worldwide. The major challenge in studying sepsis is its diversity in such factors as age, source of infection and etiology. Recently, genomic and proteomic approaches have improved our understanding of its complex pathogenesis. In the present study, we use quantitative proteomics to evaluate the host proteome response in septic patients secondary to community-acquired pneumonia (CAP). Samples obtained at admission and after 7 days of follow-up were analyzed according to the outcomes of septic patients. The patients' proteome profiles were compared with age- and gender-matched healthy volunteers. Bioinformatic analyses of differentially expressed proteins showed alteration in the cytoskeleton, cellular assembly, movement, lipid metabolism and immune responses in septic patients. Actin and gelsolin changes were assessed in mononuclear cells using immunofluorescence, and a higher expression of gelsolin and depletion of actin were observed in survivor patients. Regarding lipid metabolism, changes in cholesterol, HDL and apolipoproteins were confirmed using enzymatic colorimetric methods in plasma. Transcriptomic studies revealed a massive change in gene expression in sepsis. Our proteomic results stressed important changes in cellular structure and metabolism, which are possible targets for future interventions of sepsis.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Division of Infectious Diseases, Escola Paulista de Medicina, Hospital São Paulo, Universidade Federal de Sao Paulo, Sao Paulo, 04039-032, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-900, Brazil
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Hospital São Paulo, Universidade Federal de Sao Paulo, Sao Paulo, 04039-032, Brazil
| | - Eden Ramalho Ferreira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, 04023-062, Brazil
| | - Ricardo Jose Soares Torquato
- Departamento de Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-900, Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, 04023-062, Brazil
| | - Flavia Ribeiro Machado
- Intensive Care Unit, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, 04024-002, Brazil
| | - Murillo Assuncao
- Intensive Care Unit, Hospital Israelita Albert Einstein, Sao Paulo, 05652- 900, Brazil
| | - Otelo Rigato
- Division of Infectious Diseases, Escola Paulista de Medicina, Hospital São Paulo, Universidade Federal de Sao Paulo, Sao Paulo, 04039-032, Brazil
- Intensive Care Unit, Hospital Sirio Libanes, Sao Paulo, 01409-001, Brazil
| | - Reinaldo Salomao
- Division of Infectious Diseases, Escola Paulista de Medicina, Hospital São Paulo, Universidade Federal de Sao Paulo, Sao Paulo, 04039-032, Brazil.
| |
Collapse
|
15
|
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. BIOSENSORS-BASEL 2017; 7:bios7030025. [PMID: 28677660 PMCID: PMC5618031 DOI: 10.3390/bios7030025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
- The New Mexico Consortium, Los Alamos, NM 87544, USA.
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
16
|
Bovine immunoglobulin/protein isolate binds pro-inflammatory bacterial compounds and prevents immune activation in an intestinal co-culture model. PLoS One 2015; 10:e0120278. [PMID: 25830826 PMCID: PMC4382133 DOI: 10.1371/journal.pone.0120278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI might improve immune status and reduce inflammation in various intestinal disease states.
Collapse
|
17
|
Nellimarla S, Mossman KL. Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res 2015; 34:419-26. [PMID: 24905198 DOI: 10.1089/jir.2014.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Double-stranded RNA (dsRNA) is arguably the most potent viral trigger of innate immune signaling. Its activity has been recognized for over 5 decades, first as a toxin, then as a central component of the interferon system, as an efficient activator of antiviral responses and an immunomodulator for therapeutic applications. Nucleic acid sensing is the main basis for antiviral defense systems throughout the diverse forms of life from bacteria to plants and animals. Pattern recognition receptors of the host defense system not only sense viral dsRNA as a pathogen-associated molecular pattern in infected cells, but also recognize circulating endogenous dsRNA, a nonmicrobial signal, as a danger-associated molecular pattern, often leading to autoimmunity. Despite the effects of extracellular viral and host dsRNA associated with infection and autoimmunity, respectively, the understanding of cellular mechanisms for its recognition and uptake has only been appreciated in recent years. This review presents an overview of this unique form of nucleic acid, addressing its roles in infection, autoimmunity, and host sensing mechanisms. The goal of this review is to highlight the novel findings with a focus on extracellular recognition and uptake by the cell.
Collapse
Affiliation(s)
- Srinivas Nellimarla
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Kwak MS, Lim M, Lee YJ, Lee HS, Kim YH, Youn JH, Choi JE, Shin JS. HMGB1 Binds to Lipoteichoic Acid and Enhances TNF-α and IL-6 Production through HMGB1-Mediated Transfer of Lipoteichoic Acid to CD14 and TLR2. J Innate Immun 2015; 7:405-16. [PMID: 25660311 DOI: 10.1159/000369972] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Lipoteichoic acid (LTA) is a component of the cell wall of Gram-positive bacteria and induces a toll-like receptor 2 (TLR2)-mediated inflammatory response upon initial binding to lipopolysaccharide-binding protein (LBP) and subsequent transfer to CD14. In this study, we identified a novel role for the nuclear protein high-mobility group box 1 (HMGB1) in LTA-mediated inflammation. Results of ELISA, surface plasmon resonance and native PAGE electrophoretic mobility shift analyses indicated that HMGB1 binds to LTA in a concentration-dependent manner and that this binding is inhibited by LBP. Native PAGE, fluorescence-based transfer and confocal imaging analyses indicated that HMGB1 catalytically disaggregates LTA and transfers LTA to CD14. NF-κB p65 nuclear transmigration, degradation of IκBα and reporter assay results demonstrated that NF-κB activity in HEK293-hTLR2/6 cells is significantly upregulated by a mixture of LTA and soluble CD14 in the presence of HMGB1. Furthermore, the production of TNF-α and IL-6 in J774A.1 and RAW264.7 cells increased significantly following treatment with a mixture of LTA and HMGB1 compared with treatment with LTA or HMGB1 alone. Thus, we propose that HMGB1 plays an important role in LTA-mediated inflammation by binding to and transferring LTA to CD14, which is subsequently transferred to TLR2 to induce an inflammatory response.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cao Z, Robinson RAS. The role of proteomics in understanding biological mechanisms of sepsis. Proteomics Clin Appl 2014; 8:35-52. [PMID: 24339042 DOI: 10.1002/prca.201300101] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022]
Abstract
Sepsis is a systemic inflammatory state caused by infection. Complications of this infection with multiple organ failure lead to more lethal conditions, such as severe sepsis and septic shock. Sepsis is one of the leading causes of US deaths. Novel biomarkers with high sensitivity and specificity may be helpful for early diagnosis of sepsis and for improvement of patient outcomes through the development of new therapies. Mass spectrometry-based proteomics offers powerful tools to identify such biomarkers and furthermore to give insight to fundamental mechanisms of this clinical condition. In this review, we summarize findings from proteomics studies of sepsis and how their applications have provided more understanding into the pathogenesis of septic infection. Literatures related to "proteomics", "sepsis", "systemic inflammatory response syndrome", "severe sepsis", "septic infection", and "multiple organ dysfunction syndrome" were searched using PubMed. Findings about neonatal and adult sepsis are discussed separately. Within the adult sepsis studies, results are grouped based on the models (e.g., human or animal). Across investigations in clinical populations and in rodent and mammalian animal models, biological pathways, such as inflammatory and acute phase response, coagulation, complement, mitochondrial energy metabolism, chaperones, and oxidative stress, are altered at the protein level. These proteomics studies have discovered many novel biomarker candidates of septic infection. Validation the clinical use of these biomarker candidates may significantly impact the diagnosis and prognosis of sepsis. In addition, the molecular mechanisms revealed by these studies may also guide the development of more effective treatments.
Collapse
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
20
|
Nowak P, Śpiewak K, Brindell M, Woźniakiewicz M, Stochel G, Kościelniak P. Separation of iron-free and iron-saturated forms of transferrin and lactoferrin via capillary electrophoresis performed in fused-silica and neutral capillaries. J Chromatogr A 2013; 1321:127-32. [PMID: 24231263 DOI: 10.1016/j.chroma.2013.10.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
A capillary electrophoresis-based method for the cost-effective and high efficient separation of iron-free and iron-saturated forms of two members of transferrin family: transferrin and lactoferrin has been developed. The proposed qualitative method relying on the SDS application allowed us to separate iron-free and iron-saturated forms of these proteins, as well as human serum albumin, used as an internal standard. Owing to the distinct migration times under established conditions, the combination of transferrin and lactoferrin assays within a single analytical procedure was feasible. The performance of the method using a fused-silica capillary has been compared with the results obtained using the same method but performed with the use of a neutral capillary of the same dimensions. Neutral capillary has been used as an alternative, since the comparable resolution has been achieved with a concomitant reduction of the electroosmotic flow. Despite of this fact, the migration of analytes occurred with similar velocity but in opposite order, due to the reverse polarity application. A quantitative method employing fused-silica capillary for iron saturation study has been also developed, to evaluate the iron saturation in commercial preparations of lactoferrin.
Collapse
Affiliation(s)
- Paweł Nowak
- Jagiellonian University, Faculty of Chemistry, Department of Analytical Chemistry, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Corona-Hernandez RI, Álvarez-Parrilla E, Lizardi-Mendoza J, Islas-Rubio AR, de la Rosa LA, Wall-Medrano A. Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review. Compr Rev Food Sci Food Saf 2013; 12:614-628. [DOI: 10.1111/1541-4337.12030] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rocío I. Corona-Hernandez
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Emilio Álvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Jaime Lizardi-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal; Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735; Hermosillo 83000; Sonora; México
| | - Alma R. Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735; Hermosillo 83000; Sonora; México
| | - Laura. A. de la Rosa
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Abraham Wall-Medrano
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| |
Collapse
|
22
|
Czerkies M, Borzęcka K, Zdioruk MI, Płóciennikowska A, Sobota A, Kwiatkowska K. An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology 2013; 218:1217-26. [PMID: 23669238 DOI: 10.1016/j.imbio.2013.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharide (LPS) activates macrophages by binding to the TLR4/MD-2 complex and triggers two pro-inflammatory signaling pathways: one relies on MyD88 at the plasma membrane, and the other one depends on TRIF in endosomes. When present in high doses, LPS is internalized and undergoes detoxification. We found that the uptake of a high concentration of LPS (1000ng/ml) in macrophage-like J774 cells was upregulated upon inhibition of clathrin- and dynamin-mediated endocytosis which, on the other hand, strongly reduced the production of pro-inflammatory mediators TNF-α and RANTES. The binding and internalization of high amounts of LPS was mediated by scavenger receptor A (SR-A) with participation of CD14 without an engagement of TLR4. Occupation of SR-A by dextran sulfate or anti-SR-A antibodies enhanced LPS-induced production of TNF-α and RANTES by about 70%, with CD14 as a limiting factor. Dextran sulfate also elevated the cell surface levels of TLR4 and CD14, which could have contributed to the upregulation of the pro-inflammatory responses. Silencing of SR-A expression inhibited the LPS-triggered TNF-α production whereas RANTES release was unchanged. These data indicate that SR-A is required for maximal production of TNF-α in cells stimulated with LPS, possibly by modulating the cell surface levels of TLR4 and CD14.
Collapse
Affiliation(s)
- Maciej Czerkies
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Giangrande C, Colarusso L, Lanzetta R, Molinaro A, Pucci P, Amoresano A. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics. Anal Bioanal Chem 2012; 405:775-84. [PMID: 22752448 DOI: 10.1007/s00216-012-6204-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/03/2012] [Accepted: 06/15/2012] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses.
Collapse
Affiliation(s)
- Chiara Giangrande
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|