1
|
Kalashnikova TP, Kamenshchikov NO, Arsenyeva YA, Podoksenov YK, Kravchenko IV, Kozulin MS, Tyo MA, Churilina EA, Kim EB, Svirko YS, Kozlov BN, Boshchenko AA. High-dose inhaled NO for the prevention of nosocomial pneumonia after cardiac surgery under cardiopulmonary bypass: A proof-of-concept prospective randomised study. Pulmonology 2025; 31:2471706. [PMID: 40019284 DOI: 10.1080/25310429.2025.2471706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE This study aimed to assess the safety and potential efficacy of high-dose inhaled nitric oxide therapy for the prevention of postoperative pneumonia in cardiac surgery patients. METHODS A prospective randomised controlled pilot study included 74 patients with moderate risk of postoperative pneumonia after elective cardiac surgery under cardiopulmonary bypass. Patients were randomised into two groups. The main group (NO-group) (n = 37) received inhaled nitric oxide at a dose of 200 ppm for 30 minutes 2 times a day for 5 days or until pneumonia developed. The control group received conventional postoperative care (n = 37). The primary endpoint was the incidence of postoperative pneumonia during in-hospital stay. RESULTS Preventive nitric oxide inhalations were associated with a reduced incidence of postoperative nosocomial pneumonia (2 (5.4%) cases in the main group (NO-group) vs. 9 (24.3%) cases in the control group, p = 0.046; OR = 0.178, 95% CI = 0.036-0.89)). There was no decrease in either peak expiratory flow, or peak inspiratory flow in comparison with the preoperative values in the NO-group. Inhaled nitric oxide therapy is safe. It did not lead to an increase in the incidence of acute kidney injury. CONCLUSIONS High-dose inhaled nitric oxide therapy is safe and effective for the prevention of postoperative nosocomial pneumonia in cardiac surgery.
Collapse
Affiliation(s)
- Tatiana P Kalashnikova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay O Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yulia A Arsenyeva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Igor V Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Maxim S Kozulin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Mark A Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena A Churilina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena B Kim
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yulia S Svirko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Boris N Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| |
Collapse
|
2
|
Zaborova V, Budanova E, Kryuchkova K, Rybakov V, Shestakov D, Isaikin A, Romanov D, Churyukanov M, Vakhnina N, Zakharov V, Isaikin I, Kinkulkina M. Nitric oxide: a gas transmitter in healthy and diseased skin. Med Gas Res 2025; 15:520-528. [PMID: 40300887 DOI: 10.4103/mgr.medgasres-d-24-00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/25/2025] [Indexed: 05/01/2025] Open
Abstract
Numerous physiological processes in the human skin are mediated by nitric oxide, a gaseous signalling molecule. Almost every type of skin cell may produce nitric oxide, it is possible to generate nitric oxide without the need of enzymes. Nitric oxide plays a crucial role in regulating apoptosis, keratinocyte differentiation and proliferation, the protective properties of the epidermal barrier, and the structure and functions of the microcirculatory bed. Nitric oxide is involved in immunological and inflammatory responses, hair growth regulation, and wound healing processes. It mediates ultraviolet-induced processes such as erythema and edema development and participates in melanogenesis. Furthermore, the ability of nitric oxide to bind reactive oxygen species and prevent lipid peroxidation gives it antioxidant qualities. This coordinated action of nitric oxide on gene expression and membrane integrity effectively protects cells from ultraviolet A-induced apoptosis and necrosis. Furthermore, nitric oxide can be considered as a molecule that inhibits the development of cancer and photoaging. It directly harms microorganisms and indirectly activates the immune system, exhibiting antibacterial, antiviral, and antifungal qualities. Notably, nitric oxide is effective against antibiotics-resistant bacteria. All of the aforementioned findings suggest that nitric oxide is a gaseous mediator that can protect skin function.
Collapse
Affiliation(s)
- Victoria Zaborova
- Department of Microbiology, Virology and Immunology, Institute of Public Health, Sechenov University, Moscow, Russia
| | - Elena Budanova
- Department of Microbiology, Virology and Immunology, Institute of Public Health, Sechenov University, Moscow, Russia
| | - Kira Kryuchkova
- Department of Microbiology, Virology and Immunology, Institute of Public Health, Sechenov University, Moscow, Russia
- Department of Dermatovenerology, Allergology and Cosmetology, Peoples' Friendship University, Moscow, Russia
| | | | | | - Aleksey Isaikin
- Department of Nervous Diseases and Neurosurgery, Sechenov University, Moscow, Russia
| | - Dmitry Romanov
- Department of Psychiatry and Psychosomatics, Sechenov University, Moscow, Russia
| | - Maxim Churyukanov
- Department of Nervous Diseases and Neurosurgery, Sechenov University, Moscow, Russia
- Russian Scientific Center of Surgery B.V. Petrovsky, Moscow, Russia
| | - Natalia Vakhnina
- Department of Nervous Diseases and Neurosurgery, Sechenov University, Moscow, Russia
| | - Vladimir Zakharov
- Department of Nervous Diseases and Neurosurgery, Sechenov University, Moscow, Russia
| | - Ivan Isaikin
- Department of Nervous Diseases and Neurosurgery, Sechenov University, Moscow, Russia
| | - Marina Kinkulkina
- Department of Psychiatry and Narcology, Sechenov University, Moscow, Russia
| |
Collapse
|
3
|
Nguyen GH, Garren M, Wu Y, Mondal A, Handa H, Brisbois EJ. Multifunctional slippery nanoemulsion-infused porous nitric oxide-releasing surfaces. J Colloid Interface Sci 2025; 689:137199. [PMID: 40056687 PMCID: PMC11932779 DOI: 10.1016/j.jcis.2025.02.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/09/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
The need for biocompatible materials for medical devices remains critical, as complications such as infection, thrombosis, and biofouling significantly contribute to medical device failure and patient morbidity and mortality. In recent years, nitric oxide (NO)-releasing technologies have been explored to mitigate bacterial infections, particularly those stemming from common gram-positive and gram-negative bacterial pathogens. However, NO-releasing materials do not inherently possess anti-fouling capabilities. Combination strategies that use NO and anti-fouling surfaces (e.g., slippery lubricant-infused porous surfaces) have been explored to compensate for the deficit. In this work, a novel material was developed and assessed that combines the antibacterial capabilities of a NO-releasing substrate with the anti-fouling effects of a nanoemulsion (NE)-infused slippery surface. Using a covalently bound NO donor (S-nitroso-N-acetylpenicillamine, SNAP) to poly(dimethylsiloxane) (PDMS) and infused with a NE, denoted as SNAP-PDMS-NE, the NO release was sustained for 7 days. In addition to the prolonged NO release, the infused NE layer maintained a slippery nature and sliding angle below 20° for 7 days. The reported NO-releasing NE-swelled surface efficiently reduced Staphylococcus aureus adhesion by 3.5 log and Escherichia coli adhesion by 1.5 log after 24 h, reduced platelet adhesion by 89.92 %, and remained cytocompatible with relative cell viability greater than 70 %.
Collapse
Affiliation(s)
- Grace H Nguyen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yi Wu
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
4
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
5
|
Nagy SG, Metiva JJ, Schoenfisch MH. Nitric Oxide-Releasing Liposomes for Treatment of Mycobacterium abscessus Infections. ACS APPLIED BIO MATERIALS 2025. [PMID: 40378264 DOI: 10.1021/acsabm.5c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Nontuberculosis mycobacteria (NTM) are ubiquitous, opportunistic pathogens that cause severe respiratory infection, primarily in elderly and immunocompromised populations. The second most prevalent NTM pathogen, Mycobacterium abscessus, is considered the most refractory due to its fast growth rate, intracellular survivability, and antibiotic resistance. Treatments are thus sparse and generally ineffective, promoting antibiotic resistance upon chronic use. Nitric oxide (NO) is an endogenously produced free radical that exerts antimicrobial effects against pathogens via several mechanisms of action, and as such, it is unlikely to elicit resistance. Methyl tris diazeniumdiolate (MD3) is a small-molecule NO-releasing prodrug that is capable of sustained NO release, making it an attractive candidate as an antimicrobial therapeutic; however, its triple negative charge makes cellular uptake unlikely. As liposomes enable cellular uptake, their use as an MD3 delivery system may further enhance the utility of NO release for treating intracellular NTM infections. Herein, liposomal formulations were evaluated as a function of pH and buffer composition and optimized for MD3 loading to enable the delivery of bactericidal levels of NO. Planktonic studies with two clinically relevant morphotypes of M. abscessus revealed that lower pKa liposomal systems employ a better antimicrobial efficacy. Prevention and eradication assays revealed that liposomal MD3 significantly improves biofilm inhibition compared to nonliposomal MD3 and was capable of eradicating biofilm bacteria at 4 mg mL-1. Liposomal MD3 and MD3 had similar reductions in intracellular bacterial load, achieving at least a three-log reduction at relevant concentrations. Fluorescence spectroscopy over 24 h demonstrated that liposomal encapsulation increased the intracellular concentration of a membrane-impermeable fluorophore by 3.4-fold. Confocal microscopy was used to visualize the increase in the number of cells containing intracellular NO and the sustained presence of NO within the cell, confirming that liposomal MD3 increases small-molecule internalization.
Collapse
Affiliation(s)
- Sarah G Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph J Metiva
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Shi X, Zou Y, Li Y, Jiang J. S-Nitrosylated Au@COF nanohybrids for synergistic light-nitric oxide killing of bacteria. Chem Commun (Camb) 2025. [PMID: 40370298 DOI: 10.1039/d5cc01785h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Nanohybrids integrating plasmonic Au and NO donors have been synthesized by a COF-mediated strategy, which effectively eradicate bacteria and biofilms, via mild phototherapy synergized with controlled NO release and ONOO- generation.
Collapse
Affiliation(s)
- Xiaobei Shi
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yu Zou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
7
|
Myles E, D'Sa RA, Aveyard J. Antimicrobial nitric oxide releasing gelatin nanoparticles to combat drug resistant bacterial and fungal infections. NANOSCALE ADVANCES 2025; 7:3096-3113. [PMID: 40207089 PMCID: PMC11976662 DOI: 10.1039/d4na01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) represents a significant global health challenge, contributing to increased mortality rates and substantial economic burdens. The development of new antimicrobial agents with dual antimicrobial and antibiofilm capabilities is crucial to mitigate AMR. Nitric oxide (NO) is a broad-spectrum antimicrobial agent which has shown promise in treating infections due to its multiple antimicrobial mechanisms. However, the high reactivity of NO poses a challenge for effective delivery to infection sites. We investigated the antimicrobial and antibiofilm capabilities, and the shelf life, of NO-releasing gelatin nanoparticles (GNP/NO) against three common hospital-acquired pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans. The synthesised GNP/NO were found to be cytocompatible and exhibited significant antimicrobial and antibiofilm efficacies against the tested pathogens in both nutrient-rich and nutrient-poor conditions. Furthermore, we found that the antimicrobial capabilities of GNP/NO were maintained for up to 6 months post synthesis, against Staphylococcus aureus (2.4 log), Escherichia coli (1.2 log) and Candida albicans (3 log) under nutrient-poor conditions. Our study demonstrates the use of a novel broad-spectrum antimicrobial with a prolonged shelf life for the treatment of infections. These findings offer an effective alternative to traditional antibiotics which would contribute to mitigating the current global AMR threat resulting from antibiotic overuse.
Collapse
Affiliation(s)
- Erin Myles
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Jenny Aveyard
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| |
Collapse
|
8
|
Hou Z, Wang K, Liu G, Yuan Z, Peng H, Yuan Y, Wei H, Wang T, Li P. Nitric Oxide-Mediated Dual-Functional Smart Titanium Implant Coating for Antibacterial and Osseointegration Promotion in Implant-Associated Infections. Adv Healthc Mater 2025; 14:e2500997. [PMID: 40195820 DOI: 10.1002/adhm.202500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Indexed: 04/09/2025]
Abstract
The balance of antibacterial and osseointegration-promoting properties on titanium (Ti) implants in a simple and efficient manner is crucial for the management of implant-associated infections, a condition that has become a significant global health concern. Herein, a nitric oxide (NO)-mediated dual-function smart coating with antibacterial and osseointegration-promoting properties is developed for Ti implants. The coating leverages the distinct properties of NO at high and low concentrations to enable an on-demand functional switch. Specifically, antibacterial function is achieved through a rapid release of high-dose NO in response to the infection microenvironment and near-infrared stimulation. Once the infection is resolved and normal physiological conditions are restored, the coating gradually releases low-dose NO to promote osseointegration. In vitro tests confirm that the coating exhibits antibacterial ratio of 97.84% and 97.18% against methicillin-resistant Staphylococcus aureus and its biofilms, respectively, and demonstrates the ability to activate osteoblasts. The rat femoral implant-associated infection model further certifies that the responsive NO release mechanism of the coating efficiently facilitates the on-demand functional switch between antibacterial and osseointegration-promoting properties. Notably, the use of the dual-functional nonantibiotic agent, NO, significantly mitigates the risk of bacterial resistance.
Collapse
Affiliation(s)
- Zishuo Hou
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
| | - Kun Wang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
| | - Guming Liu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
| | - Zhang Yuan
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Haowei Peng
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
| | - Yue Yuan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbo Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tengjiao Wang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics & MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
9
|
Ukaegbu K, Allen E, Svoboda KKH. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int Wound J 2025; 22:e70330. [PMID: 40288766 PMCID: PMC12034374 DOI: 10.1111/iwj.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 04/29/2025] Open
Abstract
Wound healing is a complex biological process encompassing haemostasis, inflammation, proliferation and matrix remodelling. Reactive oxygen species (ROS) play a pivotal role in regulating key events such as antimicrobial defence, platelet activation and angiogenesis. However, excessive ROS levels can induce oxidative stress (OS), disrupting the healing cascade and contributing to chronic wounds, inflammation and impaired tissue repair. Systemic conditions like diabetes, obesity, smoking and ageing further exacerbate OS, highlighting its clinical significance in wound management. Antioxidants (AOx), both endogenous and exogenous, have demonstrated therapeutic potential in mitigating OS, promoting wound closure and enhancing cellular recovery. Compounds like Vitamin E, curcumin, ferulic acid and resveratrol improve AOx enzyme activity, reduce oxidative damage and accelerate wound healing in multiple studies. Emerging evidence supports targeting oxidative pathways as a viable strategy to improve outcomes in chronic and systemic OS-related conditions. This review explores the dual role of ROS in wound healing, the impact of OS in systemic diseases, and the therapeutic potential of AOx in fostering optimal healing outcomes, advocating for robust clinical trials to establish standardised interventions.
Collapse
Affiliation(s)
- Kelechi Ukaegbu
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
- Private PracticeHoustonTexasUSA
| | - Edward Allen
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
- Center for Advanced Dental EducationDallasTexasUSA
| | - Kathy K. H. Svoboda
- Department of Biomedical SciencesTexas A&M School of DentistryDallasTexasUSA
| |
Collapse
|
10
|
Alahdad N, Hamidpour SK, Yazdanpanah MA, Amiri M, Alizadeh R, Rezayat SM, Tavakol S. Nitric oxide synthases: A delicate dance between bone regeneration and neuronal birth. Biomed Pharmacother 2025; 187:118105. [PMID: 40294491 DOI: 10.1016/j.biopha.2025.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating condition resulting from traumatic or nontraumatic injury/chronic disorder. The pathogenesis of SCI necessitates a comprehensive approach, as it involves therapeutic strategies addressing both bone (spine) and neural (spinal cord) damage. This review centers on the pivotal role of nitric oxide (NO) and its synthesizing enzymes, nitric oxide synthases (NOS), in mediating the crosstalk between osteogenesis and neurogenesis. NO's effects are context-dependent, exhibiting a delicate balance between beneficial and detrimental actions. Reduced levels of nitric oxide (NO), primarily derived from endothelial NOS (eNOS), tipically stimulate osteoblast activity and promote neurogenesis by influencing neural stem cell (NSC) migration and differentiation. Conversely, elevated NO levels, predominantly from inducible NOS (iNOS), tipically triggered by inflammation, inhibit both processes through pro-apoptotic mechanisms. Nevertheless, these phenomena are not merely simplistic; they can be influenced by a variety of other factors. We explore the intricate interplay of NO/NOS with key signaling pathways crucial in neurogenesis and osteogenesis, including mechanical stimuli, Wnt, interleukins, BMPs, NF-κB, etc., revealing their influence on neuroinflammation, neurogenesis, and osteoblast differentiation. The temporal and spatial dynamics of NO/NOS activity and the implications for therapeutic intervention have been discussed. Precise modulation of NO levels and NOS isoforms, potentially through targeted therapies manipulating these interacting signaling pathways, emerges as a promising strategy for promoting bone and neural regeneration. This review highlights the critical need for a balanced approach in therapeutic strategies to harness the beneficial effects of NO/NOS while mitigating its detrimental consequences.
Collapse
Affiliation(s)
- Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
11
|
Davis SC, Gil J, Solis M, Strong R, Cassagnol R. Efficacy of a Topical Nitric Oxide-Releasing Gel on Polymicrobial Wound Infections. Mil Med 2025; 190:1037-1044. [PMID: 39671514 DOI: 10.1093/milmed/usae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Wounds are colonized frequently by heterogeneous microflora. Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are two of the most isolated bacterial species from wounds, and both typically form highly organized biofilms. Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas with antimicrobial activity. Recently, NO and its derivatives have been shown to exhibit broad-spectrum antimicrobial activity against bacteria, viruses, and parasites. MATERIALS AND METHODS P. aeruginosa strain ATCC 27312 or military isolate PA09-010 were combined with methicillin-resistant S. aureus strain MRSA USA300 to demonstrate the ability of NO to reduce polymicrobial infections in a porcine wound infection model. Deep partial-thickness wounds (10 mm × 7 mm × 0.5 mm) were made on four animals using a specialized electrokeratome. Wounds were inoculated with MRSA USA300 combined with PA09-010 in three animals and MRSA USA300 combined with PA27312 in one animal, then wounds were covered with polyurethane film dressings. After 48 hours, three wounds were recovered for baseline enumeration. The remaining wounds were randomly assigned to treatment groups and treated once daily. The NO topical gels tested were combinations of two phases, ointment phases with various concentrations (2-20%) combined with hydrogels with fast or slow release kinetics. A 4-day study with microbiological recovery was conducted on day 4. A separate 7-day study was also conducted, with microbial burden assessed on day 7. RESULTS The largest efficacy against MRSA USA300 was observed for the NO formulation with 2% concentration and fast release kinetics. This treatment reduced the MRSA USA300 bacterial count by more than 99.97% and 99.95% from baseline in wounds co-infected with PA09-010 and PA 27312, respectively, at day 7. Treatments showed a minimal efficacy against PA27312 and PA09-010 strains in both assessment times. MRSA USA300 was reduced to a lesser extent when it was combined with PA27312 as compared to PA09-010. CONCLUSIONS These studies demonstrate that NO-releasing topical formulations effectively reduce the MRSA burden in established biofilms composed of multiple microorganisms. Minimal efficacy against PA was observed. It has been demonstrated that MRSA bioburden is significantly reduced when inoculated together with P. aeruginosa. A better understanding of mechanisms of host-bacteria interactions, in single or mixed species biofilms, may lead to the development of novel therapeutic approaches. Overall, NO offers a promising alternative treatment against MRSA in polymicrobial infections.
Collapse
Affiliation(s)
- Stephen C Davis
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel Gil
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roger Cassagnol
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
12
|
Hu M, Chua SL. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025; 13:913. [PMID: 40284749 PMCID: PMC12029751 DOI: 10.3390/microorganisms13040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is a pathogen notorious for its resilience in clinical settings due to biofilm formation, efflux pumps, and the rapid acquisition of resistance genes. With traditional antibiotic therapy rendered ineffective against Pseudomonas aeruginosa infections, we explore alternative therapies that have shown promise, including antimicrobial peptides, nanoparticles and quorum sensing inhibitors. While these approaches offer potential, they each face challenges, such as specificity, stability, and delivery, which require careful consideration and further study. We also delve into emerging alternative strategies, such as bacteriophage therapy and CRISPR-Cas gene editing that could enhance targeted treatment for personalized medicine. As most of them are currently in experimental stages, we highlight the need for clinical trials and additional research to confirm their feasibility. Hence, we offer insights into new therapeutic avenues that could help address the pressing issue of antibiotic-resistant Pseudomonas aeruginosa, with an eye toward practical applications in future healthcare.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Cáceres JC, Michellys NG, Greene BL. Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases. J Am Chem Soc 2025; 147:11777-11788. [PMID: 40133071 PMCID: PMC11987019 DOI: 10.1021/jacs.4c14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Innate immune response cells produce high concentrations of the free radical nitric oxide (NO) in response to pathogen infection. The antimicrobial properties of NO include nonspecific damage to essential biomolecules and specific inactivation of enzymes central to aerobic metabolism. However, the molecular targets of NO in anaerobic metabolism are less understood. Here, we demonstrate that the Escherichia coli glycyl radical enzyme pyruvate formate lyase (PFL), which catalyzes the anaerobic metabolism of pyruvate, is irreversibly inhibited by NO. Using electron paramagnetic resonance and site-directed mutagenesis we show that NO destroys the glycyl radical of PFL. The activation of PFL by its cognate radical S-adenosyl-l-methionine-dependent activating enzyme (PFL-AE) is also inhibited by NO, resulting in the conversion of the essential iron-sulfur cluster to dinitrosyl iron complexes. Whole-cell EPR and metabolic flux analyses of anaerobically growing E. coli show that PFL and PFL-AE are inhibited by physiologically relevant levels of NO in bacterial cell cultures, resulting in diminished growth and a metabolic shift to lactate fermentation. The class III ribonucleotide reductase (RNR) glycyl radical enzyme and its corresponding RNR-AE are also inhibited by NO in a mechanism analogous to those observed in PFL and PFL-AE, which likely contributes to the bacteriostatic effect of NO. Based on the similarities in reactivity of the PFL/RNR and PFL-AE/RNR-AE enzymes with NO, the mechanism of inactivation by NO appears to be general to the respective enzyme classes. The results implicate an immunological role of NO in inhibiting glycyl radical enzyme chemistry in the gut.
Collapse
Affiliation(s)
- Juan Carlos Cáceres
- Interdisciplinary
Program in Quantitative Biosciences, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nathan G. Michellys
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Brandon L. Greene
- Interdisciplinary
Program in Quantitative Biosciences, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
14
|
Khabazian A, Koopaie M, Khabazian T, Manifar S, Kolahdooz S, Tafakhori A. Evaluation of salivary nitric oxide levels and anxiety in multiple sclerosis patients, with and without Xerostomia: correlation with clinical variables. BMC Oral Health 2025; 25:507. [PMID: 40200257 PMCID: PMC11980173 DOI: 10.1186/s12903-025-05878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Xerostomia is a prevalent but often overlooked condition in multiple sclerosis (MS) patients, significantly impacting their quality of life and oral health. This cross-sectional observational study investigates the role of nitric oxide (NO) in the pathophysiology of multiple sclerosis (MS) and explores its association with xerostomia in MS patients. The primary objective was to compare salivary NO concentrations and stress levels between MS patients with and without xerostomia. METHODS MS patients diagnosed by neurologists and MRI were categorized into two groups: those with xerostomia and those without. Unstimulated whole saliva samples were collected using the spitting method, and salivary NO levels were quantified using an enzyme-linked immunosorbent assay (ELISA) kit based on the Griess reaction. Stress levels were assessed using the Beck Anxiety Inventory (BAI) questionnaire. The presence of xerostomia was evaluated through the Xerostomia Inventory (XI) and clinical examinations. RESULTS Salivary NO levels were significantly higher in MS patients without xerostomia (227.47 ng/mL) compared to those with xerostomia (102.37 ng/mL, p < 0.001). Stress levels were also notably higher in MS patients with xerostomia (17.23) versus those without (11.77, p = 0.03). A moderate negative correlation was observed between salivary NO levels and xerostomia (r = 0.44, p < 0.001), indicating that lower NO levels were associated with a higher likelihood of xerostomia. The correlation between stress levels and xerostomia was weaker but still significant (r = 0.28, p = 0.03). Multivariate binary logistic regression analysis identified salivary NO, stress levels, and age as significant predictors of xerostomia in MS patients. The logistic regression model achieved an 80% accuracy in predicting xerostomia based on salivary NO levels and stress. CONCLUSION This study highlights a significant negative correlation between salivary NO levels and xerostomia, suggesting that decreased salivary NO concentrations are associated with an increased risk of xerostomia in MS patients. Additionally, stress levels were positively correlated with xerostomia, indicating a potential link between higher stress and the likelihood of xerostomia in MS patients.
Collapse
Affiliation(s)
- Aynaz Khabazian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tanaz Khabazian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Manifar
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences and Iranian Center of Neurological Research, Tehran, Iran
- Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Balsam SS, Mould DL, Jean-Pierre F, Hogan DA. Role of Pseudomonas aeruginosa Dnr-regulated denitrification in oxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646406. [PMID: 40236165 PMCID: PMC11996506 DOI: 10.1101/2025.03.31.646406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pseudomonas aeruginosa causes acute and chronic infections such as those that occur in the lungs of people with cystic fibrosis (CF). In infection environments, oxygen (O 2 ) concentrations are often low. The transcription factor Anr responds to low O 2 by upregulating genes necessary for P. aeruginosa fitness in microoxic and anoxic conditions. Anr regulates dnr , a gene encoding a transcriptional regulator that promotes the expression of genes required for using nitrate as an alternative electron acceptor during denitrification. In CF sputum, transcripts involved in denitrification are highly expressed. While Dnr is necessary for the anoxic growth of P. aeruginosa in CF sputum and artificial sputum media (ASMi), the contribution of denitrification to P. aeruginosa fitness in oxic conditions has not been well described. Here we show that P. aeruginosa requires dnr for fitness in ASMi and the requirement for dnr is abolished when nitrate is excluded from the media. Additionally, we show that P. aeruginosa consumes nitrate in lysogeny broth (LB) under microoxic conditions. Furthermore, strains without a functioning quorum sensing regulator LasR, which leads to elevated Anr activity, consume nitrate in LB even in normoxia. There was no growth advantage for P. aeruginosa when nitrate was present at concentrations from 100 µM to 1600 µM. However, P. aeruginosa consumption of nitrate in oxic conditions created a requirement for Dnr and Dnr-regulated NorCB likely due to the need to detoxify nitric oxide. These studies suggest that Anr- and Dnr-regulated processes may impact P. aeruginosa physiology in many common culture conditions. Importance Pseudomonas aeruginosa is an opportunistic pathogen commonly isolated from low-oxygen environments such as the lungs of people with cystic fibrosis. While the importance of P. aeruginosa energy generation by denitrification is clear in anoxic environments, the effects of denitrification in oxic cultures is not clear. Here, we show that nitrate is consumed even in oxic environments and while it does not appear to stimulate growth, it does impact fitness. Further, we report that two regulators that are best known for their roles in anoxic conditions also contribute to P. aeruginosa fitness in commonly- used laboratory media in presence of oxygen.
Collapse
|
16
|
Wang J, Ren W, Sun Z, Liu S, Han Z, Wang Y, Zeng Y, Meng J, Yao X. Impact of intragastric administration of donkey milk on mouse immunity utilizing gut microbiomics and plasma metabolomics. Front Vet Sci 2025; 12:1486406. [PMID: 40144527 PMCID: PMC11938429 DOI: 10.3389/fvets.2025.1486406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Donkey milk demonstrates closer compositional resemblance to human milk compared to bovine milk, positioning it as an optimal nutritional substitute for infants with cow's milk allergy. Furthermore, its rich profile of bioactive compounds suggests potential immunomodulatory properties. This study systematically investigated the effects of donkey milk supplementation on murine immune function and gut microbiome dynamics, thereby providing mechanistic insights to support its clinical development in functional food applications. Methods Following daily intragastric administration of 10 mL/kg of body weight of donkey milk (DM) or distilled water (DW) to the mice for 28 consecutive days, liver tissues were harvested for immunological profiling, with concurrent collection of blood samples for plasma metabolomic analysis and fecal specimens for gut microbiome characterization. Subsequently, the modulatory effects of donkey milk supplementation on immune parameters, intestinal microbiota composition, and plasma metabolic profiles were systematically evaluated. Results Immunity analysis revealed that intragastric administration of DM raised the levels of IL-6 and TNF-α cytokines in mouse liver. In addition, DM modulated the composition of both the murine gut microbiome and plasma metabolites. One-hundred and forty-five differentially-produced metabolites were identified, most prominently nicotinamide, L-valine, and β-estradiol, that are primarily associated with valine, leucine, and isoleucine biosynthesis and degradation, nicotinate and nicotinamide metabolism, and unsaturated fatty acid biosynthesis. Alterations at phylum, genus, and species levels were evident in the fecal microbiota of mice after intragastric administration of DM. In particular, an increased abundance of the Lactobacillus bacterium was observed. Correlation analysis of differential metabolites and microbiomes indicated a correspondence between Falsiroseomonas and Salipiger species and the antioxidant coenzyme Q that has the potential to activate the immune system. Conclusion The data collectively suggest that DM may adjust the murine gut microbiome and plasma metabolites thereby potentially improving immunity in mice.
Collapse
Affiliation(s)
- Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Ürümqi, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhiwen Sun
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Shibo Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zixiang Han
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yongfa Wang
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Ürümqi, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Ürümqi, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Ürümqi, China
| |
Collapse
|
17
|
Gomes-da-Silva NC, França ÁRS, Dos Santos CC, Alencar LMR, Rosas EC, Corrêa LB, Lorentino CMA, Santos ALS, Ricci-Junior E, Santos-Oliveira R. Nano-enhanced benzylpenicillin: Bridging antibacterial action with anti-inflammatory potential against antibiotic-resistant bacteria. Microbes Infect 2025; 27:105436. [PMID: 39542238 DOI: 10.1016/j.micinf.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil
| | - Álefe Roger Silva França
- Biophysics and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, 65065690, MA, Brazil
| | - Clenilton Costa Dos Santos
- Biophysics and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, 65065690, MA, Brazil
| | | | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Luana Barbosa Corrêa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil; Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Carolline M A Lorentino
- Laboratory of Advanced Studies on Emerging and Resistant Microorganisms (LEAMER), Brazil; Department of General Microbiology, Paulo de Góes Institute of Microbiology (IMPG), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - André L S Santos
- Laboratory of Advanced Studies on Emerging and Resistant Microorganisms (LEAMER), Brazil; Department of General Microbiology, Paulo de Góes Institute of Microbiology (IMPG), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, School of Pharmacy, Rio de Janeiro, 21941900, RJ, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil; Rio de Janeiro State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, RJ, Brazil.
| |
Collapse
|
18
|
Cáceres JC, Michellys NG, Greene BL. Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639758. [PMID: 40060521 PMCID: PMC11888291 DOI: 10.1101/2025.02.23.639758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Innate immune response cells produce high concentrations of the free radical nitric oxide (NO) in response to pathogen infection. The antimicrobial properties of NO include non-specific damage to essential biomolecules and specific inactivation of enzymes central to aerobic metabolism. However, the molecular targets of NO in anaerobic metabolism are less understood. Here, we demonstrate that the Escherichia coli glycyl radical enzyme pyruvate formate lyase (PFL), which catalyzes the anaerobic metabolism of pyruvate, is irreversibly inhibited by NO. Using electron paramagnetic resonance and site-directed mutagenesis we show that NO destroys the glycyl radical of PFL. The activation of PFL by its cognate radical S-adenosyl-L-methionine-dependent activating enzyme (PFL-AE) is also inhibited by NO, resulting in the conversion of the essential iron-sulfur cluster to dinitrosyl iron complexes. Whole-cell EPR and metabolic flux analyses of anaerobically growing Escherichia coli show that PFL and PFL-AE are inhibited by physiologically relevant levels of NO in bacterial cell cultures, resulting in diminished growth and a metabolic shift to lactate fermentation. The class III ribonucleotide reductase (RNR) glycyl radical enzyme and its corresponding RNR-AE are also inhibited by NO in a mechanism analogous to those observed in PFL and PFL-AE, which likely contributes to the bacteriostatic effect of NO. Based on the similarities in reactivity of the PFL/RNR and PFL-AE/RNR-AE enzymes with NO, the mechanism of inactivation by NO appears to be general to the respective enzyme classes. The results implicate an immunological role of NO in inhibiting glycyl radical enzyme chemistry in the gut.
Collapse
Affiliation(s)
- Juan Carlos Cáceres
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| | - Nathan G. Michellys
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| | - Brandon L. Greene
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| |
Collapse
|
19
|
Soliman SM, El-Saadony MT, Saad A, Mosa WF, Khalil FMA, Ahmed AE, Mohammed DM, Manasar MM, Farag MR, Alagawany M, Salem HM. The impacts of thermal stress on dairy cattle physiology, metabolism, health, and performance: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Climate change is becoming a global issue, with important implications for dairy cow performance and well-being. It is distinguished by a gradual rise in universal temperature and the risk of extreme weather occurrences. Studies have shown that heat stress (HS) impacts many biological processes that can have significant economic issues. Due to their elevated metabolic rate, cows are mostly liable to HS, which negatively affects immune function, particularly cell-mediated immune response, and subsequent reduced production performance and inferior immunity, which leads to elevated susceptibility to disease, increased incidence of intramammary infections, and an elevated somatic cell count, as well as calf mortality, particularly during the summer season. Furthermore, dry cows subjected to HS had reduced immunoglobulin levels after vaccination, although this impact fades with cooling after parturition. On the other hand, cows subjected to HS while dry demonstrate carryover impacts on the innate arm of the immunity in early lactation, resulting in losses. Heat mitigation technologies are cost-effective and necessary for sustaining milk production and the dairy farm’s profitability. Furthermore, a check of present HS mitigation measures is required to understand better and identify acceptable abatement plans for future stress management.
Collapse
Affiliation(s)
- Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Ahmed Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of Health Specialties, Basic Sciences and their Applications , Mohayil Asir Abha, 61421 , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science , King Khalid University , Abha, 61413 , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Mayadah M. Manasar
- Department of Biology, College of Science , University of Jeddah , Jeddah , Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , , Giza , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo , Egypt
| |
Collapse
|
20
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2025; 26:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
21
|
Zhao T, Pellegrini L, van der Hee B, Boekhorst J, Fernandes A, Brugman S, van Baarlen P, Wells JM. Choroid plexus organoids reveal mechanisms of Streptococcus suis translocation at the blood-cerebrospinal fluid barrier. Fluids Barriers CNS 2025; 22:14. [PMID: 39930492 PMCID: PMC11812244 DOI: 10.1186/s12987-025-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Streptococcus suis is a globally emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must invade the central nervous system (CNS) by crossing the neurovascular unit, also known as the blood-brain barrier (BBB), or vascularized choroid plexus (ChP) epithelium known as the blood-cerebrospinal fluid barrier (BCSFB). Recently developed ChP organoids have been shown to accurately replicate the cytoarchitecture and physiological functions of the ChP epithelium in vivo. Here, we used human induced pluripotent stem cells (iPSC)-derived ChP organoids as an in vitro model to investigate S. suis interaction and infection at the BCSFB. Our study revealed that S. suis is capable of translocating across the epithelium of ChP organoids without causing significant cell death or compromising the barrier integrity. Plasminogen (Plg) binding to S. suis in the presence of tissue plasminogen activator (tPA), which converts immobilized Plg to plasmin (Pln), significantly increased the basolateral to apical translocation across ChP organoids into the CSF-like fluid in the lumen. S. suis was able to replicate at the same rate in CSF and laboratory S. suis culture medium but reached a lower final density. The analysis of transcriptomes in ChP organoids after S. suis infection indicated inflammatory responses, while the addition of Plg further suggested extracellular matrix (ECM) remodeling. To our knowledge, this is the first study using ChP organoids to investigate bacterial infection of the BCSFB. Our findings highlight the potential of ChP organoids as a valuable tool for studying the mechanisms of bacterial interaction and infection of the human ChP in vitro.
Collapse
Affiliation(s)
- Tiantong Zhao
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Laura Pellegrini
- Centre for Developmental Neurobiology, King's College London, Guys Campus, New Hunt's House, London, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Bart van der Hee
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Aline Fernandes
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Sylvia Brugman
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
22
|
Xia D, Guo Y, Xu R, Li N. Emerging strategies for nitric oxide production and their topical application as nanodressings to promote diabetic wound healing. J Nanobiotechnology 2025; 23:53. [PMID: 39881346 PMCID: PMC11776289 DOI: 10.1186/s12951-025-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
The challenges associated with prolonged healing or non-healing of chronic diabetic wounds contribute significantly to the increased incidence of lower limb amputation. A pivotal factor in the impediment of healing is the reduced production of endogenous nitric oxide (NO) due to the hyperglycemic microenvironment typical of chronic diabetes. While both endogenous and exogenous NO have been shown to promote the healing process of diabetic wounds, the direct application of NO in wound management is limited due to its gaseous nature and the risk of explosive release. This review summarizes recent advances of nanodressings incorporating NO donors in the treatment of diabetic wounds, detailing the specific conditions under which these nanodressings facilitate NO release, with a focus on the beneficial effects of NO, strategies for its supplementation, and the challenges encountered in the clinical translation of NO donors as a clinically viable nanomedicine in the context of improving diabetic wound healing.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ying Guo
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ruodan Xu
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Iperi C, Fernández-Ochoa Á, Barturen G, Pers JO, Foulquier N, Bettacchioli E, Alarcón-Riquelme M, Cornec D, Bordron A, Jamin C. BiomiX, a user-friendly bioinformatic tool for democratized analysis and integration of multiomics data. BMC Bioinformatics 2025; 26:8. [PMID: 39794699 PMCID: PMC11721463 DOI: 10.1186/s12859-024-06022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community. RESULTS BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts. BiomiX incorporates diverse omics data, using DESeq2/Limma packages for transcriptomics, and quantifying metabolomics peak differences, evaluated via the Wilcoxon test with the False Discovery Rate correction. The metabolomics annotation for Liquid Chromatography-Mass Spectrometry untargeted metabolomics is additionally supported using the mass-to-charge ratio in the CEU Mass Mediator database and fragmentation spectra in the TidyMass package. Methylomics analysis is performed using the ChAMP R package. Finally, Multi-Omics Factor Analysis (MOFA) integration identifies shared sources of variation across omics data. BiomiX also generates statistics, report figures and integrates EnrichR and GSEA for biological process exploration and subgroup analysis based on user-defined gene panels enhancing condition subtyping. BiomiX fine-tunes MOFA models, to optimize factors number selection, distinguishing between cohorts and providing tools to interpret discriminative MOFA factors. The interpretation relies on innovative bibliography research on Pubmed, which provides the articles most related to the discriminant factor contributors. Furthermore, discriminant MOFA factors are correlated with clinical data, and the top contributing pathways are explored, all with the aim of guiding the user in factor interpretation. CONCLUSIONS The analysis of single-omics and multi-omics integration in a standalone tool, along with MOFA implementation and its interpretability via literature, represents significant progress in the multi-omics field in line with the "Findable, Accessible, Interoperable, and Reusable" data principles. BiomiX offers a wide range of parameters and interactive data visualization, allowing for personalized analysis tailored to user needs. This R-based, user-friendly tool is compatible with multiple operating systems and aims to make multi-omics analysis accessible to non-experts in bioinformatics.
Collapse
Affiliation(s)
| | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Laboratory of Immunology, CHU Brest, Brest, France
| | - Nathan Foulquier
- LBAI, UMR1227, Univ Brest, Inserm, Laboratory of Immunology, CHU Brest, Brest, France
| | - Eleonore Bettacchioli
- LBAI, UMR1227, Univ Brest, Inserm, Laboratory of Immunology, CHU Brest, Brest, France
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Institute for Environmental Medicine, Karolinska Institutet, 171 69, Stockholm, Sweden
| | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Laboratory of Immunology, CHU Brest, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Laboratory of Immunology, CHU Brest, Brest, France.
| |
Collapse
|
24
|
Davis SC, Gil J, Solis M, Strong R. The efficacy of a nitric oxide-releasing formulation on nares isolated Methicillin-Resistant Staphylococcus aureus in porcine wound infection model. Front Cell Infect Microbiol 2024; 14:1501360. [PMID: 39691695 PMCID: PMC11649637 DOI: 10.3389/fcimb.2024.1501360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Background The colonization of Staphylococcus aureus (SA) acquired in nosocomial infections may develop acute and chronic infections such as Methicillin-Resistant Staphylococcus aureus (MRSA) in the nose. As a commensal microorganism with the ability to form a biofilm, SA can dwell on the skin, nostrils, throat, perineum, and axillae of healthy humans. Nitric oxide (NO) is an unstable gas with various molecular functions and has antimicrobial properties which are converted into many potential treatments. Methods Methicillin-Resistant Staphylococcus aureus MRSA BAA1686 isolated from nasal infection was used in a porcine wound infection model. Deep partial-thickness wounds (10mm x 7mm x 0.5mm) were made on three animals using a specialized electrokeratome. All wounds were inoculated and then covered with polyurethane film dressings for biofilm formation. After 48 hours, three wounds were recovered from each animal for baseline enumeration. The remaining wounds were randomly assigned to six treatment groups and treated once daily. The treatment groups are as follows: NO topical ointments concentrations of 0.3, 0.9 and 1.8%, Vehicle Ointment, Mupirocin 2%, and Untreated Control. Microbiological recoveries were conducted on day 4 and day 7. Results The greatest efficacy observed from the NO formulations against MRSA BAA1686 was the 1.8% concentration. This agent was able to reduce more than 99% of bacterial counts when compared to Baseline, Vehicle Ointment, and Untreated Control wounds on both assessment days. Mupirocin 2% was the overall best treatment against MRSA BAA1686 on both assessment days, with a significant reduction (p ≤ 0.05) of 4.70 ± 0.13 Log CFU/mL from day 4 to day 7. Conclusions Overall, the positive control Mupirocin 2% was the most effective in eliminating MRSA BAA1686 throughout the study. This experiment demonstrated a downward trend from the highest concentration of NO topical ointment formulations to the lowest concentrations on both assessment days (0.3% - 1.8%). Out of all NO topical ointments, the highest concentration (1.8%) was the most effective with the potential to be an alternative treatment against a MRSA nasal strain biofilm.
Collapse
Affiliation(s)
- Stephen C. Davis
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | | | | |
Collapse
|
25
|
Lai X, Yu L, Huang X, Gardner W, Bamford SE, Pigram PJ, Wang S, Brun APL, Muir BW, Song J, Wang Y, Hsu HY, Chan PWH, Shen HH. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv Healthc Mater 2024; 13:e2403046. [PMID: 39263842 DOI: 10.1002/adhm.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Xiangyi Huang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Sarah E Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Shuhong Wang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | | | - Jiangning Song
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Shanghai, Wenzhou, 325027, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
26
|
Li P, Mei J, Xie J. Antibacterial mechanism of CO 2 combined with low temperature against Shewanella putrefaciens by biochemical and metabolomics analysis. Food Chem 2024; 460:140555. [PMID: 39047490 DOI: 10.1016/j.foodchem.2024.140555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
To further reveal the inhibition mechanism of carbon dioxide (CO2) on Shewanella putrefaciens (S. putrefaciens), influence on metabolic function was studied by biochemical and metabolomics analysis. Accordingly, reduction of intracellular pH (pHi), depolarization of cell membrane and accumulation of reactive oxygen species (ROS) indicated that CO2 changed the membrane permeability of S. putrefaciens. Besides, adenosine triphosphate (ATP), ATPase, nicotinamide adenine dinucleotide (NAD+/NADH) and ratios of NADH/NAD+ were detected, indicating a role of CO2 in repressing respiratory pathway and electron transport. According to metabolomics results, CO2 induced differential expressions of metabolites, disordered respiratory chain and weakened energy metabolism of S. putrefaciens. Inhibition of respiratory rate-limiting enzymes also revealed that electron transfer of respiratory chain was blocked, cell respiration was weakened, and thus energy supply was insufficient under CO2 stress. These results revealed that CO2 caused disruption of metabolic function, which might be the main cause of growth inhibition for S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
27
|
Hasan N, Luthfiyah W, Palungan J, Ullah M, Mustopa AZ, Nurfatwa M, Irawan H, Usmar U, Putranto A, Yoo JW. Nitric oxide-releasing self-healing hydrogel for antibacterial and antibiofilm efficacy against polymicrobial infection. Future Microbiol 2024; 19:1559-1571. [PMID: 39535131 DOI: 10.1080/17460913.2024.2411817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Bacterial infections and the formation of biofilms are currently key factors in the delay of wound healing. S-Nitroso glutathione (GSNO) is recognized as a nitric oxide (NO) donor that exhibits potent antibacterial and antibiofilm activities. However, some of the stability limitations of NO require it to be prepared pharmaceutically.Materials & methods: Here, we developed a self-healing hydrogel dressing consisting of GSNO, polyvinyl alcohol/borax (PVA/B) and carboxymethyl chitosan (cmCHI). This research aimed to determine the antibacterial and antibiofilm activities of a self-healing hydrogel (PVA-B-cmCHI/GSNO) against multiple bacteria and polymicrobial biofilms.Results: Forty mg/ml PVA-B-cmCHI/GSNO significantly increased the antibacterial activity against Pseudomonas aeruginosa, S. aureus, Methicillin resistant Staphylococcus aureus (MRSA), as indicated by a >5 log reduction in bacterial viability (∼99.999% killing). PVA-B-cmCHI/GSNO showed antibiofilm activity three-times greater than that of the blank self-healing hydrogel (PVA-B-cmCHI) by inhibiting 80% of the biofilm formation.Conclusion: The results suggest that the NO-releasing self-healing hydrogels exhibit notable antibacterial and antibiofilm properties and thus could be a promising approach for the treatment of bacterial or biofilm-infected wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Widya Luthfiyah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Juliana Palungan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Maritsa Nurfatwa
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Usmar Usmar
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Aliyah Putranto
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
28
|
Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M, Pelegrino MT, Paganotti A, dos Reis RA, Seabra AB. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics (Basel) 2024; 13:1047. [PMID: 39596741 PMCID: PMC11591520 DOI: 10.3390/antibiotics13111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Nitric oxide (NO) is an antimicrobial and anti-biofilm agent with significant potential for combating biofilm-associated infections and antibiotic resistance. However, owing to its high reactivity due to the possession of a free radical and short half-life (1-5 s), the practical application of NO in clinical settings is challenging. Objectives: This review explores the development of NO-releasing nanoparticles that provide a controlled, targeted delivery system for NO, enhancing its antimicrobial efficacy while minimizing toxicity. The review discusses various NO donors, nanoparticle platforms, and how NO disrupts biofilm formation and eradicates pathogens. Additionally, we examine the highly encouraging and inspiring results of NO-releasing nanoparticles against multidrug-resistant strains and their applications in medical and environmental contexts. This review highlights the promising role of NO-based nanotechnologies in overcoming the challenges posed by increasing antibiotic resistance and biofilm-associated infections. Conclusions: Although NO donors and nanoparticle delivery systems show great potential for antimicrobial and anti-biofilm uses, addressing challenges related to controlled release, toxicity, biofilm penetration, resistance, and clinical application is crucial.
Collapse
Affiliation(s)
- Gonzalo Tortella Fuentes
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sebastian Leiva
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
| | - Ivette Fernandez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | | | - André Paganotti
- Departamento de Farmácia, Universidade Federal de São Paulo, Diadema 09972-270, SP, Brazil
| | - Roberta Albino dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| | - Amedea B. Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| |
Collapse
|
29
|
Chug MK, Sapkota A, Garren M, Brisbois EJ. Wearable nitric oxide-releasing antibacterial insert for preventing device-associated infections. J Control Release 2024; 375:667-680. [PMID: 39288891 PMCID: PMC11748947 DOI: 10.1016/j.jconrel.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Medical device-associated infections are a pervasive global healthcare concern, often leading to severe complications. Bacterial biofilms that form on indwelling medical devices, such as catheters, are significant contributors to infections like bloodstream and urinary tract infections. This study addresses the challenge of biofilms on medical devices by introducing a portable antimicrobial catheter insert (PACI) designed to be efficient, biocompatible, and anti-infective. The PACI utilizes nitric oxide (NO), known for its potent antimicrobial properties, to deter bacterial adhesion and biofilm formation. To achieve this, a photoinitiated NO donor, S-nitroso-N-acetylpenicillamine (SNAP), is covalently linked to a polydimethylsiloxane (PDMS) polymer. This design allows for higher NO loading for long-term impact and prevents premature donor leaching, a common challenge with SNAP-blended polymers. The SNAP-PDMS material was applied to a side-glowing fiber optic and connected to a wearable light module emitting 450 nm light, creating a functional antimicrobial insert. Activation of the fiber optic, accomplished with a one-click mechanism, enables real-time NO release, maintaining controlled NO levels for a minimum of 24 hours. The therapeutic levels of NO released via photocatalysis from the PACI demonstrated remarkable efficacy, with >90 % reduction in bacterial viability against S. aureus, S. epidermidis, and P. mirabilis without any cytotoxic impact on mammalian cells. This study underscores the potential of the NO-releasing insert in clinical settings, providing a portable and adaptable solution for preventing catheter-associated infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
30
|
Bezir K, Pelit Arayici P, Akgül B, Abamor EŞ, Acar S. RABV antigenic peptide loaded polymeric nanoparticle production, characterization, and preliminary investigation of its biological activity. NANOTECHNOLOGY 2024; 36:025603. [PMID: 39383880 DOI: 10.1088/1361-6528/ad84fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoparticle-based antigen carrier systems have become a significant area of research with the advancement of nanotechnology. Biodegradable polymers have emerged as particularly promising carrier vehicles due to their ability to address the limitations of existing vaccine systems. In this study, we successfully encapsulated the G5-24 linear peptide, located between amino acids 253 and 275 in the primary sequence of the rabies virus G protein, into biodegradable and biocompatible PLGA copolymer using the double emulsion solvent evaporation method. The resulting nanoparticles had a size of approximately 230.9 ± 0.9074 nm, with a PDI value of 0.168 ± 0.017 and a zeta potential value of -9.86 ± 0.132 mV. SEM images confirmed that the synthesized nanoparticles were uniform in size and distribution. Additionally, FTIR spectra indicated successful peptide loading into the nanoparticles. The encapsulation efficiency of the peptide-loaded nanoparticles was 73.3%, with a peptide loading capacity of 48.2% and a reaction yield of 30.4%. Peptide release studies demonstrated that 65.55% of the peptide was released in a controlled manner over 28 d, following a 'biphasic burst release' profile consistent with the degradation profile of PLGA. This controlled release is particularly beneficial for vaccine studies. Cytotoxicity tests revealed that the R-NP formulation did not induce cytotoxicity in fibroblast cells and enhanced NO production in macrophages, indicating its potential for vaccine development.
Collapse
Affiliation(s)
- Kübra Bezir
- Faculty of Engineering and Natural Sciences, Bioengineering Department, Bursa Technical University, Bursa, Turkey
| | - Pelin Pelit Arayici
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
31
|
Adewoyin M, Hamarsha A, Akinsola R, Teoh SL, Azmai MNA, Abu Bakar N, Nasruddin NS. Intraperitoneal Injection of the Porphyromonas gingivalis Outer Membrane Vesicle (OMV) Stimulated Expressions of Neuroinflammatory Markers and Histopathological Changes in the Brains of Adult Zebrafish. Int J Mol Sci 2024; 25:11025. [PMID: 39456807 PMCID: PMC11506875 DOI: 10.3390/ijms252011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Porphyromonas gingivalis is the major pathogenic bacteria found in the subgingival plaque of patients with periodontitis, which leads to neuroinflammation. The bacteria destroy periodontal tissue through virulence factors, which are retained in the bacteria's outer membrane vesicles (OMV). This study aimed to determine the real-time effect of an intraperitoneal injection of P. gingivalis OMV on the production and expression of inflammatory markers and histopathological changes in adult zebrafishes' central nervous systems (CNS). Following the LD50 (21 µg of OMV), the zebrafish were injected intraperitoneally with 18 µg of OMVs, and the control group were injected with normal saline at seven different time points. Brains of experimental zebrafish were dissected at desired time points for colorimetric assays, ELISA, and histology. This study discovered that nitric oxide and PGE2 were significantly increased at 45 min, while IL-1β and IL-6 were expressed at subsequent 12 h and 24 h time points, respectively. Histopathological changes such as blood coagulation, astrocytosis, edema, spongiosis, and necrosis were observed between the 6hour and 24 h time points. The two apoptotic enzymes, caspases 3 and 9, were not expressed at any point. In summary, the OMV-induced neuroinflammatory responses and histopathological changes in adult zebrafish were time-point dependent. This study will enrich our understanding of the mechanism of P. gingivalis OMVs in neuroinflammation in a zebrafish model, most especially the timing of the expression of inflammatory mediators in relation to observable changes in brain tissues.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Ahmed Hamarsha
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Rasaq Akinsola
- Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| |
Collapse
|
32
|
Guo H, Sun H, Fang Y, Qin H, Wang X, Zhang Y, Zhao M, Wu H, Zhou X, Liu Y. Eco-friendly film with highly efficient sterilization for food preservation by incorporating natural products into starch/polyvinyl alcohol matrix. Int J Biol Macromol 2024; 278:135047. [PMID: 39182859 DOI: 10.1016/j.ijbiomac.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine. Under the synergetic action of ROS and NO, the as-prepared film not only has an antibacterial efficiency of over 99 % against both S. aureus and E. coli but also delays fruit ripening through antagonistic effects on ethylene to extend the shelf life of food. Meanwhile, the as-prepared film presents UV-shielding properties, thermal stability, and considerable mechanical properties. Specifically, the packaging film exhibits good biocompatibility and is biodegradable, with a degradation rate of 56 % within 16 days, which has great potential for improving food safety and environmental events.
Collapse
Affiliation(s)
- Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaomin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
33
|
Gao Y, Cao Q, Xiao Y, Wu Y, Ding L, Huang H, Li Y, Yang J, Meng L. The progress and future of the treatment of Candida albicans infections based on nanotechnology. J Nanobiotechnology 2024; 22:568. [PMID: 39285480 PMCID: PMC11406819 DOI: 10.1186/s12951-024-02841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Systemic infection with Candida albicans poses a significant risk for people with weakened immune systems and carries a mortality rate of up to 60%. However, current therapeutic options have several limitations, including increasing drug tolerance, notable off-target effects, and severe adverse reactions. Over the past four decades, the progress in developing drugs to treat Candida albicans infections has been sluggish. This comprehensive review addresses the limitations of existing drugs and summarizes the efforts made toward redesigning and innovating existing or novel drugs through nanotechnology. The discussion explores the potential applications of nanomedicine in Candida albicans infections from four perspectives: nano-preparations for anti-biofilm therapy, innovative formulations of "old drugs" targeting the cell membrane and cell wall, reverse drug resistance therapy targeting subcellular organelles, and virulence deprivation therapy leveraging the unique polymorphism of Candida albicans. These therapeutic approaches are promising to address the above challenges and enhance the efficiency of drug development for Candida albicans infections. By harnessing nano-preparation technology to transform existing and preclinical drugs, novel therapeutic targets will be uncovered, providing effective solutions and broader horizons to improve patient survival rates.
Collapse
Affiliation(s)
- Yang Gao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Wu
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Liang Ding
- Nanjing Stomatological Hospital, Nanjing, 210008, China
| | - He Huang
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yanan Li
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Jingpeng Yang
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Lingtong Meng
- International Center for Synthetic Biology, School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Weibel N, Curcio M, Schreiber A, Arriaga G, Mausy M, Mehdy J, Brüllmann L, Meyer A, Roth L, Flury T, Pecina V, Starlinger K, Dernič J, Jungfer K, Ackle F, Earp J, Hausmann M, Jinek M, Rogler G, Antunes Westmann C. Engineering a Novel Probiotic Toolkit in Escherichia coli Nissle 1917 for Sensing and Mitigating Gut Inflammatory Diseases. ACS Synth Biol 2024; 13:2376-2390. [PMID: 39115381 PMCID: PMC11334186 DOI: 10.1021/acssynbio.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacterium Escherichia coli Nissle 1917 (EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide (NO), a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to NO, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by enzyme-linked immunosorbent assay and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.
Collapse
Affiliation(s)
- Nathalie Weibel
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Martina Curcio
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Atilla Schreiber
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gabriel Arriaga
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Marine Mausy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jana Mehdy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lea Brüllmann
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Meyer
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Len Roth
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamara Flury
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Valerie Pecina
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kim Starlinger
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jan Dernič
- Institute
of Pharmacology and Toxicology, University
of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Kenny Jungfer
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Ackle
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Jennifer Earp
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Martin Hausmann
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gerhard Rogler
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cauã Antunes Westmann
- Department
of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Swiss
Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Applebee Z, Howell C. Multi-component liquid-infused systems: a new approach to functional coatings. INDUSTRIAL CHEMISTRY & MATERIALS 2024; 2:378-392. [PMID: 39165661 PMCID: PMC11334363 DOI: 10.1039/d4im00003j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 08/22/2024]
Abstract
Antifouling liquid-infused surfaces have generated interest in multiple fields due to their diverse applications in industry and medicine. In nearly all reports to date, the liquid component consists of only one chemical species. However, unlike traditional solid surfaces, the unique nature of liquid surfaces holds the potential for synergistic and even adaptive functionality simply by including additional elements in the liquid coating. In this work, we explore the concept of multi-component liquid-infused systems, in which the coating liquid consists of a primary liquid and a secondary component or components that provide additional functionality. For ease of understanding, we categorize recently reported multi-component liquid-infused surfaces according to the size of the secondary components: molecular scale, in which the secondary components are molecules; nanoscale, in which they are nanoparticles or their equivalent; and microscale, in which the additional components are micrometer size or above. We present examples at each scale, showing how introducing a secondary element into the liquid can result in synergistic effects, such as maintaining a pristine surface while actively modifying the surrounding environment, which are difficult to achieve in other surface treatments. The review highlights the diversity of fabrication methods and provides perspectives on future research directions. Introducing secondary components into the liquid matrix of liquid-infused surfaces is a promising strategy with significant potential to create a new class of multifunctional materials. Keywords: Active surfaces; Antimicrobial; Antifouling; Interfaces; Sensing surfaces.
Collapse
Affiliation(s)
- Zachary Applebee
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| |
Collapse
|
36
|
Martins TJ, Parisi C, Pinto JG, Brambilla IDPR, Melilli B, Aleo D, Ferreira-Strixino J, Sortino S. Simultaneous photoactivation of a fluoroquinolone antibiotic and nitric oxide with fluorescence reporting. J Mater Chem B 2024; 12:7626-7634. [PMID: 39005154 DOI: 10.1039/d4tb01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The achievement of smart pharmaceuticals whose bioactivity can be spatiotemporally controlled by light stimuli is known as photopharmacology, an emerging area aimed at improving the therapeutic outcome and minimizing side effects. This is especially attractive for antibiotics, for which the inevitable development of multidrug resistance and the dwindling of new clinically approved drugs represent the main drawbacks. Here, we show that nitrosation of the fluoroquinolone norfloxacin (NF), a broad-spectrum antibiotic, leads to the nitrosated bioconjugate NF-NO, which is inactive at the typical minimum inhibitory concentration of NF. Irradiation of NF-NO with visible blue light triggers the simultaneous release of NF and nitric oxide (NO). The photouncaging process is accompanied by the revival of the typical fluorescence emission of NF, quenched in NF-NO, which acts as an optical reporter. This permits the real-time monitoring of the photouncaging process, even within bacteria cells where antibacterial activity is switched on exclusively upon light irradiation. The mechanism of photorelease seems to occur through a two-step hopping electron transfer mediated by the lowest triplet state of NF-NO and the phosphate buffer ions or aminoacids such as tyrosine. Considering the well-known role of NO as an "unconventional" antibacterial, the NF-NO conjugate may represent a potential bimodal antibacterial weapon activatable on demand with high spatio-temporal control.
Collapse
Affiliation(s)
- Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Juliana Guerra Pinto
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Danilo Aleo
- MEDIVIS S.r.l., Tremestieri Etneo, 95030 Catania, Italy
| | - Juliana Ferreira-Strixino
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| |
Collapse
|
37
|
Harikrishnan T, Paramasivam P, Sankar A, Sakthivel M, Sanniyasi E, Raman T, Thangavelu M, Singaram G, Muthusamy G. Weathered polyethylene microplastics induced immunomodulation in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104478. [PMID: 38801845 DOI: 10.1016/j.etap.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Microplastics are pollutants of emerging concern and the aquatic biota consumes microplastics (MPs), which has a range of toxicological and environmental effects on aquatic organisms that are not the intended targets. The current study looked into how weathered polyethylene (wPE) MPs affected Danio albolineatus immunological and haematological markers. In this experiment, fish of both sexes were placed in control and exposure groups, and they were exposed for 40 d at the sublethal level (1 μg L-1) of fragmented wPE, which contained 1074 ± 52 MPs per litre. Similarly, fish exposed to wPE MPs showed significant modifications in lysozyme, antimicrobial, and antiprotease activity, as well as differential counts. Results of the present study show that the male fish were more susceptible than female fish after 40 d of chronic exposure. Further studies are needed to ascertain how the innate and humoral immune systems of the fish respond to MPs exposure.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Pandi Paramasivam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Anusuya Sankar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Madhavan Sakthivel
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Chennai 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept Polymer Nano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu 600106, India; INTI International University, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
38
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Implications of ammonia stress for the pathogenicity of Shewanella spp. in Oreochromis niloticus: effects on hematological, biochemical, immunological, and histopathological parameters. BMC Vet Res 2024; 20:324. [PMID: 39026304 PMCID: PMC11256577 DOI: 10.1186/s12917-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
39
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
40
|
Costa T, Sampaio-Marques B, Neves NM, Aguilar H, Fraga AG. Antimicrobial properties of hindered amine light stabilizers in polymer coating materials and their mechanism of action. Front Bioeng Biotechnol 2024; 12:1390513. [PMID: 38978720 PMCID: PMC11229053 DOI: 10.3389/fbioe.2024.1390513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
UV-stabilizers are a class of additives that provide extended polymer resistance to UV-degradation, but have also been suggested to have antimicrobial activity, potentially preventing the spread of pathogens, and inhibiting microbial-induced biodegradation. In this work, we incorporated different UV-stabilizers, a hindered amine light stabilizer (HALS), Tinuvin 770 DF and Tinuvin PA 123, or a hybrid HALS/UV-absorber, Tinuvin 5151, in polyurethane formulations to produce lacquer-films, and tested their antimicrobial activity against Staphylococcus aureus (methicillin-resistant and -sensitive strains), Escherichia coli and Candida albicans. Lacquer-films incorporated with Tinuvin 770 DF showed strong antimicrobial performance against bacteria and fungi, while maintaining cytocompatibility. The mechanism of action revealed a positive relationship between Tinuvin 770 DF concentration, microbial death, and reactive nitrogen species (RNS), suggesting that RNS produced during autoxidation of Tinuvin 770 DF is responsible for the antimicrobial properties of this UV-stabilizer. Conversely, lacquer-films incorporated with Tinuvin 5151 or Tinuvin PA 123 exhibited no antimicrobial properties. Collectively, these results highlight the commercial potential of Tinuvin 770 DF to prevent photo- and biodegradation of polymers, while also inhibiting the spread of potentially harmful pathogens. Furthermore, we provide a better understanding of the mechanism underlying the biocidal activity of HALS associated to autooxidation of the amine group.
Collapse
Affiliation(s)
- Tiago Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
| | - Helena Aguilar
- Têxtil Manuel Gonçalves—Tecidos Plastificados e Outros Revestimentos Para a Indústria Automóvel, S.A. (TMG Automotive), Largo Comendador Manuel Gonçalves, Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Alvi SB, Pracha N, Shalaan M, Dholaniya PS, Mergaye M, Sridharan D, Khan M. Fabrication and Optimization of Poly(ε-caprolactone) Microspheres Loaded with S-Nitroso-N-Acetylpenicillamine for Nitric Oxide Delivery. Biomedicines 2024; 12:1363. [PMID: 38927571 PMCID: PMC11201505 DOI: 10.3390/biomedicines12061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Heart disease is one of the leading causes of death in the United States and throughout the world. While there are different techniques for reducing or preventing the impact of heart disease, nitric oxide (NO) is administered as nitroglycerin for reversing angina or chest pain. Unfortunately, due to its gaseous and short-lived half-life, NO can be difficult to study or even administer. Therefore, controlled delivery of NO is desirable for therapeutic use. In the current study, the goal was to fabricate NO-releasing microspheres (MSs) using a donor molecule, S-Nitroso-N-Acetyl penicillamine, (SNAP), and encapsulating it in poly(ε-caprolactone) (PCL) using a single-emulsion technique that can provide sustained delivery of NO to cells over time without posing any toxicity risks. Optimization of the fabrication process was performed by varying the duration of homogenization (5, 10, and 20 min) and its effect on entrapment efficiency and size. The optimized SNAP-MS had an entrapment efficiency of ˃50%. Furthermore, we developed a modified method for NO detection by using NO microsensors to detect the NO release from SNAP-MSs in real time, showing sustained release behavior. The fabricated SNAP-MSs were tested for biocompatibility with HUVECs (human umbilical vein endothelial cells), which were found to be biocompatible. Lastly, we tested the effect of controlled NO delivery to human induced pluripotent stem-derived cardiomyocytes (hiPSC-CMs) via SNAP-MSs, which showed a significant improvement in the electrophysiological parameters and alleviated anoxic stress.
Collapse
Affiliation(s)
- Syed Baseeruddin Alvi
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nooruddin Pracha
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmoud Shalaan
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Pankaj Singh Dholaniya
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Muhamad Mergaye
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Divya Sridharan
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmood Khan
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Martins T, Parisi C, Guerra Pinto J, Ribeiro Brambilla IDP, Malanga M, Ferreira-Strixino J, Sortino S. Stepwise Nitric Oxide Release and Antibacterial Activity of a Nitric Oxide Photodonor Hosted within Cyclodextrin Branched Polymer Nanocarriers. ACS Med Chem Lett 2024; 15:857-863. [PMID: 38894929 PMCID: PMC11181500 DOI: 10.1021/acsmedchemlett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
A hydrophobic nitric oxide (NO) photodonor integrating both nitroso and nitro functionalities within its chromophoric skeleton has been synthesized. Excitation of this compound with blue light triggers the release of two NO molecules from the nitroso and the nitro functionalities via a stepwise mechanism. Encapsulation of the NO photodonor within biocompatible neutral, cationic, and anionic β-cyclodextrin branched polymers as suitable carriers leads to supramolecular nanoassemblies, which exhibit the same nature of the photochemical processes but NO photorelease performances enhanced by about 1 order of magnitude when compared with the free guest. Antibacterial tests carried out with methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii demonstrate an effective antibacterial activity exclusively under light activation and point out a differentiated role of the polymeric nanocarriers in determining the outcome of the antibacterial photodynamic action.
Collapse
Affiliation(s)
- Tassia
J. Martins
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Juliana Guerra Pinto
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Juliana Ferreira-Strixino
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| |
Collapse
|
43
|
Selvaraj C, Vijayalakshmi P, Alex AM, Alothaim AS, Vijayakumar R, Umapathy VR. Metalloproteins structural and functional insights into immunological patterns. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:67-86. [PMID: 38960487 DOI: 10.1016/bs.apcsb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins play a crucial role in regulating different aspects of the immune system in humans. They have various functions in immunity, including recognizing and presenting antigens, aiding in the movement and effectiveness of immune cells, and facilitating interactions between the host and pathogens. Understanding how these proteins work can help us develop new methods to control the immune response in different diseases. Metalloproteins contain metal ions in their structure, which allows them to perform these diverse functions. They encompass a wide range of enzymes, signaling molecules, and structural proteins that utilize metal ions as cofactors for their activities. Examples of metalloproteins include superoxide dismutase, catalase, and metalloproteases, which regulate oxidative stress, inflammation, and tissue remodelling processes associated with immune activation. By studying their functions and the effects of their dysfunction, researchers can develop strategies to improve immune function and combat various diseases. This review explores the diverse functions of metalloproteins in immune processes, highlighting their significance in both health and disease.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- CsrDD Lab, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Periyasamy Vijayalakshmi
- Department of Biotechnology and Bioinformatics, Holy Cross College, Tiruchirappalli, Tamil Nadu, India
| | - Asha Monica Alex
- Department of Biotechnology, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
44
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
45
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
46
|
Stoodley P, Toelke N, Schwermer C, de Beer D. Bioenergetics of simultaneous oxygen and nitrate respiration and nitric oxide production in a Pseudomonas aeruginosa agar colony biofilm. Biofilm 2024; 7:100181. [PMID: 38425549 PMCID: PMC10902143 DOI: 10.1016/j.bioflm.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Pseudomonas aeruginosa is a biofilm forming pathogen commonly associated with infection of the cystic fibrosis (CF) lung, chronic wounds and indwelling medical devices. P. aeruginosa is a facultative aerobe that can use nitrate (NO3-) found in healthy and infected tissues and body fluids to generate energy through denitrification. Further, P. aeruginosa the expression of denitrification genes has been found in specimens from people with CF. The main aim of this study was to determine the relative energy contribution of oxygen (O2) respiration and denitrification in single Pseudomonas aeruginosa PAO1 biofilm colonies under different O2 concentrations to estimate the possible relative importance of these metabolic processes in the context of biofilm infections. We showed that the used strain PAO1 in biofilms denitrified with nitrous oxide (N2O), and not nitrogen (N2), as the end product in our incubations. From simultaneous O2 and N2O microprofiles measured with high spatial resolution by microsensors in agar colony biofilms under air, N2 and pure O2, the rates of aerobic respiration and denitrification were calculated and converted to ATP production rates. Denitrification occurred both in the oxic and anoxic zones, and became increasingly dominant with decreasing O2 concentrations. At O2 concentrations characteristic for tissues and wounds (20-60 μM), denitrification was responsible for 50% of the total energy conservation in the biofilm. In addition the formation of nitric oxide (NO), a precursor of N2O and an important regulator of many cellular processes, was strongly influenced by the local O2 concentrations. NO production was inhibited under pure O2, present under anoxia (∼1 μM) and remarkably high (up to 6 μM) under intermediate O2 levels, which can be found in infected tissues. Possible impacts of such NO levels on both the host and the biofilm bacteria are discussed.
Collapse
Affiliation(s)
- Paul Stoodley
- National Centre for Advanced Tribology at Southampton, (NCATS), Mechanical Engineering, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Microbial Infection and Immunity, Department of Orthopaedics, The Ohio State University, 716 Biomedical Research Tower (BRT), 460 W 12th Ave, Columbus OH, 43210, United States
| | - Nina Toelke
- Max Planck Institute for Marine Microbiology (MPI), Microsensor Group and Molecular Ecology Group, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Carsten Schwermer
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology (MPI), Microsensor Group and Molecular Ecology Group, Celsiusstrasse 1, D-28359, Bremen, Germany
| |
Collapse
|
47
|
Griffin L, Garren MRS, Maffe P, Ghalei S, Brisbois EJ, Handa H. Preventing Staphylococci Surgical Site Infections with a Nitric Oxide-Releasing Poly(lactic acid- co-glycolic acid) Suture Material. ACS APPLIED BIO MATERIALS 2024; 7:3086-3095. [PMID: 38652779 PMCID: PMC11110049 DOI: 10.1021/acsabm.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Of the 27 million surgeries performed in the United States each year, a reported 2.6% result in a surgical site infection (SSI), and Staphylococci species are commonly the culprit. Alternative therapies, such as nitric oxide (NO)-releasing biomaterials, are being developed to address this issue. NO is a potent antimicrobial agent with several modes of action, including oxidative and nitrosative damage, disruption of bacterial membranes, and dispersion of biofilms. For targeted antibacterial effects, NO is delivered by exogenous donor molecules, like S-nitroso-N-acetylpenicillamine (SNAP). Herein, the impregnation of SNAP into poly(lactic-co-glycolic acid) (PLGA) for SSI prevention is reported for the first time. The NO-releasing PLGA copolymer is fabricated and characterized by donor molecule loading, leaching, and the amount remaining after ethylene oxide sterilization. The swelling ratio, water uptake, static water contact angle, and tensile strength are also investigated. Furthermore, its cytocompatibility is tested against 3T3 mouse fibroblast cells, and its antimicrobial efficacy is assessed against multiple Staphylococci strains. Overall, the NO-releasing PLGA copolymer holds promise as a suture material for eradicating surgical site infections caused by Staphylococci strains. SNAP impregnation affords robust antibacterial properties while maintaining the cytocompatibility and mechanical integrity.
Collapse
Affiliation(s)
- Lauren Griffin
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Stephen Garren
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
48
|
Abdel Azim S, Whiting C, Friedman AJ. Applications of nitric oxide-releasing nanomaterials in dermatology: Skin infections and wound healing. Nitric Oxide 2024; 146:10-18. [PMID: 38458595 DOI: 10.1016/j.niox.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nitric oxide (NO) is produced in most cells in the skin and is an important regulator of essential cutaneous functions, including responses to UV irradiation, microbial defense, wound healing, melanogenesis and epidermal permeability barrier homeostasis. Harnessing the physiological activities of NO for therapeutic use is difficult because the molecule is highly reactive and unstable. A variety of exogenous NO delivery platforms have been developed and evaluated; however, they have limited clinical applications in dermatology due to instability and poor cutaneous penetration. NO-releasing nanomaterials overcome these limitations, providing targeted tissue delivery, and sustained and controlled NO release. This review provides a comprehensive and up-to-date evaluation of the use of NO-releasing nanomaterials in dermatology for the treatment of skin and soft tissue infections and wound healing.
Collapse
Affiliation(s)
- Sara Abdel Azim
- Georgetown University School of Medicine, Washington, DC, USA
| | - Cleo Whiting
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam J Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
49
|
Corcionivoschi N, Balta I, McCleery D, Pet I, Iancu T, Julean C, Marcu A, Stef L, Morariu S. Blends of Organic Acids Are Weaponizing the Host iNOS and Nitric Oxide to Reduce Infection of Piscirickettsia salmonis in vitro. Antioxidants (Basel) 2024; 13:542. [PMID: 38790647 PMCID: PMC11118739 DOI: 10.3390/antiox13050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, we aimed to better understand their biological mechanism of action in an in vitro model of infection with salmon epithelial cells (CHSE-214). Our first observation revealed that at the sub-inhibitory concentration of 0.5%, the organic acid blend (Aq) protected epithelial cell integrity and significantly reduced P. salmonis invasion. The MIC was established at 1% Aq and the MBC at 2% against P. salmonis. The sub-inhibitory concentration significantly increased the expression of the antimicrobial peptides Cath2 and Hepcidin1, and stimulated the activity of the innate immune effector iNOS. The increase in iNOS activity also led to higher levels of nitric oxide (NO) being released in the extracellular space. The exposure of P. salmonis to the endogenous NO caused an increase in bacterial lipid peroxidation levels, a damaging effect which can ultimately reduce the pathogen's ability to attach or multiply intracellularly. We also demonstrate that the increased NO release by the host CHSE-214 cells is a consequence of direct exposure to Aq and is not dependent on P. salmonis infection. Additionally, the presence of Aq during P. salmonis infection of CHSE-214 cells significantly mitigated the expression of the pro-inflammatory cytokines IL-1β, IL-8, IL-12, and IFNγ. Taken together, these results indicate that, unlike antibiotics, natural antimicrobials can weaponize the iNOS pathway and secreted nitric oxide to reduce infection and inflammation in a Piscirickettsia salmonis in vitro model of infection.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK;
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK;
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
| | - Tiberiu Iancu
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Calin Julean
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
| | - Adela Marcu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.P.); (C.J.); (A.M.); (L.S.)
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania;
| |
Collapse
|
50
|
Deng H, Zhang Y, Cai X, Yin Z, Yang Y, Dong Q, Qiu Y, Chen Z. Dual-Targeted Graphitic Cascade Nanozymes for Recognition and Treatment of Helicobacter pylori. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306155. [PMID: 37991257 DOI: 10.1002/smll.202306155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Helicobacter pylori (H. pylori) is the major etiological factor of a variety of gastric diseases. However, the treatment of H. pylori is challenged by the destruction of targeted drugs by gastric acid and pepsin. Herein, a dual-targeted cascade catalytic nanozyme PtCo@Graphene@Hemin-2(L-arginine) (PtCo@G@H2A) is designed for the treatment of H. pylori. The dual-targeting ability of PtCo@G@H2A is derived from directly targeting the receptor protein of H. pylori through hemin and responding to the acidic environment to cause charge reversal (protonation of L-arginine) to capture H. pylori, achieving efficient targeting effect. Compared with the single-targeting strategy relying on hemin, the dual-targeting strategy can greatly improve the targeting rate, achieving an increase of 850% targeting rate. At the concentration of NaHCO3 in intestinal fluid, the surface potential of PtCo@G@H2A can be quickly restored to avoid side effects. Meanwhile, PtCo@G@H2A has pH-responsive oxidase-like activity, which can generate nitric oxide (NO) through a cascade catalytic process that first generates reactive oxygen species (ROS) with oxygen, and further oxidizes L-arginine through ROS, realizing a superior acid-selective bactericidal effect. Overall, it proposes a promising strategy for the treatment of H. pylori that maintains high targeting and therapeutic effects in the environment of gastric acid and pepsin.
Collapse
Affiliation(s)
- Hui Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ye Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|