1
|
Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, Armstrong L, Sytar O, Martorell M, Razis AFA, Modu B, Calina D, Habtemariam S, Sharifi-Rad J, Cho WC. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother 2023; 163:114866. [PMID: 37182516 DOI: 10.1016/j.biopha.2023.114866] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, PA 15213, USA
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| | | | - Farukh Sharopov
- V.I. Nikitin Chemistry Institute of the National Academy of Sciences of Tajikistan, Ayni 299/2, 734063 Dushanbe, Tajikistan
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Iyamho, PMB 04 Auchi, Edo State, Nigeria
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
| | - Lorene Armstrong
- State University of Ponta Grossa, Departament of Pharmaceutical Sciences, 84030900 Ponta Grossa, Paraná, Brazil; Federal University of Paraná, Department of Pharmacy, 80210170 Curitiba, Paraná, Brazil
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Slovak Agricultural University in Nitra, 94976 Nitra, Slovakia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile; Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Science, University of Maiduguri, 1069 Maiduguri, Borno State, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
3
|
Qin C, Zan Y, Xie L, Liu H. Ataxia telangiectasia mutated: The potential negative regulator in platelet-derived growth factor-BB promoted proliferation of pulmonary arterial smooth muscle cells. Front Cardiovasc Med 2022; 9:942251. [PMID: 35990964 PMCID: PMC9382100 DOI: 10.3389/fcvm.2022.942251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
Objective To study the role of ataxia telangiectasia mutated (ATM) in the platelet-derived growth factor (PDGF)-BB-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs) through reactive oxygen species (ROS) formation. Methods Primary cultures of PASMCs were treated with different concentrations of PDGF-BB or exogenous hydrogen peroxide (H2O2). The activation level of ATM and the proliferation level of PASMCs were measured by immunofluorescence staining and Cell Counting Kit-8, respectively. Moreover, NADPH oxidase 2 (NOX2) and intracellular H2O2 were detected under the stimulation of different levels of PDGF-BB by Western blot and dihydroethidium staining. Results Both the control group and 50 ng/ml of the PDGF-BB group showed significantly higher levels of phosphorylation ATM compared to other groups (P < 0.05). With the ATM inhibitor, 50 ng/ml of the PDGF-BB group showed further increased proliferative level compared to the 10 ng/ml (P < 0.05). Both the levels of NOX2 and H2O2 showed dose-dependent manners under PDGF-BB stimulation (P < 0.05). ATM could be activated by H2O2 upon a dose-dependent way, except for the 500 μM H2O2 group. Under 200 μM H2O2 stimulation, proliferation level decreased significantly (P < 0.05), while no significant difference was shown with the addition of ATM inhibitor (P > 0.05). Conclusion Our study first established ROS-induced ATM activation in PDGF-BB-stimulated proliferation of PASMCs. Inhibition of ATM had promoted effects on the proliferation of PASMCs under the excessive levels of PDGF-BB and H2O2. Our study might provide a novel promising target for the treatment of pulmonary arterial hypertension (PAH).
Collapse
Affiliation(s)
- Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yiheng Zan
- Pulmonary Vascular Remodeling Research Unit, West China Institute of Women's and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Disease, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Pulmonary Vascular Remodeling Research Unit, West China Institute of Women's and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Disease, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Pulmonary Vascular Remodeling Research Unit, West China Institute of Women's and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Disease, Chengdu, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Shamosi A, Mahmoudi E, Kermanian F. Effect of Olibanum Extract/Graphene Oxide on Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells on Freeze Dried Scaffolds. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3179. [PMID: 36337067 PMCID: PMC9583825 DOI: 10.30498/ijb.2022.310552.3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND One of the challenges in using stem cells to neural repair is to induce their differentiation into neurons and lack of glial formation. OBJECTIVES Mesenchymal stem cells have revealed great potential for neural reorganization and renewal by taking advantage of differentiation capabilities. Here we explored the potential use of olibanum extract in freeze-dried scaffolds for induction of stem cells differentiation. MATERIALS AND METHODS In this study, gelatin/ collagen/olibanum/ graphene oxide (GEL/COL/OL/GO) freeze-dried scaffolds were synthesized and then adult rat bone marrow mesenchymal stem cells (BMMSCs) were seeded on scaffolds. The viability of cells was evaluated using MTT test on days 1, 3 and 5. The morphology of the cells seeded on scaffolds was studied using SEM and specific protein expression detected by immunohistochemical analysis. Real-time PCR was applied to detect the expression of Chat, Pax6, Hb-9, Nestin, Islet-1, and neurofilament-H (NF-H). The data were analyzed using Tukey test and one-way ANOVA and the means difference was considered significant at P<0.05, P<0.01, and P<0.001. RESULTS Showed that the pore size is increased in GEL/COL/OL/GO scaffolds compared with GO-free scaffolds and higher attachment and proliferation of BMMSCs on GEL/COL/OL /1.5% GO scaffolds compared to GEL/COL/OL/3% GO scaffolds. The cell viability results after 5 days of incubation showed the significant biocompatibility of GEL/COL/OL /1.5% GO freeze-dried scaffold. The results of immunohistochemical and PCR analysis revealed positive role of GEL/COL/OL/1.5% GO scaffolds in upregulation of neuron-specific markers. CONCLUSION These results reveal the great potential of GEL/COL/OL/GO scaffolds for nerve regeneration. Our data suggested that both OL extract and GO can regulate the MSCs differentiation into neurons.
Collapse
Affiliation(s)
- Atefeh Shamosi
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Elaheh Mahmoudi
- Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhou Y, Kumarapperuma H, Sichone S, Chia ZJ, Little PJ, Xu S, Kamato D. Artemisinin inhibits glycosaminoglycan chain synthesizing gene expression but not proliferation of human vascular smooth muscle cells. Biochem Biophys Res Commun 2020; 532:239-243. [PMID: 32868072 DOI: 10.1016/j.bbrc.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Pleotropic growth factor, transforming growth factor (TGF)-β drives the modification and elongation of glycosaminoglycan (GAG) chains on proteoglycans. Hyperelongated GAG chains bind and trap lipoproteins in the intima leading to the formation of atherosclerotic plaques. We have identified that phosphorylation of Smad2 linker region drives GAG chain modification. The identification of an inhibitor of Smad2 linker region phosphorylation and GAG chain modification signifies a potential therapeutic for cardiovascular diseases. Artemisinin renowned for its potent anti-malarial effects possesses a broad range of biological effects. Our aim was to characterise the anti-atherogenic role of artemisinin in vascular smooth muscle cells (VSMCs). We demonstrate that TGF-β mediated Smad2 linker region phosphorylation and GAG chain elongation was attenuated by artemisinin; however, we observed no effect on VSMC proliferation. Our data demonstrates the potential for artemisinin to be developed as a therapy to inhibit the development of atherosclerosis by prevention of lipid deposition in the vessel wall without affecting the proliferation of VSMCs.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | - Hirushi Kumarapperuma
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | - Salifya Sichone
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | - Zheng Jie Chia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| | - Suowen Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Hefei, 230037, China.
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
7
|
Kim YJ, Lee KP, Lee DY, Kim YT, Baek S, Yoon MS. Inhibitory effect of modified silkworm pupae oil in PDGF-BB-induced proliferation and migration of vascular smooth muscle cells. Food Sci Biotechnol 2020; 29:1091-1099. [PMID: 32670663 DOI: 10.1007/s10068-020-00742-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Silkworm pupae oil (SPO) has been reported to have various biological activities in improving blood circulation. However, the protective action of SPO against vascular disorders remains unknown. A new formulation of SPO was prepared through an esterification and saponification process. The composition of unsaturated fatty acids in silkworm pupae oil sodium salt (SPOS) was then analyzed by LC/MS to show α-linolenic acid (11.0%), linoleic acid (73.2%), palmitic acid (3.1%), oleic acid (12.0%), and stearic acid (0.7%). The in vitro studies were performed to find out the efficacy of SPOS on platelet-derived growth factor (PDGF-BB) induced vascular smooth muscle cell (VSMC) migration and proliferation. PDGF-BB (10 ng/mL) induced abnormal migration and proliferation of VSMCs, whereas exposure to SPOS (30 μg/mL) significantly reduced the PDGF-BB-induced cell migration and proliferation. The extracellular signal-regulated kinase1/2 (ERK1/2) and phosphorylation of ERK1/2 were determined by immunoblot analysis and the ERK1/2 phosphorylation in PDGF-BB-stimulated VSMCs was downregulated by SPOS (30 μg/mL) treatment. These results indicate that SPOS may be a helpful and useful agent as a functional food and drug against vascular disorders.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Pharmaceutical Engineering, Hoseo University, Asan, Chungnam 31499 Korea
| | - Kang Pa Lee
- Department of Medical Science, School of Medicine, Konkuk University, Seoul, 05029 Korea
| | - Do Young Lee
- Department of Pharmaceutical Engineering, Hoseo University, Asan, Chungnam 31499 Korea
| | - Yun Tae Kim
- Department of Pharmaceutical Engineering, Hoseo University, Asan, Chungnam 31499 Korea
| | - Suji Baek
- Department of Medical Science, School of Medicine, Konkuk University, Seoul, 05029 Korea
| | - Myeong Sik Yoon
- Department of Pharmaceutical Engineering, Hoseo University, Asan, Chungnam 31499 Korea
- The Research Institute for Basic Sciences, Hoseo University, Asan, Korea
| |
Collapse
|
8
|
Yang Z, Zhang H, An M, Bian M, Song M, Guo X, Liu Q, Qiu M. Total Panax notoginseng saponin inhibits balloon injury-induced neointimal hyperplasia in rat carotid artery models by suppressing pERK/p38 MAPK pathways. ACTA ACUST UNITED AC 2019; 53:e9085. [PMID: 31859914 PMCID: PMC6915881 DOI: 10.1590/1414-431x20199085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Total Panax notoginseng saponin (TPNS) is the main bioactivity compound derived from the roots and rhizomes of Panax notoginseng (Burk.) F.H. Chen. The aim of this study was to investigate the effectiveness of TPNS in treating vascular neointimal hyperplasia in rats and its mechanisms. Male Sprague-Dawley rats were randomly divided into five groups, sham (control), injury, and low, medium, and high dose TPNS (5, 10, and 20 mg/kg). An in vivo 2F Fogarty balloon-induced carotid artery injury model was established in rats. TPNS significantly and dose-dependently reduced balloon injury-induced neointimal area (NIA) (P<0.001, for all doses) and NIA/media area (MA) (P<0.030, for all doses) in the carotid artery of rats, and PCNA expression (P<0.001, all). The mRNA expression of smooth muscle (SM) α-actin was significantly increased in all TPNS groups (P<0.005, for all doses) and the protein expression was significantly increased in the medium (P=0.006) and high dose TPNS (P=0.002) groups compared to the injury group. All the TPNS doses significantly decreased the mRNA expression of c-fos (P<0.001). The medium and high dose TPNS groups significantly suppressed the upregulation of pERK1/2 protein in the NIA (P<0.025) and MA (P<0.004). TPNS dose-dependently inhibited balloon injury-induced activation of pERK/p38MAPK signaling in the carotid artery. TPNS could be a promising agent in inhibiting cell proliferation following vascular injuries.
Collapse
Affiliation(s)
- Zheng Yang
- Baotou Medical College, Baotou, Inner Mongolia, China.,Second Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Hui Zhang
- Baotou Medical College, Baotou, Inner Mongolia, China.,Second Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ming An
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mengni Bian
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Miao Song
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaohua Guo
- Second Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Quanli Liu
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Min Qiu
- Baotou Medical College, Baotou, Inner Mongolia, China.,Second Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Liu Y, Li X, Jiang S, Ge Q. Tetramethylpyrazine protects against high glucose-induced vascular smooth muscle cell injury through inhibiting the phosphorylation of JNK, p38MAPK, and ERK. J Int Med Res 2018; 46:3318-3326. [PMID: 29996693 PMCID: PMC6134667 DOI: 10.1177/0300060518781705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives High glucose-induced alterations in vascular smooth muscle cell behavior have not been fully characterized. We explored the protective mechanism of tetramethylpyrazine (TMP) on rat smooth muscle cell injury induced by high glucose via the mitogen-activated protein kinase (MAPK) signaling pathway. Methods Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were divided into control, high glucose (HG), and pre-hatching TMP groups. The effect of different glucose concentrations on cell viability and on the migration activity of VSMC cells was examined using MTT analysis and the wound scratch assay, respectively. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured using enzyme-linked immunoassays. The levels of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38MAPK, and MAPK phosphorylation were assessed by western blotting. Results Cell proliferation was remarkably increased by increased glucose concentrations. Compared with the HG group, the migratory ability of VSMC cells was reduced in the presence of TMP. TMP also decreased the MDA content in the supernatant, but significantly increased the SOD activity. Western blotting showed that TMP inhibited the phosphorylation of JNK, p38MAPK, and ERK. Conclusions TMP appears to protect against HG-induced VSMC injury through inhibiting reactive oxygen species overproduction, and p38MAPK/JNK/ERK phosphorylation.
Collapse
Affiliation(s)
- Yutao Liu
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| | - Xu Li
- 2 Department of Pharmacy, Yantai Hospital of Infectious Diseases, Yantai, Shandong, China
| | - Shanling Jiang
- 3 Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Quanli Ge
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
10
|
Jang S, Jeong MH, Lim KS, Bae IH, Park JK, Park DS, Shim JW, Kim JH, Kim HK, Sim DS, Hong YJ, Ahn Y, Kang JC. Effect of Stents Coated with Artemisinin or Dihydroartemisinin in a Porcine Coronary Restenosis Model. Korean Circ J 2016; 47:115-122. [PMID: 28154599 PMCID: PMC5287173 DOI: 10.4070/kcj.2016.0278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/09/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives Artemisinin and dihydroartemisinin are drugs used to treat malaria. These drugs suppress inflammatory reactions. The aim of this study was to examine the anti-intima hyperplasia effect of a novel drug-eluting stent with artemisinin or dihydroartemisinin in a porcine coronary restenosis model. Materials and Methods Pigs were randomized into four groups; in the first, the coronary arteries (20 pigs, a total of 40 coronary arteries, with 10 coronary arteries in each group) was implanted with bare metal stents (BMS, n=10); the second group was given polymer-coated stents (PCS, n=10); the third group was treated with artemisinin-eluting stents (AES, n=10); and the fourth group was given dihydroartemisinin-eluting stents (DAES, n=10). Histopathologic analysis was performed 28 days after stenting. Results The injury and fibrin scores among the four groups were not significantly different. However, the internal elastic lamina, lumen area, and neointima area were significantly different. Moreover, the percent area of stenosis (46.2±18.66% in BMS vs. 89.4±10.92% in PCS vs. 83.3±17.07% in AES vs. 36.7±11.20% in DAES, p<0.0001) and inflammation score (1.0 [range: 1.0-1.0] vs. 3.0 [range: 2.25-3.0] vs. 3.0 [range: 1.0-3.0] vs. 2.0 [range: 1.75-3.0] in BMS, PCS, AES, and DAES, respectively; p<0.001) were markedly decreased in the DAES group compared to the PCS group. Conclusion DES, which uses a natural substance, dihydroartemisinin, showed a neointima and inflammatory suppressive effect in a porcine coronary restenosis model.
Collapse
Affiliation(s)
- Suyoung Jang
- Korea Cardiovascular Stent Research Institute, Jangsung, Korea.; Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Korea Cardiovascular Stent Research Institute, Jangsung, Korea.; Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea.; Regeneromics Research Center, Chonnam National University, Gwangju, Gwangju, Korea
| | - Kyung Seob Lim
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - In Ho Bae
- Korea Cardiovascular Stent Research Institute, Jangsung, Korea.; Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Jun-Kyu Park
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Dae Sung Park
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jae Won Shim
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jung Ha Kim
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyun Kuk Kim
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Doo Sun Sim
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jung Chaee Kang
- Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Gwangju, Korea.; Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
11
|
Lee KP, Kim JE, Kim H, Chang HR, Lee DW, Park WH. Bo-Gan-Whan regulates proliferation and migration of vascular smooth muscle cells. Altern Ther Health Med 2016; 16:306. [PMID: 27549769 PMCID: PMC4994174 DOI: 10.1186/s12906-016-1292-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/17/2016] [Indexed: 02/05/2023]
Abstract
Background Bo-Gan-Whan (BGH), a Korean polyherbal medicine, is used as a hepatoprotective drug. It has six natural sources, and has been demonstrated to have anti-oxidative, anti-cancer, and anti-inflammatory properties; however, its effect on vascular diseases remains unclear. Methods Cell viability and proliferation assays were employed using an EZ-Cytox Cell Viability Assay Kit. Platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (VSMC) migration was measured by scratch wound healing assay and Boyden chamber assay. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) were determined by western blot analysis. Chromatogram and mass analysis were employed by Ultra Performance Liquid Chromatography (UPLC) system. Cell prolife ration and migration were also explored using the PDGF-BB-induced aortic sprout assay. Results BGH (100–500 μg/mL) significantly inhibited the proliferation and migration of PDGF-BB-stimulated VSMCs through the reduced phosphorylation of ERK1/2 and p38 MAPK in comparison to untreated PDGF-BB-stimulated VSMC. Moreover, we identified the paeoniflorin as the major composition of BGH. Conclusions We suggest that BGH may have an anti-atherosclerosis effect by inhibiting the proliferation and migration of PDGF-BB-stimulated VSMCs through down-regulation of ERK1/2 and p38 MAPK phosphorylation.
Collapse
|