1
|
Choi SY, Ahn SY, Jo D, Kim OY, Song J. Oligonol enhances brain cognitive function in high-fat diet-fed mice. Biomed Pharmacother 2024; 179:117322. [PMID: 39191029 DOI: 10.1016/j.biopha.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions. HFD mice were orally administered oligonol (20 mg/kg) daily, and SH-SY5Y cells and primary cortical neurons were pretreated with 500 ng/mL oligonol under in vitro insulin resistance conditions. Our findings revealed that oligonol administration reduced blood glucose levels and improved spatial memory function in HFD mice. In vitro data demonstrated that oligonol protected neuronal cells and enhanced neural structure against insulin resistance. We confirmed RNA sequencing in the oligonol-pretreated insulin-resistant SH-SY5Y neuronal cells. Our RNA-sequencing data indicated that oligonol contributes to metabolic signaling and neurite outgrowth. In conclusion, our study provides insights into therapeutic potential of oligonol with respect to preventing neuronal cell damage and improving neural structure and cognitive function in HFD mice.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Yao P, Gao Y, Simal-Gandara J, Farag MA, Chen W, Yao D, Delmas D, Chen Z, Liu K, Hu H, Xiao J, Rong X, Wang S, Hu Y, Wang Y. Litchi ( Litchi chinensis Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct 2021; 12:9527-9548. [PMID: 34664581 DOI: 10.1039/d1fo01148k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.
Collapse
Affiliation(s)
- Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dongning Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France
- NSERM Research Center U1231 - Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health Research Group, F-21000, France
- Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Zhejie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Kunmeng Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| |
Collapse
|
3
|
Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A. Protective Role of Natural Products in Glioblastoma Multiforme: A Focus on Nitric Oxide Pathway. Curr Med Chem 2021; 28:377-400. [PMID: 32000638 DOI: 10.2174/0929867327666200130104757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
In spite of therapeutic modalities such as surgical resection, chemotherapy, and radiotherapy, Glioblastoma Multiforme (GBM) remains an incurable fatal disease. This necessitates further therapeutic options that could enhance the efficacy of existing modalities. Nitric Oxide (NO), a short-lived small molecule, has been revealed to play a crucial role in the pathophysiology of GBM. Several studies have demonstrated that NO is involved in apoptosis, metastasis, cellular proliferation, angiogenesis, invasion, and many other processes implicated in GBM pathobiology. Herein, we elaborate on the role of NO as a therapeutic target in GBM and discuss some natural products affecting the NO signaling pathway.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
4
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
5
|
Salehi B, Butnariu M, Corneanu M, Sarac I, Vlaisavljevic S, Kitic D, Rahavian A, Abedi A, Karkan MF, Bhatt ID, Jantwal A, Sharifi-Rad J, Rodrigues CF, Martorell M, Martins N. Chronic pelvic pain syndrome: Highlighting medicinal plants toward biomolecules discovery for upcoming drugs formulation. Phytother Res 2020; 34:769-787. [PMID: 31799719 DOI: 10.1002/ptr.6576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022]
Abstract
Chronic pelvic pain syndrome (CPPS) can be triggered by a various types of gynecological, gastrointestinal, urological, and musculoskeletal disorders. Recently, the role of the central nervous system has proven to be an integral part on the development of any chronic pain syndrome, including CPPS. However, owing to the complex and heterogeneous etiology and pathophysiology of CPPS, the establishment of effective therapeutic interventions remains challenging for both physicians and patients. Nonetheless, recent studies have pointed that medicinal plants and their secondary metabolites can be effectively used in CPPS therapy, besides contributing to restore the patients' quality of life and potentiate the conventional CPPS management. In this sense, this review aims to provide a careful overview on the biomedical data for the use of medicinal plants use and their secondary metabolites on CPPS management.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, University of Timişoara, Timişoara, Romania
| | - Mihaela Corneanu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, University of Timişoara, Timişoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, University of Timişoara, Timişoara, Romania
| | - Sanja Vlaisavljevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Dusanka Kitic
- Faculty of Medicine, Department of Pharmacy, University of Niš, Bul. Zorana Djindjica 81, Serbia
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Abedi
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza F Karkan
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi Katarmal, Almora, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Bhimtal Campus, Kumaun University, Nainital, India
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Célia F Rodrigues
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, Concepcion, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal
| |
Collapse
|
6
|
Reale M, Costantini E, Jagarlapoodi S, Khan H, Belwal T, Cichelli A. Relationship of Wine Consumption with Alzheimer's Disease. Nutrients 2020; 12:E206. [PMID: 31941117 PMCID: PMC7019227 DOI: 10.3390/nu12010206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most threatening neurodegenerative disease, is characterized by the loss of memory and language function, an unbalanced perception of space, and other cognitive and physical manifestations. The pathology of AD is characterized by neuronal loss and the extensive distribution of senile plaques and neurofibrillary tangles (NFTs). The role of environment and the diet in AD is being actively studied, and nutrition is one of the main factors playing a prominent role in the prevention of neurodegenerative diseases. In this context, the relationship between dementia and wine use/abuse has received increased research interest, with varying and often conflicting results. Scope and Approach: With this review, we aimed to critically summarize the main relevant studies to clarify the relationship between wine drinking and AD, as well as how frequency and/or amount of drinking may influence the effects. Key Findings and Conclusions: Overall, based on the interpretation of various studies, no definitive results highlight if light to moderate alcohol drinking is detrimental to cognition and dementia, or if alcohol intake could reduce risk of developing AD.
Collapse
Affiliation(s)
- Marcella Reale
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Erica Costantini
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Srinivas Jagarlapoodi
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
| | - Angelo Cichelli
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| |
Collapse
|
7
|
Kim M, Park WH, Lee S, Suh DH, Kim K, No JH, Kim YB. Oligonol, a Low Molecular Weight Polyphenol, Enhances Apoptotic Cell Death in Ovarian Cancer Cells via Suppressing NF-κB Activation. Nutr Cancer 2019; 71:141-148. [PMID: 30633587 DOI: 10.1080/01635581.2018.1557215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oligonol, a low molecular weight polyphenol derived from lychee fruit, not only has anti-inflammatory effects in various disease conditions but also has antitumor-promoting effects. We evaluate the nuclear factor-kappa B (NF-κB)-related anticancer effect of oligonol in ovarian cancer using SKOV-3 cells. METHODS Cell viability was examined after oligonol treatment using MTT assay and reactive oxygen species (ROS) production measurement. Subsequently, apoptotic cell death was visualized by the TdT-mediated dUTP nick-end labeling (TUNEL) method. The effect of oligonol on the NF-κB signaling pathway was evaluated using western blot analysis and luciferase activity measurement of p65, an NF-κB subunit. RESULTS Cell viability significantly decreased after oligonol treatment of 72 h. Apoptosis-related markers were highly expressed in oligonol-treated cells, and increased apoptosis after oligonol treatment was also confirmed using the TUNEL assay. Western blotting results showed the expression of NF-κB signaling pathway factors, p-ERK, TRAF2, and p-IκBα, increased following treatment with oligonol, whereas p65 and COX-2 expression decreased. Immunofluorescence imaging results showed p65 luciferase activity in the nucleus as well as a shift to cytoplasmic expression. CONCLUSION Oligonol treatment significantly enhances apoptotic cell death in SKOV-3 cells, with the suppression of NF-κB activation, which plays an essential role in this anticancer effect.
Collapse
Affiliation(s)
- Miseon Kim
- a Department of Obstetrics and Gynecology, CHA Gangnam Medical Center , CHA University School of Medicine , Seoul , Republic of Korea
| | - Wook Ha Park
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Seul Lee
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Dong Hoon Suh
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Kidong Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Jae Hong No
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Yong Beom Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| |
Collapse
|
8
|
Lee AY, Choi JW, Yokozawa T, Cho EJ. Preventive effect of oligonol on nitric oxide and reactive oxygen species production through regulation of nuclear factor kappa B signaling pathway in RAW 264.7 macrophage cells against sodium nitroprusside. RSC Adv 2019; 9:3987-3993. [PMID: 35518095 PMCID: PMC9060530 DOI: 10.1039/c8ra08867e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 11/21/2022] Open
Abstract
Oligonol attenuated SNP-induced oxidative stress and inflammatory responsesviaregulation of the NF-κB signalling pathway in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science and Nutrition
- Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Ji Won Choi
- Technology Support Center
- Korea Food Research Institute
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| | - Eun Ju Cho
- Department of Food Science and Nutrition
- Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
9
|
Park CH, Park KH, Hong SG, Lee JS, Baek JH, Lee GI, Heo JW, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee peel, attenuates diabetes-induced pancreatic damage by inhibiting inflammatory responses via oxidative stress-dependent mitogen-activated protein kinase/nuclear factor-kappa B signaling. Phytother Res 2018; 32:2541-2550. [DOI: 10.1002/ptr.6194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research; National Institute of Horticultural and Herbal Science, Rural Development Administration; Eumseong Republic of Korea
| | - Kyeong Hun Park
- Department of Medicinal Crop Research; National Institute of Horticultural and Herbal Science, Rural Development Administration; Eumseong Republic of Korea
| | - Seung Gil Hong
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jae Su Lee
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jeong Hyun Baek
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Gong In Lee
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jeong Wook Heo
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research; University of Toyama; Toyama Japan
| |
Collapse
|
10
|
The Anti-Inflammatory Effects of a Yin Zhi Huang Soup in an Experimental Autoimmune Prostatitis Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7312938. [PMID: 29430255 PMCID: PMC5752995 DOI: 10.1155/2017/7312938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups (n = 12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF-α) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats' prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats' prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF-α levels in the blood serum and inhibited the expression of iNOS in the rats' prostate tissues (P < 0.05). Following YZS treatment, the pathological changes in the rats' prostates were improved compared with those in the model group (P < 0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF-α, and chemokines, such as iNOS, in the rat model of EAP.
Collapse
|
11
|
Oligonol Ameliorates CCl₄-Induced Liver Injury in Rats via the NF-Kappa B and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3935841. [PMID: 26798422 PMCID: PMC4699077 DOI: 10.1155/2016/3935841] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/27/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is thought to be a key risk factor in the development of hepatic diseases. Blocking or retarding the reactions of oxidation and the inflammatory process by antioxidants could be a promising therapeutic intervention for prevention or treatment of liver injuries. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from lychee fruit. In this study, we investigated the anti-inflammatory effect of oligonol on carbon tetrachloride- (CCl4-) induced acute hepatic injury in rats. Oral administration of oligonol (10 or 50 mg/kg) reduced CCl4-induced abnormalities in liver histology and serum AST and serum ALT levels. Oligonol treatment attenuated the CCl4-induced production of inflammatory mediators, including TNF-α, IL-1β, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA levels. Western blot analysis showed that oligonol suppressed proinflammatory nuclear factor-kappa B (NF-κB) p65 activation, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) as well as Akt. Oligonol exhibited strong antioxidative activity in vitro and in vivo, and hepatoprotective activity against t-butyl hydroperoxide-induced HepG2 cells. Taken together, oligonol showed antioxidative and anti-inflammatory effects in CCl4-intoxicated rats by inhibiting oxidative stress and NF-κB activation via blockade of the activation of upstream kinases including MAPKs and Akt.
Collapse
|