1
|
Dou J, Xiao H, Chen Y, Han W, Zhang S, Wu D, Chen S, Ma Y, Cai Z, Luan Q, Cui L. Diesel exhaust promoted diethylnitrosamine-induced hepatocarcinogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138219. [PMID: 40220387 DOI: 10.1016/j.jhazmat.2025.138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Exposure to diesel exhaust (DE) has been linked to an increased risk of various cancers, including liver cancer. However, the underlying mechanisms driving this association remain insufficiently understood. In this study, we employed a diethylnitrosamine (DEN)-induced mouse liver tumor model and conducted a 19-week combined exposure (750 μg/m3) using a DE exposure system. Our results demonstrated that long-term DE exposure activates cancer-related genes and enhances the formation of DEN-induced liver tumors. Compared to the DEN group, mice in the DEN + diesel exhaust exposure (DEE) group exhibited lower body weight, higher tumor formation rates and more severe DNA damage. The tumor-promoting effect of DE may be associated with the upregulation of SEMA4D and the activation of the PI3K/AKT signaling pathway. Additionally, liver cells in the DEE group exhibited nuclear atypia, a characteristic feature of cancerous transformation. In vitro studies have revealed that exposure to diesel exhaust particles (DEP) promotes the proliferation of HepG2 cells and HUH7 cells by upregulating SEMA4D and activating the PI3K/AKT signaling pathway. This effect was attenuated by inhibiting either SEMA4D or PI3K. This study was the first to identify that DE exposure promotes the development of DEN-induced liver tumors in mice, with the mechanism potentially involving the SEMA4D/PI3K/AKT pathway. These findings provide novel insights into the hepatotoxic effects of DE and highlight the need for further investigation into its carcinogenic potential.
Collapse
Affiliation(s)
- Junjie Dou
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Occupational disease, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of General Practice, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Dong Wu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhengguo Cai
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qi Luan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Sung YY, Yang WK, Kim JH, Shin D, Son SJ, Kim SH. Reliea® combination of Codonopsis lanceolata and Chaenomeles sinensis extract alleviates airway inflammation on particulate matter 10 plus diesel exhaust particles (PM 10D) ‑induced respiratory disease mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117538. [PMID: 39674023 DOI: 10.1016/j.ecoenv.2024.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Particulate matter (PM, diameter < 10 μm) and Diesel exhaust particles (DEP) exposure can cause severe respiratory disorders. This investigation explored the protective effects of Reliea® (RelA), combination of Codonopsis lanceolata and Chaenomeles sinensis extract, against airway inflammation related to PM10D exposure. RelA treatment suppressed reactive oxygen species, nitric oxide release, cytokine expression (IL-6, IL-1β, iNOS, CXCL-2, MCP-1, and TNF-α), and the related inflammatory mechanisms in PM10-induced alveolar macrophage cells. BALB/c mice were injected with PM10D via intranasal trachea three times over a period of 12 days and RelA were orally dispensed for 12 days. RelA inhibited infiltrating neutrophils, total number of immunocytes in lung and bronchoalveolar lavage fluid (BALF). RelA decreased the expression of interleukin (IL)-17, chemokine (C-X-C motif) ligand (CXCL)-1, thymus and activation-regulated chemokine, macrophage inflammatory protein-2, IL-1α, TNF-α, mucin 5AC, cyclooxygenase-2, and transient receptor potential cation channel subfamily A or V member 1 in BALF and lung, and inhibited IL-1α and macrophage marker F4/80 localization in lung of PM10D-induced mice. RelA treatment decreased serum symmetric dimethyl arginine levels. RelA restored histopathological damage via inhibition of NF-κB and MAPK pathways in the trachea and lung. Lancemaside A and protocatechuic acid as major active compounds of RelA was identified. In addition, RelA showed better expectoration through increased phenol red secretion. These results indicate that Reliea® combination of C. lanceolata and C. sinensis extract might be effective in prevention and treatment of airway inflammation and respiratory diseases.
Collapse
Affiliation(s)
- Yoon-Young Sung
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| | - Jong Hoon Kim
- Nongshim, R&D Center, 112 (Shindaebang-Dong), Yeouidaebang-Ro, Dongjak-Gu, Seoul, Republic of Korea.
| | - Dongseok Shin
- Nongshim, R&D Center, 112 (Shindaebang-Dong), Yeouidaebang-Ro, Dongjak-Gu, Seoul, Republic of Korea.
| | - Seok June Son
- Nongshim, R&D Center, 112 (Shindaebang-Dong), Yeouidaebang-Ro, Dongjak-Gu, Seoul, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| |
Collapse
|
3
|
Beegam S, Zaaba NE, Elzaki O, Nemmar A. α-Bisabolol alleviates diesel exhaust particle-induced lung injury and mitochondrial dysfunction by regulating inflammatory, oxidative stress, and apoptotic biomarkers through the c-Jun N-terminal kinase signaling pathway. Front Pharmacol 2025; 15:1485101. [PMID: 39830335 PMCID: PMC11738621 DOI: 10.3389/fphar.2024.1485101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Exposure to particulate matter ≤2.5 μm in diameter (PM2.5) is associated with adverse respiratory outcomes, including alterations to lung morphology and function. These associations were reported even at concentrations lower than the current annual limit of PM2.5. Inhalation of PM2.5, of which diesel exhaust particles (DEPs) is a major component, induces lung inflammation and oxidative stress. α-Bisabolol (BIS) is a bioactive dietary phytochemical with various pharmacological properties, including anti-inflammatory and antioxidant actions. Here, we evaluated the possible protective effects of BIS on DEP-induced lung injury. Methods Mice were exposed to DEPs (20 µg/mouse) or saline (control) by intratracheal instillation. BIS was administered orally at two doses (25 and 50 mg/kg) approximately 1 h before DEP exposure. Twenty-four hours after DEP administration, multiple respiratory endpoints were evaluated. Results BIS administration was observed to prevent DEP-induced airway hyperreactivity to methacholine; influx of macrophages, neutrophils, and lymphocytes in the bronchoalveolar lavage fluid; and increases in epithelial and endothelial permeabilities. DEP exposure caused increases in the levels of myeloperoxidase, proinflammatory cytokines, and oxidative stress markers in lung tissue homogenates, and all these effects were abated by BIS treatment. The activities of mitochondrial complexes I, II, III, and IV were markedly increased in the lungs of mice exposed to DEPs, and these effects were significantly reduced in the BIS-treated group. Intratracheal instillation of DEPs induced DNA damage and increase in the apoptotic marker cleaved caspase-3. The latter effects were prevented in mice treated with BIS and exposed to DEPs. Moreover, BIS mitigated DEP-induced increase in the expression of phospho-c-Jun N-terminal kinase (JNK) in a dose-dependent manner. Discussion BIS markedly alleviated DEP-induced lung injury by regulating the inflammatory, oxidative stress, and apoptotic biomarkers through the JNK signaling pathway. Following additional studies, BIS may be considered as a plausible protective agent against inhaled-particle-induced pulmonary adverse effects.
Collapse
Affiliation(s)
| | | | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Zhao H, Zhan C, Li B, Fang Z, Zhong M, He Y, Chen F, Chen Z, Zhang G, Zhong N, Lai K, Chen R. Non-allergic eosinophilic inflammation and airway hyperresponsiveness induced by diesel engine exhaust through activating ILCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116403. [PMID: 38710145 DOI: 10.1016/j.ecoenv.2024.116403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
RATIONALE Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.
Collapse
Affiliation(s)
- Huasi Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R.China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; Department of Respiratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, P.R.China
| | - Zhangfu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, P.R.China
| | - Mingyu Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China
| | - Yaowei He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China
| | - Fagui Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhe Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R.China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; Guangzhou National Lab, Guangzhou, P.R.China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critial Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; Guangzhou National Lab, Guangzhou, P.R.China.
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R.China; Guangzhou National Lab, Guangzhou, P.R.China.
| |
Collapse
|
5
|
Park E, Kim BY, Lee S, Son KH, Bang J, Hong SH, Lee JW, Uhm KO, Kwak HJ, Lim HJ. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116090. [PMID: 38364346 DOI: 10.1016/j.ecoenv.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1β, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.
Collapse
Affiliation(s)
- Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 215565, South Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Se Hyang Hong
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Hyun-Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin Univerisity, Seonbuk-Gu, Seoul 02707, South Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea.
| |
Collapse
|
6
|
Noh M, Sim JY, Kim J, Ahn JH, Min HY, Lee JU, Park JS, Jeong JY, Lee JY, Lee SY, Lee HJ, Park CS, Lee HY. Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132932. [PMID: 37988864 DOI: 10.1016/j.jhazmat.2023.132932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.
Collapse
Affiliation(s)
- Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jisung Kim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Jong-Uk Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, South Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi do, South Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Kim BG, Lee PH, Hong J, Jang AS. Analyzing the Impact of Diesel Exhaust Particles on Lung Fibrosis Using Dual PCR Array and Proteomics: YWHAZ Signaling. TOXICS 2023; 11:859. [PMID: 37888708 PMCID: PMC10611312 DOI: 10.3390/toxics11100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Air pollutants are associated with exacerbations of asthma, chronic bronchitis, and airway inflammation. Diesel exhaust particles (DEPs) can induce and worsen lung diseases. However, there are insufficient data to guide polymerase chain reaction (PCR) array proteomics studies regarding the impacts of DEPs on respiratory diseases. This study was performed to identify genes and proteins expressed in normal human bronchial epithelial (NHBE) cells. MicroRNAs (miRNAs) and proteins expressed in NHBE cells exposed to DEPs at 1 μg/cm2 for 8 h and 24 h were identified using PCR array analysis and 2D PAGE/LC-MS/MS, respectively. YWHAZ gene expression was estimated using PCR, immunoblotting, and immunohistochemical analyses. Genes discovered through an overlap analysis were validated in DEP-exposed mice. Proteomics approaches showed that exposing NHBE cells to DEPs led to changes in 32 protein spots. A transcriptomics PCR array analysis showed that 6 of 84 miRNAs were downregulated in the DEP exposure groups compared to controls. The mRNA and protein expression levels of YWHAZ, β-catenin, vimentin, and TGF-β were increased in DEP-treated NHBE cells and DEP-exposed mice. Lung fibrosis was increased in mice exposed to DEPs. Our combined PCR array-omics analysis demonstrated that DEPs can induce airway inflammation and lead to lung fibrosis through changes in the expression levels of YWHAZ, β-catenin, vimentin, and TGF-β. These findings suggest that dual approaches can help to identify biomarkers and therapeutic targets involved in pollutant-related respiratory diseases.
Collapse
Affiliation(s)
| | | | | | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Republic of Korea; (B.-G.K.)
| |
Collapse
|
8
|
Yin Y, Mu C, Wang J, Wang Y, Hu W, Zhu W, Yu X, Hao W, Zheng Y, Li Q, Han W. CXCL17 Attenuates Diesel Exhaust Emissions Exposure-Induced Lung Damage by Regulating Macrophage Function. TOXICS 2023; 11:646. [PMID: 37624152 PMCID: PMC10459829 DOI: 10.3390/toxics11080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
Exposure to diesel exhaust emissions (DEE) is strongly linked to innate immune injury and lung injury, but the role of macrophage chemoattractant CXCL17 in the lung damage caused by DEE exposure remains unclear. In this study, whole-body plethysmography (WBP), inflammatory cell differential count, and histopathological analysis were performed to assess respiratory parameters, airway inflammation, and airway injury in C57BL/6 male mice exposed to DEE for 3 months. qRT-PCR, IHC (immunohistochemistry), and ELISA were performed to measure the CXCL17 expression in airway epithelium or BALF (bronchoalveolar lavage fluid) following DEE/Diesel exhaust particle (DEP) exposure. Respiratory parameters, airway inflammation, and airway injury were assessed in CXCL17-overexpressing mice through adeno-associated virus vector Type 5 (AAV5) infection. Additionally, an in vitro THP-1 and HBE co-culture system was constructed. Transwell assay was carried out to evaluate the effect of rh-CXCL17 (recombinant human protein-CXCL17) on THP-1 cell migration. Flow cytometry and qRT-PCR were conducted to assess the impacts of rh-CXCL17 on apoptosis and inflammation/remodeling of HBE cells. We found that the mice exposed to DEE showed abnormal respiratory parameters, accompanied by airway injury and remodeling (ciliary injury in airway epithelium, airway smooth muscle hyperplasia, and increased collagen deposition). Carbon content in airway macrophages (CCAM), but not the number of macrophages in BALF, increased significantly. CXCL17 expression significantly decreased in mice airways and HBE after DEE/DEP exposure. AAV5-CXCL17 enhanced macrophage recruitment and clearance of DEE in the lungs of mice, and it improved respiratory parameters, airway injury, and airway remodeling. In the THP-1/HBE co-culture system, rh-CXCL17 increased THP-1 cell migration while attenuating HBE cell apoptosis and inflammation/remodeling. Therefore, CXCL17 might attenuate DEE-induced lung damage by recruiting and activating pulmonary macrophages, which is expected to be a novel therapeutic target for DEE-associated lung diseases.
Collapse
Affiliation(s)
- Yize Yin
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Public Health, Qingdao University, Qingdao 266071, China;
| | - Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China;
| | - Jiahui Wang
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
| | - Yixuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, China;
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
| | - Wenmin Hu
- School of Medicine and Pharmacy, Ocean University of China, Department of Pulmonary and Critical Care Medicine, University of Health and Rehabilitation Science, Qingdao 266071, China;
| | - Wenjing Zhu
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| | - Xinjuan Yu
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| | - Wanming Hao
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China;
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| |
Collapse
|
9
|
Huang D, Jia N, Pei C, Shen Z, Zhao S, Wang Y, Wu Y, Shi S, Li S, Wang Z. Rosavidin protects against PM2.5-induced lung toxicity via inhibition of NLRP3 inflammasome-mediated pyroptosis by activating the PI3K/AKT pathway. Biochem Pharmacol 2023; 213:115623. [PMID: 37244433 DOI: 10.1016/j.bcp.2023.115623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Fine particulate matter (PM2.5) contributes to adverse health effects through the promotion of inflammatory cytokine release. Rosavidin (Ro), a phenylpropanoid compound having multiple biological activities, is extracted from Rhodiola crenulata, a medicine and food homology plant. However, the protective role and mechanism of Ro in PM2.5-induced lung toxicity have not been previously studied. This study aimed to investigate the potential protective effect and mechanism of Ro in PM2.5-induced lung toxicity. A lung toxicity rat model was established through trachea drip of PM2.5 suspension after the different dose pretreatment of Ro (50 mg/kg and 100 mg/kg) to evaluate the effect of Ro on PM2.5 caused lung toxicity. The results showed that Ro attenuated the pathological changes, edema, and inflammation response in rats. The PI3K/AKT signaling pathway may be associated with the protective effect of Ro against pulmonary toxicity. Subsequently, we verified the role of PI3K/AKT in the PM2.5 exposure lung tissue. Moreover, expression levels of p-PI3K and p-AKT were lower, and those of NLRP3, ASC, cleaved caspase-1, cleaved IL-1β, and GSDMD-N were higher in PM2.5 group compared to those in control group. Whereas pre-administration of Ro reversed the expression trends of these proteins in lung tissue. Notably, those protective effects of Ro were not observed after pretreatment with a combination of Ro with nigericin or LY294002. These results indicate that Ro mitigates PM2.5-caused lung toxicity by inhibiting NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
10
|
Yang CY, Zhang FY, Wang IJ. Probiotics' Efficacy in Preventing Asthmatic Allergic Reaction Induced by Air Particles: An Animal Study. Nutrients 2022; 14:nu14245219. [PMID: 36558377 PMCID: PMC9784300 DOI: 10.3390/nu14245219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Global air pollution and diesel exhaust particles (DEPs) generated by intratracheal instillation aggravate asthma. In this study, we evaluated the effect of probiotics via tracheal- or oral-route administration on allergies or asthma. We continuously perfused rats daily, using the oral and tracheal routes, with approximately 106-108 CFU probiotics, for 4 weeks. During this period, we used OVA-sensitized rats to build the asthma models. We orally or intratracheally administered Lactobacillus paracasei 33 (LP33) to the rats, which reduced the number of total inflammatory cells, lymphocytes, and eosinophils in the bronchoalveolar-lavage fluid, the IgE concentration, and the cytokine levels of TH2 cells, but we found no significant difference in the cytokine levels of TH1 cells. LP33 can be used to prevent asthmatic allergic reactions induced by aerosol particles. Nevertheless, the dosage form or use of LP33 needs to be adjusted to reduce the irritation of lung tissues, which may produce lesions of the trachea. We observed that DEP dosage can alleviate emphysema, and that LP33 has a substantial effect on improving or slowing allergic asthma.
Collapse
Affiliation(s)
- Chi-Yu Yang
- Animal Technology Research Center, Agriculture Technology Research Institute, Miaoli 35053, Taiwan
| | - Fang-Yu Zhang
- Animal Technology Research Center, Agriculture Technology Research Institute, Miaoli 35053, Taiwan
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- College of Public Health, China Medical University, Taichung 40402, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan
- Correspondence: ; Tel.: +886-2-2276-5566 (ext. 2532)
| |
Collapse
|
11
|
Jo S, Na HG, Choi YS, Bae CH, Song SY, Kim YD. Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-κB signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice. J Ginseng Res 2022; 46:801-808. [PMID: 36312733 PMCID: PMC9597484 DOI: 10.1016/j.jgr.2022.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diesel exhaust particle (DEP) is a harmful kind of particulate matter known to exacerbate pre-existing respiratory diseases. Although their adverse effects on airway pathologies have been widely studied, the mechanistic analysis of signaling pathways and potential targets in reducing DEP-induced mucin secretion and pro-inflammatory cytokine production remain elusive. We, for the first time, investigated the effects of Korean Red Ginseng (KRG) extracts on mucin overproduction and airway inflammation induced by DEP. METHODS The effects of KRG and saponin on DEP-induced expression of MUC5AC and interleukin (IL)-6/8 were examined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in human airway epithelial NCI-H292 cells. We conducted Western blotting analysis to analyze the associated signaling pathways. To evaluate the effects of saponin treatment on DEP-induced MUC5AC expression and inflammatory cell infiltrations in ovalbumin (OVA)-sensitized mice, immunohistochemical (IHC) staining and real-time PCR were implemented. RESULTS The KRG extracts markedly attenuated DEP-induced MUC5AC expression in vitro by inhibiting the TLR4/TRIF/NF-κB pathway. Furthermore, KRG and saponin inhibited DEP-induced pro-inflammatory cytokine IL-6/8 production. The in vivo study revealed that saponin blocked DEP-induced inflammation, mucin production and MUC5AC expression. CONCLUSION Our study revealed that KRG extracts have inhibitory effects on DEP-induced expression of MUC5AC and the production of pro-inflammatory cytokines. This finding provides novel insights into the mechanism by which saponin alleviates diesel-susceptible airway inflammation, elucidating its potential as a phytotherapeutic agent for inflammatory pathologies of airway.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Republic of Korea
| |
Collapse
|
12
|
Chudakov DB, Konovalova MV, Kashirina EI, Kotsareva OD, Shevchenko MA, Tsaregorodtseva DS, Fattakhova GV. DEPs Induce Local Ige Class Switching Independent of Their Ability to Stimulate iBALT de Novo Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13063. [PMID: 36293642 PMCID: PMC9603618 DOI: 10.3390/ijerph192013063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are leading to a general increase in atopic diseases worldwide. However, it is still unknown whether DEPs induce systemic B-cell IgE class switching in secondary lymphoid organs or locally in the lungs in inducible bronchus-associated lymphoid tissue (iBALT). The aim of this work was to identify the exact site of DEP-mediated B-cell IgE class switching and pro-allergic antibody production. METHODS We immunized BALB/c mice with different OVA doses (0.3 and 30 µg) intranasally in the presence and absence of two types of DEPs, SRM1650B and SRM2786. We used low (30 µg) and high (150 µg) DEP doses. RESULTS Only a high DEP dose induced IgE production, regardless of the particle type. Local IgE class switching was stimulated upon treatment with both types of particles with both low and high OVA doses. Despite the similar ability of the two standard DEPs to stimulate IgE production, their ability to induce iBALT formation and growth was markedly different upon co-administration with low OVA doses. CONCLUSIONS DEP-induced local IgE class switching takes place in preexisting iBALTs independent of de novo iBALT formation, at least in the case of SRM1650B co-administered with low OVA doses.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Mariya Vladimirovna Konovalova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Elena Igorevna Kashirina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Olga Dmitrievna Kotsareva
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Marina Alexandrovna Shevchenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Daria Sergeevna Tsaregorodtseva
- Faculty of Medical Biology, Sechenov First Moscow State Medical University, 2 Bolshaya Pirogovskaya Str., Moscow 1194535, Russia
| | - Gulnar Vaisovna Fattakhova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| |
Collapse
|
13
|
Candeias J, Zimmermann EJ, Bisig C, Gawlitta N, Oeder S, Gröger T, Zimmermann R, Schmidt-Weber CB, Buters J. The priming effect of diesel exhaust on native pollen exposure at the air-liquid interface. ENVIRONMENTAL RESEARCH 2022; 211:112968. [PMID: 35240115 DOI: 10.1016/j.envres.2022.112968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.
Collapse
Affiliation(s)
- Joana Candeias
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Carsten B Schmidt-Weber
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Jeroen Buters
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany.
| |
Collapse
|
14
|
Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148771. [PMID: 35886623 PMCID: PMC9317970 DOI: 10.3390/ijerph19148771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
Ambient air pollution has become a common problem worldwide. Exposure to pollutant particles causes many health conditions, having a particular impact on pulmonary and cardiovascular disease. Increased understanding of the pathological processes related to these conditions may facilitate the prevention of the adverse impact of air pollution on our physical health. Evidence from in vitro, in vivo, and clinical studies has consistently shown that exposure to particulate matter could induce the inflammatory responses such as IL-6, TNF-α, IL-1β, as well as enhancing the oxidative stress. These result in vascular injury, adhesion molecule release, platelet activation, and thrombin generation, ultimately leading to a prothrombotic state. In this review, evidence on the effects of particulate matter on inflammation, oxidative stress, adhesion molecules, and coagulation pathways in enhancing the risk of thrombosis is comprehensively summarized and discussed. The currently available outcomes of interventional studies at a cellular level and clinical reports are also presented and discussed.
Collapse
|
15
|
Lee HS, Park HW. IL-23 plays a significant role in the augmentation of particulate matter-mediated allergic airway inflammation. J Cell Mol Med 2022; 26:4506-4519. [PMID: 35801505 PMCID: PMC9357615 DOI: 10.1111/jcmm.17475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
It has been recently that particulate matter (PM) exposure increases the risk and exacerbation of allergic asthma. However, the underlying mechanisms and factors associated with increased allergic responses remain elusive. We evaluated IL-23 and IL-23R (receptor) expression, as well as changes in the asthmatic phenotype in mice administered PM and a low dose of house dust mite (HDM). Next, changes in the phenotype and immune responses were evaluated after intranasal administration of anti-IL-23 antibody during co-exposure to PM and low-dose HDM. We also performed in vitro experiments to investigate the effect of IL-23. IL-23 expression was significantly increased in Epcam+CD45- and CD11c+ cells, while that of IL-23R was increased in Epcam+CD45- cells only in mice administered PM and low-dose HDM. Administration of anti-IL-23 antibody led to decreased airway hyperresponsiveness, eosinophils, and activation of dendritic cells, reduced populations of Th2 Th17, ILC2, the level of IL-33 and granulocyte-macrophage colony-stimulating factor (GM-CSF). Inhibition of IL-23 in PM and low-dose HDM stimulated airway epithelial cell line resulted in decreased IL-33, GM-CSF and affected ILC2 and the activation of BMDCs. PM augmented the phenotypes and immunologic responses of asthma even at low doses of HDM. Interestingly, IL-23 affected immunological changes in airway epithelial cells.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Integrative analysis to explore the biological association between environmental skin diseases and ambient particulate matter. Sci Rep 2022; 12:9750. [PMID: 35697899 PMCID: PMC9192598 DOI: 10.1038/s41598-022-13001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Although numerous experimental studies have suggested a significant association between ambient particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM and environmental skin diseases is not clearly understood. Here, we aimed to explore the association between PM and skin diseases through biological big data analysis. Differential gene expression profiles associated with PM and environmental skin diseases were retrieved from public genome databases. The co-expression among them was analyzed using a text-mining-based network analysis software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate their relationships using public genome data. We found that changes in upstream regulators and inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a literature-based co-expression analysis and experimental validation not only improves the reliability of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced dermal toxicity that can be applied to screen the relationship between other chemicals and adverse effects.
Collapse
|
17
|
Kim BG, Choi DY, Kim MG, Jang AS, Suh MW, Lee JH, Oh SH, Park MK. Effect of Angiogenesis and Lymphangiogenesis in Diesel Exhaust Particles Inhalation in Mouse Model of LPS Induced Acute Otitis Media. Front Cell Infect Microbiol 2022; 12:824575. [PMID: 35646744 PMCID: PMC9132252 DOI: 10.3389/fcimb.2022.824575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Lymphangiogenesis and angiogenesis might have significant involvement in the pathogenesis of otitis media with effusion. This study investigated the effect of diesel exhaust particles (DEP) on inflammation and lymphangiogenesis in a mouse model of acute otitis media (AOM). BALB/c mice were injected with LPS and exposed to 100 µg/m3 DEP. The mice were divided into four groups: control (no stimulation), AOM, AOM + DEP, and DEP + AOM. The effects of DEP inhalation pre- and post-DEP induction were estimated based on measurements of the auditory brainstem response, mRNA levels of lymphangiogenesis-related genes and cytokines, and histology of the middle ear. Cell viability of human middle ear epithelial cells decreased in a dose-response manner at 24 and 48 hours post-DEP exposure. DEP alone did not induce AOM. AOM-induced mice with pre- or post-DEP exposure showed thickened middle ear mucosa and increased expression of TNF-α and IL1-β mRNA levels compared to the control group, but increased serum IL-1β levels were not found in the AOM + Post DEP. The mRNA expression of TLR4, VEGFA, VEGFAC, and VEGFR3 was increased by pre-AOM DEP exposure. The expression of VEFGA protein was stronger in the AOM + Post DEP group than in any other group. The expression of CD31 and CD45 markers in the mouse middle ear tissue was higher in the Pre DEP + AOM group than in the AOM group. This result implies that pre-exposure to DEP more strongly increases inflammation and lymphangiogenesis in a mouse model of acute otitis media.
Collapse
Affiliation(s)
- Byeong-Gon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Min-Gyoung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- *Correspondence: Moo Kyun Park, ;
| |
Collapse
|
18
|
Singh N, Arora N. Diesel exhaust exposure in mice induces pulmonary fibrosis by TGF-β/Smad3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150623. [PMID: 34610407 DOI: 10.1016/j.scitotenv.2021.150623] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies suggest increased risk of lung cancer associated with diesel exhaust (DE) exposure. However, DE-induced lung fibrosis may lead to cancer and needs investigation. OBJECTIVES To study the mechanism involved in the initiation of DE- induced lung fibrosis. METHODS C57BL/6 mice were exposed to DE for 30 min/day for 5 days/weeks for 8 weeks. Pulmonary function test was performed to measure lung function. Mice were euthanized to collect BALF, blood, and lung tissue. BALF was used for cell count and cytokine analysis. Lung tissue slides were stained to examine structural integrity. RNA from lung tissue was used for RT-PCR. Immunoblots were performed to study fibrosis and EMT pathway. RESULTS Mice exposed to DE increase lung resistance and tissue elastance with decrease in inspiratory capacity (p < 0.05) suggesting lung function impairment. BALF showed significantly increased macrophages, neutrophils and monocytes (p < 0.01). Additionally, there was an increase in inflammation and alveolar wall thickening in lungs (p < 0.01) correlates with cellular infiltration. Macrophages had black soot deposition in lung tissue of DE exposed mice. Lung section staining revealed increase in mucus producing goblet cells for clearance of soot in lung. DE exposed lung showed increased collagen deposition and hydroxyproline residue (p < 0.01). Repetitive exposure of DE in mice lead to tissue remodeling in lung, demonstrated by fibrotic foci and smooth muscles. A significant increase in α-SMA and fibronectin (p < 0.05) in lung indicate progression of pulmonary fibrosis. TGF-β/Smad3 signaling was activated with increase in P-smad3 expression in DE exposed mice. Decreased expression of E-cadherin and increased vimentin (p < 0.05) in lungs of DE exposed mice indicate epithelial to mesenchymal transition. CONCLUSION DE exposure to mice induced lung injury and pulmonary fibrosis thereby remodeling tissue. The study demonstrates TGF-β/SMAD3 pathway involvement with an activation of EMT in DE exposed mice.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Niranjan R, Subramanian M, Panneer D, Ojha SK. Eosinophils Restrict Diesel Exhaust Particles Induced Cell Proliferation of Lung Epithelial A549 Cells, Vial Interleukin-13 Mediated Mechanisms: Implications for Tissue Remodelling And Fibrosis. Comb Chem High Throughput Screen 2022; 25:1682-1694. [PMID: 34986769 DOI: 10.2174/1386207325666220105150655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diesel exhaust particulates (DEPs) affect lung physiology and cause serious damage to the lungs. A number of studies demonstrated that, eosinophils play a very important role in the development of tissue remodelling and fibrosis of lungs. However, the exact mechanism of pathogenesis of tissue remodelling and fibrosis is not known. METHODS Both in vitro and in vivo models were used in the study. HL-60 and A549 cells were used in the study. Balb/C mice of 8 to 12 weeks old were used for in vivo study. Cell viability by MTT assay, RNA isolation by tri reagent was accomplished. mRNA expression of inflammatory genes were accomplished by real time PCR or qPCR. Immunohistochemistry was done to asses the localization and expressions of proteins. One way ANOVA followed by post hoc test were done for the statistical analysis. Graph-Pad Prism software was used for statistical analysis. RESULTS We for the first time demonstrate that, Interleukin-13 plays a very important role in the development of tissue remodelling and fibrosis. We report that, diesel exhaust particles significantly induce eosinophils cell proliferation and interleukin-13 release in in vitro culture conditions. Supernatant collected from DEP-induced eosinophils cells significantly restrict cell proliferation of epithelial cells in response to exposure of diesel exhast particles. Furthermore, purified interleukin-13 decreases the proliferation of A549 cells, highliting the involvement of IL-13 in tissue remodeling. Notably, Etoricoxib (selective COX-2 inhibitor) did not inhibit DEP-triggered release of interleukin-13, suggesting another cell signalling pathway. The in vivo exposer of DEP to the lungs of mice, resulted in high level of eosinophils degranulation as depicted by the EPX-1 immunostaining and altered level of mRNA expressions of inflammatory genes. We also found that, a-SMA, fibroblast specific protein (FSP-1) has been changed in response to DEP in the mice lungs along with the mediators of inflammation. CONCLUSION Altogether, we elucidated, the mechanistic role of eosinophils and IL-13 in the DEP-triggered proliferation of lungs cells thus providing an inside in the pathophysiology of tissue remodelling and fibrosis of lungs.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology laboratories, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | | | - Devaraju Panneer
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | - Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bio-innovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100
| |
Collapse
|
20
|
Elhadidy MG, Elmasry A, Elsayed HRH, El-Nablaway M, Hamed S, Elalfy MM, Rabei MR. Modulation of COX-2 and NADPH oxidase-4 by alpha-lipoic acid ameliorates busulfan-induced pulmonary injury in rats. Heliyon 2021; 7:e08171. [PMID: 34746462 PMCID: PMC8551514 DOI: 10.1016/j.heliyon.2021.e08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 10/25/2022] Open
Abstract
Aims This study aimed to explore the potential protective effect of α-lipoic acid on busulfan-induced pulmonary fibrosis in rats. Main methods Eighteen adult male rats were divided into 3 groups; control, busulfan, and busulfan plus α-lipoic acid groups. Lung index ratio, serum level of proinflammatory cytokine were assessed. The activities of antioxidant enzymes and lipid peroxidation products were estimated in the lung tissues in addition to the histopathological analyses. The deposition of the collagen in the lung tissues was evaluated by Sirius red staining. The expressions of α-smooth muscle actin (α-SMA), TNF-α, and Caspase 3 were determined immunohistochemically. The pulmonary expression of COX-2 and NOX-4 mRNA was assessed using qRT-PCR. Key findings Administration of ALA significantly protect the lung against BUS-induced pulmonary fibrosis, besides the upregulation of antioxidants, and downregulation of pro-inflammatory cytokines. Also, it reduced collagen deposition that associated with a decreased expression of α-SMA, TNF-α, and Caspase 3 in the lung tissues. Moreover, ALA significantly upregulated the expression of COX-2 concomitant with the downregulation of elevated NOX-4. Significance ALA attenuates the lung cytotoxicity of busulfan through its anti-inflammatory, anti-apoptotic, and antifibrotic effects that may be mediated by upregulation of COX-2 and downregulation of NOX-4.
Collapse
Affiliation(s)
- Mona G Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt.,Department of Medical Physiology, College of Medicine, Al-Baha University, Saudi Arabia
| | - Ahlam Elmasry
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Egypt
| | | | - Mohammad El-Nablaway
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Egypt
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Mahmoud M Elalfy
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Mohammed R Rabei
- Department of Medical physiology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| |
Collapse
|
21
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
22
|
Poyraz BM, Engin ED, Engin AB, Engin A. The effect of environmental diesel exhaust pollution on SARS-CoV-2 infection: The mechanism of pulmonary ground glass opacity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103657. [PMID: 33838330 PMCID: PMC8025547 DOI: 10.1016/j.etap.2021.103657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 05/19/2023]
Abstract
Diesel exhaust particles (DEP) are the major components of atmospheric particulate matter (PM) and chronic exposure is recognized to enhance respiratory system complications. Although the spread of SARS-CoV-2 was found to be associated with the PMs, the mechanism by which exposure to DEP increases the risk of SARS-CoV-2 infection is still under discussion. However, diesel fine PM (dPM) elevate the probability of SARS-CoV-2 infection, as it coincides with the increase in the number of ACE2 receptors. Expression of ACE2 and its colocalized activator, transmembrane protease serine 2 (TMPRSS2) facilitate the entry of SARS-CoV-2 into the alveolar epithelial cells exposed to dPM. Thus, the coexistence of PM and SARS-CoV-2 in the environment augments inflammation and exacerbates lung damage. Increased TGF-β1 expression due to DEP accompanies the proliferation of the extracellular matrix. In this case, "multifocal ground-glass opacity" (GGO) in a CT scan is an indication of a cytokine storm and severe pneumonia in COVID-19.
Collapse
Affiliation(s)
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
23
|
Faber SC, McNabb NA, Ariel P, Aungst ER, McCullough SD. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol Sci 2021; 177:140-155. [PMID: 32525552 DOI: 10.1093/toxsci/kfaa085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a target and a mediator of the adverse effects of inhaled chemical exposures despite being separated from the inhaled material by an epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects should be considered in inhalation toxicology research and testing.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology and Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nicole A McNabb
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Emily R Aungst
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Shaun D McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| |
Collapse
|
24
|
García-Marín LM, Campos AI, Martin NG, Cuéllar-Partida G, Rentería ME. Phenome-wide analysis highlights putative causal relationships between self-reported migraine and other complex traits. J Headache Pain 2021; 22:66. [PMID: 34238214 PMCID: PMC8268337 DOI: 10.1186/s10194-021-01284-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Migraine is a complex neurological disorder that is considered the most common disabling brain disorder affecting 14 % of people worldwide. The present study sought to infer potential causal relationships between self-reported migraine and other complex traits, using genetic data and a hypothesis-free approach. METHODS We leveraged available summary statistics from genome-wide association studies (GWAS) of 1,504 phenotypes and self-reported migraine and inferred pair-wise causal relationships using the latent causal variable (LCV) method. RESULTS We identify 18 potential causal relationships between self-reported migraine and other complex traits. Hypertension and blood clot formations were causally associated with an increased migraine risk, possibly through vasoconstriction and platelet clumping. We observed that sources of abdominal pain and discomfort might influence a higher risk for migraine. Moreover, occupational and environmental factors such as working with paints, thinner or glues, and being exposed to diesel exhaust were causally associated with higher migraine risk. Psychiatric-related phenotypes, including stressful life events, increased migraine risk. In contrast, ever feeling unenthusiastic / disinterested for a whole week, a phenotype related to the psychological well-being of individuals, was a potential outcome of migraine. CONCLUSIONS Overall, our results suggest a potential vascular component to migraine, highlighting the role of vasoconstriction and platelet clumping. Stressful life events and occupational variables potentially influence a higher migraine risk. Additionally, a migraine could impact the psychological well-being of individuals. Our findings provide novel testable hypotheses for future studies that may inform the design of new interventions to prevent or reduce migraine risk and recurrence.
Collapse
Affiliation(s)
- Luis M García-Marín
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Adrián I Campos
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Present address: 23andMe, Inc, Sunnyvale, California, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Chen KY, Tseng CH, Feng PH, Sun WL, Ho SC, Lin CW, Van Hiep N, Luo CS, Tseng YH, Chen TT, Liu WT, Lee KY, Wu SM. 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol 2021; 38:865-887. [PMID: 34036453 DOI: 10.1007/s10565-021-09612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-μM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Han Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Chen Z, Chen F, Fang Z, Zhao H, Zhan C, Li C, He Y, Huang C, Long L, Lai K. Glial activation and inflammation in the NTS in a rat model after exposure to diesel exhaust particles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103584. [PMID: 33460804 DOI: 10.1016/j.etap.2021.103584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Airway pollution can affect the central nervous system, but whether this causes glial activation and inflammation in the nucleus of solitary tract (NTS) remains unclear. We used a rat model with exposure to diesel exhaust particulate matter (DEP) at 200 μg/m3 (low exposure) and 1000 μg/m3 (high exposure) for 14 days. Activation of microglia and astrocytes in the NTS was assessed using Iba-1 and glial fibrillary acidic protein (GFAP) staining. The expression of neurotrophic factors including brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) in the NTS were evaluated by immunofluorescence. Changes in the intracellular structure of NTS neurons were observed via electron microscopy. Inflammatory cytokines and oxidant stress levels in the medulla were also measured. Exposure to DEP can cause NTS inflammation as well as airway inflammation, especially in the H-exposure group. We showed that the numbers of microglia and astrocytes in the NTS, as well as NGF expression in the NTS, were significantly higher in both exposure groups than in controls, but BDNF or GDNF expression was not detected. Exposure to DEP induced ultrastructural changes in NTS neurons as reflected by endoplasmic reticulum dilation, ribosomal loss, mitochondrial vacuolization, and a sparse myelin sheath. Medulla inflammation and an imbalance of oxidants and antioxidants also resulted from exposure to DEP. The H-exposure group showed an imbalance of oxidants and antioxidants with decreased levels of SOD and GSH and increased levels of MDA and ROS compared to the control group (both p < 0.01) in the medulla. Inflammatory cytokines (IL-1β, IL-6, and TNF-α) were also significantly increased in the H-exposure group. Fourteen days of exposure to DEP can affect the NTS neurons in rat. Glial activation and inflammation may play important roles in the response of the NTS to DEP.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Pulmonary and Critical Care Medicine, Laboratory of Immunology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Fagui Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; Department of Pulmonary and Critical Care Medicine, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, 515031, China
| | - Zhangfu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Huasi Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chenhui Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yaowei He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Li Long
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
27
|
Bae YJ, Park KY, Han HS, Kim YS, Hong JY, Han TY, Seo SJ. Effects of Particulate Matter in a Mouse Model of Oxazolone-Induced Atopic Dermatitis. Ann Dermatol 2020; 32:496-507. [PMID: 33911793 PMCID: PMC7875236 DOI: 10.5021/ad.2020.32.6.496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent epidemiological studies have demonstrated that air pollution is associated with the inflammatory response and may aggravate inflammatory skin diseases such as atopic dermatitis (AD). However, it is unclear whether particulate matter (PM) aggravates AD symptoms. OBJECTIVE The aim of this study was to investigate whether PM exposure affects the skin barrier dysfunction and aggravates AD symptoms using human keratinocytes (HaCaT) cells and a mouse model of oxazolone-induced AD-like skin. METHODS Standard reference material (SRM) 1649b, which mainly comprises polycyclic aromatic hydrocarbons, was used as the reference PM. HaCaT cells and mouse model of oxazolone-induced AD-like skin were treated with PM. The mRNA or protein expression levels of stratum corneum (SC) and tight junction (TJ) proteins, inflammatory cytokines, as well as clinical and histological changes of the AD-like skin of mouse model were evaluated. The expression of genes and proteins was analyzed by real-time polymerase chain reaction and Western blotting. Levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay. RESULTS The results revealed that PM downregulates the expression levels of several SC and TJ-related proteins in the mouse model with AD-like skin. Clinically, epidermal and dermal thickness was significantly increased and dermal inflammation was prominent in PM treated AD-like skin. CONCLUSION In conclusion, we found that PM aggravates skin barrier dysfunction, clinically augmenting epidermal and dermal thickening with dermal inflammation in AD-like skin. These results suggest that PM may trigger the exacerbation of AD symptoms via skin barrier dysfunction-related mechanisms.
Collapse
Affiliation(s)
- Yoo Jung Bae
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Shin Kim
- Department of Dermatology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Ji Yeon Hong
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
| | - Tae Young Han
- Department of Dermatology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Genomic approach to explore altered signaling networks of olfaction in response to diesel exhaust particles in mice. Sci Rep 2020; 10:16972. [PMID: 33046809 PMCID: PMC7550584 DOI: 10.1038/s41598-020-74109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
Airborne pollutants have detrimental effect on the human body and the environment. Diesel exhaust particles (DEPs) are known to be major component of particulate matter (PM) and cause respiratory diseases and neurotoxicity. However, the effects of air pollutants on the sensory nervous system, especially on the olfactory sense, have not been well studied. Herein, we aimed to explore DEP-induced changes in the olfactory perception process. Olfactory sensitivity test was performed after DEP inhalation in mice. Microarray was conducted to determine the differentially expressed genes, which were then utilized to build a network focused on neurotoxicity. Exposure to DEPs significantly reduced sniffing in mice, indicating a disturbance in the olfactory perception process. Through network analysis, we proposed five genes (Cfap69, Cyp26b1, Il1b, Il6, and Synpr) as biomarker candidates for DEP-mediated olfactory dysfunction. Changes in their expression might provoke malfunction of sensory transduction by inhibiting olfactory receptors, neurite outgrowth, and axonal guidance as well as lead to failure of recovery from neuroinflammatory damage through inhibition of nerve regeneration. Thus, we suggest the potential mechanism underlying DEPs-mediated olfactory disorders using genomic approach. Our study will be helpful to future researchers to assess an individual’s olfactory vulnerability following exposure to inhalational environmental hazards.
Collapse
|
29
|
Kim HS, Kim HJ, Kim N, Song JJ, Son BS, Yang JH, Lee CM, Park MK, Seo YR. Toxicogenomic study to identify potential signaling alterations related to nasal inflammatory damages induced by diesel exhaust particles in primary human nasal epithelial cells. Toxicol In Vitro 2020; 69:104994. [PMID: 32891722 DOI: 10.1016/j.tiv.2020.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
In this study, we aimed to identify signaling alteration caused by exposure to diesel exhaust particles (DEPs) using primary human nasal epithelial cells (PHNECs). Global gene expression profiles in PHNECs following 50 and 200 μg/ml of DEP exposure were identified using microarray analysis. To cover the limitation of array-based mRNA expression analysis, text-mining-based software was used to analyze the integrative biological networks and relevant disease-focused functions among identified DEP-responsive genes. The confidence was valued based on the connectivity between the analyzed pathway and marker candidates. Through a literature-based pathway analysis, the stimulation of inflammation- and immune response-related processes mediated by TNF were predicted as major signaling alterations in PHNECs caused by DEP exposure. CSF3, CXCL8, MMP1, and VEGFA were identified as key hub genes in the predicted pathway. Significant expression level changes in the five key genes following DEP exposure were validated in terms of protein and mRNA expression. Although further studies are required, our toxicogenomic investigation provides key clues to the exact mechanism underlying DEP-induced nasal inflammatory damage. It also suggests an efficient approach for other research on adverse effects occurring in the upper respiratory tract following DEP exposure.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Life Science, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Nahyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bu-Soon Son
- Department of Environmental Health Science, Soonchunhyang University, Asan, South Korea
| | - Jun Hyuek Yang
- Department of Life Science, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Cheol Min Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
30
|
Jiang Q, Xu X, Zhang C, Luo J, Lv N, Shi L, Ji A, Gao M, Chen F, Cui L, Zheng Y. In ovo very early-in-life exposure to diesel exhaust induced cardiopulmonary toxicity in a hatchling chick model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114718. [PMID: 32388309 DOI: 10.1016/j.envpol.2020.114718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Diesel exhaust (DE) had been associated with cardiopulmonary toxicity and developmental toxicity. However, neonatal very early-in-life exposure had not been extensively studied previously. To investigate the potential effects of neonatal very early-in-life exposure to DE, a brand-new chicken embryo in ovo exposure model had been established, with which the cardiopulmonary effects of DE exposure via air cell infusion at embryonic day 18/19 (ED18/19) were assessed in hatchling chicks post-hatch 0-, 1-, or 2-weeks. Heart rates were assessed with electrocardiography. Cardiac and pulmonary morphologies were investigated with histopathological methods. Cardiopulmonary effects were explored with immunohistochemistry for alpha smooth muscle actin (alpha-SMA). In further investigations, the expression levels of phosphorylated AhR, serum levels of TGF-β1, phosphorylated SMAD2/3 and phosphorylated p38MAPK were assessed in the lung tissues. Significantly elevated heart rates, increased right ventricular wall thickness and cardiac collagen deposition were observed in the hearts of exposed hatchling chicks. Significantly increased collagen deposition as well as increased vascular alpha-SMA layer thickness/decreased cavity area were observed in exposed animal lungs. These effects persisted up to two weeks post-hatch. Mechanistic studies revealed elevated phosphorylated AhR expression levels in 0-week and 1-week chicken lungs, while phosphorylated SMAD2/3 levels significantly increased in 0-week chicken lungs but decreased in 2-week chicken lungs following DE exposure. Phosphorylation of p38MAPK did not remarkably increase until 2-week post-hatch. In summary, the novel chicken neonatal very early-in-life exposure model effectively exposed the chicken embryos during the neonatal initial breathing, resulting in cardiopulmonary toxicity, which is associated with AHR, TGF-β1 and MAPK signaling.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Mengyu Gao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Feilong Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
31
|
IRF3 and IRF7 contribute to diesel exhaust particles‐induced pulmonary inflammation by mediating mTORC1 activation and restraining autophagy in mice. Eur J Immunol 2020; 50:1142-1153. [DOI: 10.1002/eji.201948415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/29/2023]
|
32
|
Lu X, Tan ZX, Wang B, Li J, Hu B, Gao L, Zhao H, Wang H, Chen YH, Xu DX. Maternal 1-nitropyrene exposure during pregnancy increases susceptibility of allergic asthma in adolescent offspring. CHEMOSPHERE 2020; 243:125356. [PMID: 31743867 DOI: 10.1016/j.chemosphere.2019.125356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is widespread in the environment, as a typical nitrated polycyclic aromatic hydrocarbon. The purpose of this research was to explore the effects of gestational 1-NP exposure on susceptibility of allergic asthma in offspring. Maternal mice were exposed to 1-NP (100 μg kg-1) by gavage throughout the whole pregnancy. Pups were sensitized by injecting with ovalbumin (OVA) on postnatal day (PND)23, 29, and 36, respectively. At 7 days following the last injection, sensitized mice were exposed to aerosol OVA. As expected, there were quite a few inflammatory cells in the lungs of OVA-sensitized pups, accompanied by bronchial wall thickening and hyperemia. Elevated goblet cells and overproduced mucus were observed in the airways of OVA-sensitized pups. Interestingly, gestational 1-NP exposure aggravated infiltration of inflammatory cells, mainly eosinophils, in OVA-sensitized offspring. Although it had little effect on airway smooth muscle layer thickening and basement membrane fibrosis, gestational 1-NP exposure aggravated goblet cell hyperplasia, Muc5ac mRNA upregulation, and mucus secretion in the airways of OVA-sensitized and challenged offspring. Mechanistically, gestational 1-NP exposure aggravated elevation of pulmonary IL-5 in OVA-sensitized pups. These findings suggest that gestational 1-NP exposure increases susceptibility of allergic asthma in offspring.
Collapse
Affiliation(s)
- Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
33
|
Lee PH, Kim BG, Park MK, Hong J, Lee YG, Jang AS. The Impact of Diesel Exhaust Particles on Tight Junctional Proteins on Nose and Lung in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 13:350-352. [PMID: 33474868 PMCID: PMC7840873 DOI: 10.4168/aair.2021.13.2.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Pureun Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Byeong Gon Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Moo Kyun Park
- Department of Otolaryngology, Seoul National University, Seoul, Korea
| | - Jisu Hong
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yun Gi Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
34
|
Neuronal and perineuronal changes of cerebral cortex after exposure to inhaled particulate matter. Sci Rep 2019; 9:19421. [PMID: 31857661 PMCID: PMC6923377 DOI: 10.1038/s41598-019-55956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/22/2019] [Indexed: 01/29/2023] Open
Abstract
The inhalation of particulate matter (PM) increases the perineuronal nets (PNNs) in the cerebral cortex; however, little is known about the related molecular changes. We explored how PM exposure impacted cognitive function and the levels of PNN-related genes. BALB/c mice (6-week-old females, n = 32) were exposed to 1–5-μm diesel-extracted particles (DEPs) (100 µg/m3, 5 hours per day, 5 days per week) and categorized into the following four groups: 1) 4-week DEP exposure (n = 8); 2) 4-week control (n = 8); 3) 8-week DEP exposure (n = 8); and 4) 8-week control (n = 8). The Y-maze test and olfactory function test were conducted after 4 and 8 weeks of DEP exposure. The prefrontal cortex, olfactory bulb and temporal cortex were harvested from the animals in each group. The expression of genes related to PNNs (Tenascin C, matrix metalloproteinase [MMP]14, MMP9) and synaptic vesicular transporters of vesicular glutamergic transporter 1 (VGLUT1), VGLUT2, vesicular GABAergic transporter (VGAT) were measured. The temporal cortex was immunostained for neurocan, VGLUT1, and VGAT. The 4-week DEP group had lower total arm entry in the Y-maze test and olfactory sensitivity. These impaired behavioral functions recovered in the 8-week DEP group. Expression of tenascin C and MMP9 were increased in the cerebral cortex in the 8-week DEP group compared with the control group. The levels of VGLUT1, VGLUT2, and VGAT were elevated in the cerebral cortex of the 8-week DEP group compared with the control group. In immunostaining of the temporal cortex, the expression of neurocan, VGLUT1, and GAD67 were increased in the 8-week DEP group compared with the control group. The 4-week DEP inhalation impaired spatial activities and olfactory sensitivities. After 8 weeks of DEP exposure, the PNN components and their proteolytic enzymes and the vesicular transporters increased in the cerebral cortex.
Collapse
|
35
|
Kim HS, Kim BG, Park S, Kim N, Jang AS, Seo YR, Park MK. Gene Expression Analysis to Investigate Biological Networks Underlying Nasal Inflammatory Dysfunctions Induced by Diesel Exhaust Particles Using an In Vivo System. Ann Otol Rhinol Laryngol 2019; 129:245-255. [PMID: 31646875 DOI: 10.1177/0003489419883289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Diesel exhaust particles (DEP)s are notorious ambient pollutants composed of a complex mixture of a carbon core and diverse chemical irritants. Several studies have demonstrated significant relationships between DEP exposure and serious nasal inflammatory response in vitro, but available information regarding underlying networks in terms of gene expression changes has not sufficiently explained potential mechanisms of DEP-induced nasal damage, especially in vivo. METHODS In the present study, we identified DEP-induced gene expression profiles under short-term and long-term exposure, and identified signaling pathways based on microarray data for understanding effects of DEP exposure in the mouse nasal cavity. RESULTS Alteration in gene expression due to DEP exposure provokes an imbalance of the immune system via dysregulated inflammatory markers, predicted to disrupt protective responses against harmful exogenous substances in the body. Several candidate markers were identified after validation using qRT-PCR, including S100A9, CAMP, IL20, and S100A8. CONCLUSIONS Although further mechanistic studies are required for verifying the utility of the potential biomarkers suggested by the present study, our in vivo results may provide meaningful suggestions for understanding the complex cellular signaling pathways involved in DEP-induced nasal damages.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byeong-Gon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nahyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Zaghloul MS, Said E, Suddek GM, Salem HA. Crocin attenuates lung inflammation and pulmonary vascular dysfunction in a rat model of bleomycin-induced pulmonary fibrosis. Life Sci 2019; 235:116794. [DOI: 10.1016/j.lfs.2019.116794] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/28/2022]
|
37
|
Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol 2019; 271:103292. [PMID: 31542455 DOI: 10.1016/j.resp.2019.103292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The interaction between chronic inflammation and neural dysfunction points to a link between the nervous and immune systems in the airways. In particular, environmental exposure to nanoparticles (NPs), defined as particulate matter having one dimension <100 nm, is associated with an enhanced risk of childhood and adult asthma. However, the impact of NPs on the neural response in asthma remains to be determined. This study determined the impact of NPs on neuroinflammation in a mouse model of allergic asthma. Ovalbumin (OVA) sensitized mice were treated with saline (Sham), OVA challenged and exposed to 200 μg/m3 NPs 1 h a day for 3 days on days 21-23 in a closed-system chamber attached to a ultrasonic nebulizer. The effect of NPs on the levels of neuropeptides, transient receptor potential vanilloid 1 (TRPV1), TRPV4, P2 × 4, and P2 × 7 was assessed by enzyme-linked immunosorbent assays, immunoblotting, and immunohistochemistry. NP exposure increased airway inflammation and responsiveness in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The lung tissue levels of TRPV1, TRPV4, P2 × 4, and P2 × 7 were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The substance P, adenosine triphosphate (ATP), and calcitonin gene-related peptide (CGRP) levels in bronchoalveolar lavage fluid were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. Bradykinin, ATP, and CGRP were dose dependently increased in NP-exposed normal human bronchial epithelial (NHBE) cells. The calcium concentration was increased in NHBE cells exposed to NPs for 8 h. These results indicate that neuroinflammation can be involved in the pathogenesis of bronchial asthma and that NPs can exacerbate asthma via neuromediator release.
Collapse
|
38
|
Zhang Y, Xu B, Luan B, Zhang Y, Li Y, Xiong X, Shi H. Myeloid-derived suppressor cells (MDSCs) and mechanistic target of rapamycin (mTOR) signaling pathway interact through inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in asthma. Am J Transl Res 2019; 11:6170-6184. [PMID: 31632585 PMCID: PMC6789223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Down-regulation of mechanistic target of rapamycin (mTOR) activity in myeloid-derived suppressor cells (MDSCs) has been shown to promote inducible nitric oxide (NO) synthase (iNOS) expression and NO production. Importantly, pharmacological inhibition of iNOS blocks MDSCs recruitment in immunological hepatic injury. As bronchial asthma is also an immune disease, whether mTOR could interact with MDSCs via iNOS and NO or not is unclear. OBJECTIVE The aim of this study was to determine whether mTOR could interact with MDSCs via iNOS and NO in asthma. METHODS Ovalbumin-induced asthma mouse model was established to perform our investigation, and asthmatic markers were evaluated by hematoxylin and eosin (H&E), immunohistochemistry (IHC), and periodic acid-Schiff (PAS) staining. The levels of iNOS and NO in serum were determined by enzyme linked immunosorbent assay (ELISA). Mice lung tissues were stained with antibodies against phosphorylated (p)-mTOR, and p-p70S6K, and yellow/brown staining was considered as giving a positive signal, meanwhile, the protein levels of p-mTOR, and p-p70S6K were also detected using western blot assay. Mice iNOS activity was determined by radioimmunoassay. RESULTS Tumor-derived MDSCs in asthmatic mice were regulated by mTOR and iNOS. mTOR pathway activation in asthmatic mice was regulated by iNOS and tumor-derived MDSCs. NO production in asthmatic mice was regulated by mTOR and tumor-extracted MDSCs. Positive correlation of iNOS with mTOR pathway and serum MDSCs was observed. CONCLUSION The data indicated that rapamycin, an inhibitor of mTOR, blocked iNOS and NO production during asthma onset. Thus, our results revealed potential novel targets for asthma therapy.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Boyi Xu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Bin Luan
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Yan Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Yanling Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Xiaorong Xiong
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| | - Hongke Shi
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan Province, China
| |
Collapse
|
39
|
Rice MB, Li W, Schwartz J, Di Q, Kloog I, Koutrakis P, Gold DR, Hallowell RW, Zhang C, O'Connor G, Washko GR, Hunninghake GM, Mittleman MA. Ambient air pollution exposure and risk and progression of interstitial lung abnormalities: the Framingham Heart Study. Thorax 2019; 74:1063-1069. [PMID: 31391318 DOI: 10.1136/thoraxjnl-2018-212877] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ambient air pollution accelerates lung function decline among adults, however, there are limited data about its role in the development and progression of early stages of interstitial lung disease. AIMS To evaluate associations of long-term exposure to traffic and ambient pollutants with odds of interstitial lung abnormalities (ILA) and progression of ILA on repeated imaging. METHODS We ascertained ILA on chest CT obtained from 2618 Framingham participants from 2008 to 2011. Among 1846 participants who also completed a cardiac CT from 2002 to 2005, we determined interval ILA progression. We assigned distance from home address to major roadway, and the 5-year average of fine particulate matter (PM2.5), elemental carbon (EC, a traffic-related PM2.5 constituent) and ozone using spatio-temporal prediction models. Logistic regression models were adjusted for age, sex, body mass index, smoking status, packyears of smoking, household tobacco exposure, neighbourhood household value, primary occupation, cohort and date. RESULTS Among 2618 participants with a chest CT, 176 (6.7%) had ILA, 1361 (52.0%) had no ILA, and the remainder were indeterminate. Among 1846 with a preceding cardiac CT, 118 (6.4%) had ILA with interval progression. In adjusted logistic regression models, an IQR difference in 5-year EC exposure of 0.14 µg/m3 was associated with a 1.27 (95% CI 1.04 to 1.55) times greater odds of ILA, and a 1.33 (95% CI 1.00 to 1.76) times greater odds of ILA progression. PM2.5 and O3 were not associated with ILA or ILA progression. CONCLUSIONS Exposure to EC may increase risk of progressive ILA, however, associations with other measures of ambient pollution were inconclusive.
Collapse
Affiliation(s)
- Mary B Rice
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyuan Li
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Qian Di
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Itai Kloog
- Geography and Environmental Development, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Petros Koutrakis
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Diane R Gold
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Robert W Hallowell
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyi Zhang
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George O'Connor
- Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Framingham Heart Study, Framingham, Massachusetts, USA
| | - George R Washko
- Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary M Hunninghake
- Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray A Mittleman
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
40
|
An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. ENERGIES 2019. [DOI: 10.3390/en12101987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rising pollution levels resulting from vehicular emissions and the depletion of petroleum-based fuels have left mankind in pursuit of alternatives. There are stringent regulations around the world to control the particulate matter (PM) emissions from internal combustion engines. To this end, researchers have been exploring different measures to reduce PM emissions such as using modern combustion techniques, after-treatment systems such as diesel particulate filter (DPF) and gasoline particulate filter (GPF), and alternative fuels. Alternative fuels such as biodiesel (derived from edible, nonedible, and waste resources), alcohol fuels (ethanol, n-butanol, and n-pentanol), and fuel additives have been investigated over the last decade. PM characterization and toxicity analysis is still growing as researchers are developing methodologies to reduce particle emissions using various approaches such as fuel modification and after-treatment devices. To address these aspects, this review paper studies the PM characteristics, health issues, PM physical and chemical properties, and the effect of alternative fuels such as biodiesel, alcohol fuels, and oxygenated additives on PM emissions from diesel engines. In addition, the correlation between physical and chemical properties of alternate fuels and the characteristics of PM emissions is explored.
Collapse
|
41
|
Ribeiro Júnior G, de Souza Xavier Costa N, Belotti L, Dos Santos Alemany AA, Amato-Lourenço LF, da Cunha PG, de Oliveira Duro S, Ribeiro SP, Veras MM, Quirino Dos Santos Lopes FDT, Marcourakis T, Nascimento Saldiva PH, Poliselli Farsky SH, Mauad T. Diesel exhaust exposure intensifies inflammatory and structural changes associated with lung aging in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:314-323. [PMID: 30530184 DOI: 10.1016/j.ecoenv.2018.11.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Life expectancy is increasing worldwide. Lung aging is a process marked by changes in multiple morphological, physiological and age-related biomarkers (e.g., sirtuins) and is influenced by external factors, such as air pollution. Hence, the elderly are considered more vulnerable to the air pollution hazards. We hypothesized that diesel exhaust (DE) exposure intensifies changes in lung inflammatory and structural parameters in aging subjects. Two- and fifteen-month-old mice were exposed to DE for 30 days. Lung function was measured using the forced oscillation method. The inflammatory profile was evaluated in the bronchoalveolar lavage fluid (BALF) and blood, and lung volumes were estimated by stereology. Antioxidant enzyme activity was evaluated by spectrophotometry, sirtuin 1 (SIRT1), sirtuin 2 (SIRT2) and sirtuin 6 (SIRT6) expression was assessed by reverse transcription polymerase chain reaction (RT-PCR), and levels of the sirtuin proteins were evaluated by immunohistochemical staining in lung tissues. Older mice presented decreased pulmonary resistance and elastance, increased macrophage infiltration and decreased tumor necrosis factor (TNF) and interleukin 10 (IL-10) levels in the BALF, reduced activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR), and increased activity glutathione S-transferase (GST); increased lung volumes with decreased elastic fiber and increased airway collagen content. SIRT1 gene expression was decreased in older animals, but protein levels were increased. DE exposure increased macrophage infiltration and oxidative stress in the lungs of animals of both ages. SIRT6 gene expression was decreased by DE exposure, with increased protein levels. In older animals, DE affected lung structure and collagen content. Lung aging features, such as decreased antioxidant reserves, lower IL-10 expression, and decreased SIRT1 levels may predispose subjects to exacerbated responses after DE exposure. Our data support the hypothesis that strategies designed to reduce ambient air pollution are an important step towards healthy aging.
Collapse
Affiliation(s)
- Gabriel Ribeiro Júnior
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil.
| | | | - Luciano Belotti
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| | | | | | - Paula Gabriela da Cunha
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Department Clinical Medicine, LIM60 University of São Paulo - School of Medicine, São Paulo, São Paulo, Brazil; Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Mariana Matera Veras
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| | | | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Zaghloul MS, Abdel-Salam RA, Said E, Suddek GM, Salem HAR. Attenuation of Bleomycin-induced pulmonary fibrosis in rats by flavocoxid treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marwa Salah Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ramy Ahmed Abdel-Salam
- Department of Pathology, Faculty of Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ghada Mohamed Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Hatem Abdel-Rahman Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
43
|
Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala FJ, Cruz MJ. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1129-1138. [PMID: 30586799 DOI: 10.1016/j.scitotenv.2018.10.188] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/12/2023]
Abstract
Exposure to air pollutants has been correlated with an increase in the severity of asthma and in the exacerbation of pre-existing asthma. However, whether or not environmental pollution can cause asthma remains a controversial issue. The present review analyzes the current scientific evidence of the possible causal link between diesel exhaust particles (DEP), the solid fraction of the complex mixture of diesel exhaust, and asthma. The mechanisms that influence the expression and development of asthma are complex. In children prolonged exposure to pollutants such as DEPs may increase asthma prevalence. In adults, this causal relation is less clear, probably because of the heterogeneity of the studies carried out. There is also evidence of physiological mechanisms by which DEPs can cause asthma. The most frequently described interactions between cellular responses and DEP are the induction of pulmonary oxidative stress and inflammation and the activation of receptors of the bronchial epithelium such as toll-like receptors or increases in Th2 and Th17 cytokines, which generally orchestrate the asthmatic response. Others support indirect mechanisms through epigenetic changes, pulmonary microbiome modifications, or the interaction of DEP with environmental antigens to enhance their activity. However, in spite of this evidence, more studies are needed to assess the harmful effects of pollution - not only in the short term in the form of increases in the rate of exacerbations, but in the medium and long term as well, as a possible trigger of the disease.
Collapse
Affiliation(s)
- X Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pulmonology Department-Muscle Research and Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - V Bustamante
- Pneumology Department, Hospital Universitario Basurto, Osakidetza/University of the Basque Country, Bilbao, Spain
| | - J L Lopez-Campos
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - F J González-Barcala
- Respiratory Department, Clinic University Hospital, Santiago de Compostela, Spain
| | - M J Cruz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
44
|
Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part Fibre Toxicol 2019; 16:4. [PMID: 30621739 PMCID: PMC6504167 DOI: 10.1186/s12989-018-0284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| | - Ian Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| |
Collapse
|
45
|
Zhao R, Guo Z, Dong W, Deng C, Han Z, Liu J, Wang H, Zhuang G, Zhang R. Effects of PM2.5 on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis. Int Forum Allergy Rhinol 2018; 8:1349-1355. [PMID: 29999600 DOI: 10.1002/alr.22182] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Renwu Zhao
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| | - Zhiqiang Guo
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| | - Weiyang Dong
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering; Fudan University; Shanghai China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering; Fudan University; Shanghai China
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| | - Jian Liu
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| | - Hanwei Wang
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| | - Guoshun Zhuang
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering; Fudan University; Shanghai China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital; Fudan University; Shanghai China
| |
Collapse
|
46
|
Effects of inhaled particulate matter on the central nervous system in mice. Neurotoxicology 2018; 67:169-177. [PMID: 29879396 DOI: 10.1016/j.neuro.2018.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/19/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022]
Abstract
Little is known regarding the adverse effects of chronic particulate matter (PM) inhalation on the central nervous system (CNS). The present study aimed to examine how PM exposure impacts on oxidative stress and inflammatory processes, as well as the expression of interneurons and perineuronal nets (PNNs) in the CNS. BALB/c mice (6-week-old females, n = 32) were exposed to 1 to 5 μm size diesel-extracted particles (DEPs) (100 μg/m3, 5 d/week, 5 h/day) and categorized into the following four groups: 1) 4-week DEP (n = 8); 2) 4-week control (n = 8), 3) 8-week DEP (n = 8); and 4) 8-week control (n = 8). The olfactory bulb, prefrontal cortex, temporal cortex, striatum, and cerebellum were harvested from the animals in each group. The expression of antioxidants (heme oxygenase 1 [HO-1] and superoxide dismutase 2 [SOD-2]), and markers of the unfolded protein response (X-box binding protein [XBP]-1S), inflammation (tumor necrosis factor-alpha [TNF-α]), and proliferation (neurotrophin-3 and brain-derived neurotrophic factor [BDNF]) were measured using reverse transcription polymerase chain reaction (PCR) and Western blotting. The expression levels of HO-1, SOD-2, XBP-1S, TNF-α, neurotrophin-3, and BDNF were compared among groups using the Mann-Whitney U test. The temporal cortex was immunostained for parvalbumin (PV) and Wisteria floribunda agglutinin (WFA). The numbers of PV- and WFA-positive cells were counted using a confocal microscope and analyzed with the Mann-Whitney U test. HO-1 expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum of mice in the 8-week DEP group compared with the control group. Expression of SOD-2 and XBP-1S was elevated in the prefrontal cortex and striatum of the 8-week DEP group compared with the control group. TNF-α expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum in the 4- and 8-week DEP groups compared with the control group. Neurotrophin-3 expression was decreased in the olfactory bulb and striatum of the 8-week DEP group compared with the control group. WFA density was increased in the 8-week DEP group compared with the control group. The PV and PV + WFA densities were decreased in the 4-week DEP group compared with the control group. Chronic DEP inhalation activated oxidative stress and inflammation in multiple brain regions. Chronic DEP inhalation increased PNNs and decreased the number of interneurons, which may contribute to PM exposure-related CNS dysfunction.
Collapse
|
47
|
Liu J, Ye X, Ji D, Zhou X, Qiu C, Liu W, Yu L. Diesel exhaust inhalation exposure induces pulmonary arterial hypertension in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:747-755. [PMID: 29137886 DOI: 10.1016/j.envpol.2017.10.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Diesel exhaust (DE) is one of the main sources of urban air pollution. An increasing number of evidence showed the association of air pollution with cardiovascular diseases. Pulmonary arterial hypertension (PAH) is one of the most disastrous vascular diseases, which results in right ventricular failure and death. However, the relationship of DE inhalation exposure with PAH is still unknown. In this study, male adult mice were exposed by inhalation to filtered ambient air (negative control), 10% O2 hypoxia (PAH-phenotype positive control), 350 μg/m3 particulate matter whole DE, or the combination of DE and hypoxic condition. DE inhalation induced PAH-phenotype accompanied with increased right ventricular systolic pressure (RVSP), right ventricle hypertrophy and pulmonary arterial thickening in a mouse model. DE exposure induced the proliferation of vascular smooth muscle cells (VSMCs) and apoptosis of endothelial cells in pulmonary artery. DE inhalation exposure induced an accumulation of CD45+ lymphocytes and CD68+ macrophages surrounding and infiltrating pulmonary arteriole. The levels of pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and IL-13 produced by T helper 17 (Th17) and Th2 cells were markedly elevated in lung tissues of mice after DE inhalation exposure. Our findings suggest DE exposure induces PAH by activating Th17-skewed and Th2-droved responses, stimulating VSMCs proliferation and inducing endothelial cell apoptosis by the production of multifunctional pro-inflammatory cytokines, especially IL-6 and TNF-α. Considering the adverse impact of air pollution on health care, it is imperative to understand air pollution-induced susceptibility of progressive cardiopulmonary disease, such as PAH, and also elucidate critical mechanistic pathways which mediate pulmonary artery vascular remodeling and may serve as targets for preventive measures.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dapeng Ji
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofei Zhou
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Qiu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Mookherjee N, Piyadasa H, Ryu MH, Rider C, Ezzati P, Spicer V, Carlsten C. Inhaled diesel exhaust alters the allergen-induced bronchial secretome in humans. Eur Respir J 2018; 51:51/1/1701385. [DOI: 10.1183/13993003.01385-2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g.the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex humanin vivomodels in detailing airway responses to inhaled pollution.
Collapse
|
49
|
Pham DL, Trinh TH, Ban GY, Kim SH, Park HS. Epithelial folliculin is involved in airway inflammation in workers exposed to toluene diisocyanate. Exp Mol Med 2017; 49:e395. [PMID: 29147010 PMCID: PMC5704188 DOI: 10.1038/emm.2017.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Toluene diisocyanate (TDI) exposure can directly activate and damage airway epithelium. Folliculin (FLCN) is a protein expressed by human airway epithelial cells (HAECs) to maintain airway epithelial integrity and survival. This study investigated the involvement of FLCN in the pathogenesis of TDI-induced occupational asthma (OA). Enzyme-linked immunosorbent assay was used to measure serum levels of FLCN in TDI-exposed subjects (93 TDI-OA patients and 119 asymptomatic exposed controls (AEC)), 200 non-occupational asthma (NOA) patients and 71 unexposed healthy normal controls (NCs). Significantly more subjects in the TDI-OA and AEC groups had high serum levels of FLCN compared to those in the NOA group (P=0.002 and P=0.001, respectively), all of which were higher than the NC group (all P<0.001). The serum level of FLCN was positively correlated with TDI exposure duration (r=0.251, P=0.027), but was negatively correlated with asthma duration of TDI-OA patients (r=−0.329, P=0.029). TDI-exposed subjects with high FLCN levels had higher serum levels of total IgE than those with lower levels. The effects of TDI exposure on FLCN production was investigated by treating HAECs (A549 cells) with TDI-human serum albumin conjugate, which showed increased expression and release of FLCN and interleukin-8 from HAECs. Co-culture with peripheral blood neutrophils also induced FLCN expression and release from HAECs. In conclusion, TDI exposure and TDI-induced neutrophil recruitment into the airways can activate and stimulate HAECs to produce FLCN, which could be involved in airway inflammation in workers exposed to TDI.
Collapse
Affiliation(s)
- Duy L Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea.,Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Tu Hk Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Ga-Young Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
50
|
Diesel Exhaust Particles and the Induction of Macrophage Activation and Dysfunction. Inflammation 2017; 41:356-363. [DOI: 10.1007/s10753-017-0682-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|