1
|
Zheng Z, Yang T, Cao H, Yu J, Fang X, He X, Zou L, Tang D, Lu Z, Liu J, Yu L. Liang-Ge-San drives macrophages toward M2 polarization for alleviating lipopolysaccharide-induced acute lung injury via activating the miR-21/PTEN axis. Fitoterapia 2025; 184:106572. [PMID: 40318703 DOI: 10.1016/j.fitote.2025.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Acute lung injury (ALI) has high clinical mortality currently and no specific drugs available for its treatment. Although Liang-Ge-San (LGS), a traditional Chinese medicine formula, is known to promote inflammation resolution and shorten hospitalization duration of ALI, the mechanism is still unclear. Our results demonstrated that LGS regulated the dynamic balance of macrophage polarization as reflected by up-regulating the expression of anti-inflammatory factors (CD206, Arg-1 and IL-10) in advance to counteract the high expression of pro-inflammatory factors (CD86, iNOS, IL-6 and TNF-α) in vitro. MiR-21 concentration was elevated in LPS-challenged RAW264.7 cells and ALI mice. Moreover, the overexpression of miR-21 mimicked the anti-inflammatory effects of LGS, whereas a miR-21 inhibitor abolished the protective effects of LGS in vitro. Most importantly, LGS protected ALI mice from LPS which could be counteracted by the treatment of miR-21 antagomir. Furthermore, LGS could inhibit the transcriptional activity and protein expression of PTEN by up-regulating miR-21. In summary, LGS functions by regulating the miR-21/PTEN axis to induce a shift in macrophages from a pro-inflammatory phenotype to an anti-inflammatory phenotype, thereby alleviating LPS-induced ALI. This study supports the clinical evidence of LGS in the treatment of ALI.
Collapse
Affiliation(s)
- Zhuping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Xiaochuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Lifang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Dongkai Tang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Zimbru RI, Zimbru EL, Bojin FM, Haidar L, Andor M, Harich OO, Tănasie G, Tatu C, Mailat DE, Zbîrcea IM, Hirtie B, Uța C, Bănărescu CF, Panaitescu C. Connecting the Dots: How MicroRNAs Link Asthma and Atherosclerosis. Int J Mol Sci 2025; 26:3570. [PMID: 40332077 PMCID: PMC12026532 DOI: 10.3390/ijms26083570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Asthma and atherosclerosis are chronic conditions with distinct pathophysiologies, but overlapping inflammatory mechanisms that suggest a potential common regulatory framework. MicroRNAs (miRNAs), small non-coding RNA molecules that modulate gene expression post-transcriptionally, could be key players in linking these disorders. This review outlines how miRNAs contribute to the complex interplay between asthma and atherosclerosis, focusing on key miRNAs involved in inflammatory pathways, immune cell regulation and vascular remodeling. We discuss specific miRNAs, such as miR-155, miR-21 and miR-146a, which have been shown to modulate inflammatory cytokine production and T cell differentiation, impacting respiratory and cardiovascular health. The common miRNAs found in both asthma and atherosclerosis emphasize their role as potential biomarkers, but also as therapeutic targets. Understanding these molecular connections may unlock novel approaches for innovative, integrated treatment strategies that address both conditions and may significantly improve patient outcomes. Further research is needed to explore mechanistic pathways and validate the translational potential of miRNA-based interventions in preclinical and clinical settings.
Collapse
Affiliation(s)
- Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Minodora Andor
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Octavia Oana Harich
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Tatu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Diana-Evelyne Mailat
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Iulia-Maria Zbîrcea
- Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, 300006 Timișoara, Romania
| | - Bogdan Hirtie
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, 300042 Timișoara, Romania
| | - Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Camelia-Felicia Bănărescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| |
Collapse
|
3
|
Li M, Li Z. Research progress on the relationship between phenotype and signaling pathways of pulmonary macrophages and asthma. J Asthma 2025; 62:56-63. [PMID: 39072611 DOI: 10.1080/02770903.2024.2386634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE The purpose of this study is to systematically investigate the different phenotypes and functional analyses of macrophages in lung tissue. DATA SOURCES A search was performed using three databases (Web of Science, Science Direct, and MEDLINE) for all relevant studies published from January 1, 2019, to December 31, 2023. STUDY SELECTIONS This systematic review complied with the PRlSMA document's requirements, including studies related to the signaling pathway relationship between pulmonary macrophages and asthma phenotype. The search includedstudies published in English or French lanquage, and was based on title, abstract, and complete textDocuments not meeting inclusion requirements were excluded. RESULTS We have identified studies published within the past five years that meet the criteria for inclusion in this review. We found that asthma is a heterogeneous chronic inflammatory lung disease, and lung tissue macrophages are important immune cells in the respiratory tract. Pulmonary macrophages are also heterogeneous, as they have different subgroups with varying effector functions depending on the environment. They have different phenotypes and biological functions in different disease environments. The phenotypic changes of pulmonary macrophages occur during asthma, and the study of the different phenotypes and functions of macrophages in lung tissue is of great significance for treatment. CONCLUSIONS This review summarizes current literature and provides a detailed introduction to the role of macrophages as key inflammatory mediators in the pathogenesis of asthma, as well as existing knowledge gaps. In addition, we propose that regulatory macrophages may prevent the development of asthma by producing IL-10, and regulating the polarization of pulmonary macrophages may be a new direction for asthma treatment.
Collapse
Affiliation(s)
- Minghui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin City, China
| | - Zhuying Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin City, China
| |
Collapse
|
4
|
Yu H, Zhu G, Qin Q, Wang X, Guo X, Gu W. Mesenchymal Stromal Cell Therapy Alleviates Ovalbumin-Induced Chronic Airway Remodeling by Suppressing M2 Macrophage Polarization. Inflammation 2024; 47:1298-1312. [PMID: 38316671 DOI: 10.1007/s10753-024-01977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Chronic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Previous studies have shown that mesenchymal stromal/stem cells (MSCs) exert anti-inflammatory effects on asthma via regulation of the immune cells. However, the therapeutic mechanism of MSCs, especially the mechanism of airway remodeling in chronic asthma, remains to be elucidated. Here, we aimed to investigate the therapeutic effect of MSCs on airway remodeling in chronic asthma and explored the mechanisms by analyzing the polarization phenotype of macrophages in the lungs. We established a mouse model of chronic asthma induced by ovalbumin (OVA) and evaluated the effect of MSCs on airway remodeling. The data showed that MSCs treatment before the challenge exerted protective effects on OVA-induced chronic asthma, i.e., decreased the inflammatory cell infiltration, Th2 cytokine levels, subepithelial extracellular matrix deposition, and transforming growth factor β (TGF-β)/Smad signaling. Additionally, we found that MSCs treatment markedly suppressed macrophage M2 polarization in lung tissue. At the same time, MSCs treatment inhibited NF-κB p65 nuclear translocation, ER stress, and oxidative stress in the OVA-induced chronic allergic airway remodeling mice model. In conclusion, these results demonstrated that MSCs treatment prevents OVA-induced chronic airway remodeling by suppressing macrophage M2 polarization, which may be associated with the dual inhibition of ER stress and oxidative stress. This discovery may provide a new theoretical basis for the future clinical application of MSCs.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Guiyin Zhu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Qiangqiang Qin
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xueting Wang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Li Y, Chen Z, Xia T, Wan H, Lu Y, Ding C, Zhang F, Shen Z, Pan S. The effect of bioactivity of airway epithelial cells using methacrylated gelatin scaffold loaded with exosomes derived from bone marrow mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1025-1040. [PMID: 38363033 DOI: 10.1002/jbm.a.37687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The current evidence provides support for the involvement of bone marrow mesenchymal stem cells (BMSCs) in the regulation of airway epithelial cells. However, a comprehensive understanding of the underlying biological mechanisms remains elusive. This study aimed to isolate and characterize BMSC-derived exosomes (BMSC-Exos) and epithelial cells (ECs) through primary culture. Subsequently, the impact of BMSC-Exos on ECs was assessed in vitro, and sequencing analysis was conducted to identify potential molecular mechanisms involved in these interactions. Finally, the efficacy of BMSC-Exos was evaluated in animal models in vivo. In this study, primary BMSCs and ECs were efficiently isolated and cultured, and high-purity Exos were obtained. Upon uptake of BMSC-Exos, ECs exhibited enhanced proliferation (p < .05), while migration showed no difference (p > .05). Notably, invasion demonstrated significant difference (p < .05). Sequencing analysis suggested that miR-21-5p may be the key molecule responsible for the effects of BMSC-Exos, potentially mediated through the MAPK or PI3k-Akt signaling pathway. The in vivo experiments showed that the presence of methacrylated gelatin (GelMA) loaded with BMSC-Exos in composite scaffold significantly enhanced epithelial crawling in the patches in comparison to the pure decellularized group. In conclusion, this scheme provides a solid theoretical foundation and novel insights for the research and clinical application of tracheal replacement in the field of tissue engineering.
Collapse
Affiliation(s)
- Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Lu
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou University, Yangzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Gene Pharma Co., Ltd, Suzhou, China
| |
Collapse
|
6
|
Liang Y, Shen S, Ye X, Zhang W, Lin X. Celastrol alleviates airway hyperresponsiveness and inflammation in obese asthma through mediation of alveolar macrophage polarization. Eur J Pharmacol 2024; 972:176560. [PMID: 38604543 DOI: 10.1016/j.ejphar.2024.176560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1β, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.
Collapse
Affiliation(s)
- Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Sijia Shen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiaoxiao Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Tian C, Liu Q, Zhang X, Li Z. Blocking group 2 innate lymphoid cell activation and macrophage M2 polarization: potential therapeutic mechanisms in ovalbumin-induced allergic asthma by calycosin. BMC Pharmacol Toxicol 2024; 25:30. [PMID: 38650035 PMCID: PMC11036756 DOI: 10.1186/s40360-024-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.
Collapse
Affiliation(s)
- Chunyan Tian
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Graduate, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Liu
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhuying Li
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
8
|
Mao Z, Ding Z, Liu Z, Shi Y, Zhang Q. miR-21-5p Modulates Airway Inflammation and Epithelial-Mesenchymal Transition Processes in a Mouse Model of Combined Allergic Rhinitis and Asthma Syndrome. Int Arch Allergy Immunol 2024; 185:775-785. [PMID: 38588656 PMCID: PMC11309074 DOI: 10.1159/000538252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent allergic symptom of diseases of allergic rhinitis and asthma. However, the mechanism of CARAS remains unclear. The study aimed to investigate the impact of microRNA-21 (miR-21) on CARAS via targeting poly (ADP-ribose) polymerase-1 (PARP-1) and phosphoinositide 3-kinase (PI3K)/AKT pathways. METHODS The levels of miR-21-5p and PARP-1 in CARAS patients were detected by quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). An ovalbumin-sensitized mouse model of CARAS was established. And knock down of miR-21-5p was constructed by intranasally administering with miR-21-5p shRNA-encoding adeno-associated virus vector. Airway resistance and airway inflammatory response were detected. ELISA was used to evaluate IL-4/IL-5/IL-13 levels in bronchoalveolar lavage fluid (BALF). Expression levels of E-cadherin, fibronectin, and α-SMA were determined using Western blotting. The levels of PARP-1 and the activation of PI3K/AKT were assayed. RESULTS Downregulation of miR-21-5p relieved pathophysiological symptoms of asthma including airway hyperreactivity and inflammatory cell infiltration. Downregulation of miR-21-5p significantly reduced the levels of IL4, IL-5, and IL-13 in BALF. Additionally, downregulation of miR-21-5p inhibited the epithelial-mesenchymal transition (EMT) process in CARAS mice. Furthermore, miR-21-5p regulated PARP-1 and was involved in PI3K/AKT activation in CARAS mice. CONCLUSION Downregulation of miR-21-5p ameliorated CARAS-associated lung injury by alleviating airway inflammation, inhibiting the EMT process, and regulating PARP-1/PI3K/AKT in a mouse model of CARAS.
Collapse
Affiliation(s)
- Zhengdao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguang Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
9
|
Hernández-Díazcouder A, Romero-Nava R, Del-Río-Navarro BE, Sánchez-Muñoz F, Guzmán-Martín CA, Reyes-Noriega N, Rodríguez-Cortés O, Leija-Martínez JJ, Vélez-Reséndiz JM, Villafaña S, Hong E, Huang F. The Roles of MicroRNAs in Asthma and Emerging Insights into the Effects of Vitamin D 3 Supplementation. Nutrients 2024; 16:341. [PMID: 38337625 PMCID: PMC10856766 DOI: 10.3390/nu16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Instituto Mexicano del Seguro Social, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad de Investigación Médica en Bioquímica, Ciudad de Mexico 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Blanca E. Del-Río-Navarro
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Nayely Reyes-Noriega
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Octavio Rodríguez-Cortés
- Laboratorio de Inflamación y Obesidad, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - José J. Leija-Martínez
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Juan Manuel Vélez-Reséndiz
- Laboratorio Multidisciplinario de Nanomedicina y de Farmacología Cardiovascular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 14330, Mexico;
| | - Fengyang Huang
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
| |
Collapse
|
10
|
Ishibashi O, Muljo SA, Islam Z. Regulation of Macrophage Polarization in Allergy by Noncoding RNAs. Noncoding RNA 2023; 9:75. [PMID: 38133209 PMCID: PMC10745746 DOI: 10.3390/ncrna9060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Allergy is a type 2 immune reaction triggered by antigens known as allergens, including food and environmental substances such as peanuts, plant pollen, fungal spores, and the feces and debris of mites and insects. Macrophages are myeloid immune cells with phagocytic abilities that process exogenous and endogenous antigens. Upon activation, they can produce effector molecules such as cytokines as well as anti-inflammatory molecules. The dysregulation of macrophage function can lead to excessive type 1 inflammation as well as type 2 inflammation, which includes allergic reactions. Thus, it is important to better understand how macrophages are regulated in the pathogenesis of allergies. Emerging evidence highlights the role of noncoding RNAs (ncRNAs) in macrophage polarization, which in turn can modify the pathogenesis of various immune-mediated diseases, including allergies. This review summarizes the current knowledge regarding this topic and considers three classes of ncRNAs: microRNAs, long ncRNAs, and circular ncRNAs. Understanding the roles of these ncRNAs in macrophage polarization will provide new insights into the pathogenesis of allergies and identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Yu T, Yu Y, Ma Y, Chen G. FoxO4 mediates macrophage M2 polarization by promoting LXA4R expression in an ovalbumin-induced allergic asthma model in mice. Allergol Immunopathol (Madr) 2023; 51:19-30. [PMID: 37422776 DOI: 10.15586/aei.v51i4.847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma imposes a heavy burden due to its high prevalence. Forkhead box O4 (FoxO4) proteins participate in the modulation of cell progression. However, the role and mechanism of FoxO4 in asthma remains uncharted. METHODS An allergic asthma model was constructed by the induction of ovalbumin and interleukin (IL)-4 in mice and monocyte/macrophage-like Raw264.7 cells, respectively. The role and mechanism of FoxO4 in asthma was determined by pathological staining, immunofluorescence assay, measurement of inflammatory cells in the blood, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, and flow cytometry. RESULTS Ovalbumin treatment triggered an obvious inflammatory cell infiltration with a prominent increase in F4/80+ cell numbers. The relative messenger RNA (mRNA) and protein expressions of FoxO4 were increased in both ovalbumin-induced mice and interleukin-4 (IL-4)-induced Raw264.7 cells. Inhibition of FoxO4 via AS1842856 reduced inflammatory cell infiltration, the number of Periodic Acid Schiff+ (PAS+) goblet cells, the numbers of inflammatory cells in the blood, and the airway resistance in ovalbumin-induced mice. Besides, interference of FoxO4 decreased the number of F4/80+CD206+ cells, and the relative protein expressions of CD163 and Arg1 in vivo and in vitro. Mechanically, suppression of FoxO4 diminished the relative mRNA and protein expressions of LXA4R in both ovalbumin-induced mice and IL-4-induced Raw264.7 cells. Overexpression of LXA4R reversed the outcomes caused by repression of FoxO4, including airway resistance, the number of F4/80+ cells, the proportion of CD206+ cells in ovalbumin-induced mice, and the proportion of F4/80+CD206+ cells in IL-4-induced Raw264.7 cells. CONCLUSION FoxO4/LXA4R axis mediated macrophage M2 polarization in allergic asthma.
Collapse
Affiliation(s)
- Tong Yu
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Yu
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingyu Ma
- Key Laboratory of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoqing Chen
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China;
| |
Collapse
|
12
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
13
|
Sha JF, Xie QM, Chen N, Song SM, Ruan Y, Zhao CC, Liu Q, Shi RH, Jiang XQ, Fei GH, Wu HM. TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in allergic airway inflammation. Free Radic Biol Med 2023; 200:102-116. [PMID: 36907255 DOI: 10.1016/j.freeradbiomed.2023.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
As a pattern recognition receptor which activates innate immune system, toll-like receptor 2 (TLR2) has been reportedly mediates allergic airway inflammation (AAI), yet the underlying mechanism remains elusive. Here, in a murine AAI model, TLR2-/- mice showed decreased airway inflammation, pyroptosis and oxidative stress. RNA-sequencing revealed that allergen-induced hif1 signaling pathway and glycolysis were significantly downregulated when TLR2 was deficient, which were confirmed by lung protein immunoblots. Glycolysis inhibitor 2-Deoxy-d-glucose (2-DG) inhibited allergen-induced airway inflammation, pyroptosis, oxidative stress and glycolysis in wild type (WT) mice, while hif1α stabilizer ethyl 3,4-dihydroxybenzoate (EDHB) restored theses allergen-induced changes in TLR2-/- mice, indicating TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in AAI. Moreover, upon allergen challenge, lung macrophages were highly activated in WT mice but were less activated in TLR2-/- mice, 2-DG replicated while EDHB reversed such effect of TLR2 deficiency on lung macrophages. Likewise, both in vivo and ex vivo WT alveolar macrophages (AMs) exhibited higher TLR2/hif1α expression, glycolysis and polarization activation in response to ovalbumin (OVA), which were all inhibited in TLR2-/- AMs, suggesting AMs activation and metabolic switch are dependent on TLR2. Finally, depletion of resident AMs in TLR2-/- mice abolished while transfer of TLR2-/- resident AMs to WT mice replicated the protective effect of TLR2 deficiency on AAI when administered before allergen challenge. Collectively, we suggested that loss of TLR2-hif1α-mediated glycolysis in resident AMs ameliorates allergic airway inflammation that inhibits pyroptosis and oxidative stress, therefore the TLR2-hif1α-glycolysis axis in resident AMs may be a novel therapeutic target for AAI.
Collapse
Affiliation(s)
- Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Rong-Hua Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Xu-Qin Jiang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Lujiang Road 17, Hefei, Anhui, 230001, PR China.
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
14
|
Gong R, Liu X, Zhao J. Electroacupuncture-induced activation of GABAergic system alleviates airway inflammation in asthma model by suppressing TLR4/MyD88/NF-κB signaling pathway. Chin Med J (Engl) 2023; 136:451-460. [PMID: 36867547 PMCID: PMC10106183 DOI: 10.1097/cm9.0000000000002314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA) has been shown to attenuate airway inflammation in asthmatic mice; however, the underlying mechanism is not fully understood. Studies have shown that EA can significantly increase the inhibitory neurotransmitter γ-aminobutyric acid (GABA) content in mice, and can also increase the expression level of GABA type A receptor (GABAAR). Furthermore, activating GABAAR may relieve inflammation in asthma by suppressing toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway. Therefore, this study aimed to investigate the role of GABAergic system and TLR4/MyD88/NF-κB signaling pathway in asthmatic mice treated with EA. METHODS A mouse model of asthma was established, and a series of methods including Western blot and histological staining assessment were employed to detect the level of GABA, and expressions of GABAAR and TLR4/MyD88/NF-κB in lung tissue. In addition, GABAAR antagonist was used to further validate the role and mechanism of GABAergic system in mediating the therapeutic effect of EA in asthma. RESULTS The mouse model of asthma was established successfully, and EA was verified to alleviate airway inflammation in asthmatic mice. The release of GABA and the expression of GABAAR were significantly increased in asthmatic mice treated with EA compared with untreated asthmatic mice ( P < 0.01), and the TLR4/MyD88/NF-κB signaling pathway was down-regulated. Moreover, inhibition of GABAAR attenuated the beneficial effects of EA in asthma, including the regulation of airway resistance and inflammation, as well as the inhibitory effects on TLR4/MyD88/NF-κB signaling pathway. CONCLUSION Our findings suggest that GABAergic system may be involved in mediating the therapeutic effect of EA in asthma, possibly by suppressing the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruisong Gong
- Department of Anesthesia, China–Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Xiaowen Liu
- Department of Anesthesia, China–Japan Friendship Hospital, Beijing 100029, China
| | - Jing Zhao
- Department of Anesthesia, China–Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Wu GR, Zhou M, Wang Y, Zhou Q, Zhang L, He L, Zhang S, Yu Q, Xu Y, Zhao J, Xiong W, Wang CY. Blockade of Mbd2 by siRNA-loaded liposomes protects mice against OVA-induced allergic airway inflammation via repressing M2 macrophage production. Front Immunol 2022; 13:930103. [PMID: 36090987 PMCID: PMC9453648 DOI: 10.3389/fimmu.2022.930103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy.MethodsStudies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model.ResultsAsthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production.ConclusionsThe above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.
Collapse
Affiliation(s)
- Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| |
Collapse
|
17
|
Shailesh H, Janahi IA. Role of Obesity in Inflammation and Remodeling of Asthmatic Airway. Life (Basel) 2022; 12:life12070948. [PMID: 35888038 PMCID: PMC9317357 DOI: 10.3390/life12070948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 04/22/2023] Open
Abstract
Obesity is considered as an important risk factor for the onset of asthma and plays a key role in enhancing the disease's severity. Obese asthmatic individuals represent a distinct phenotype of asthma that is associated with additional symptoms, more severe exacerbation, decreased response to standard medication, and poor quality of life. Obesity impairs the function of the lung airway in asthmatic individuals, leading to increased inflammation and severe remodeling of the bronchus; however, the molecular events that trigger such changes are not completely understood. In this manuscript, we review the current findings from studies that focused on understanding the role of obesity in modulating the functions of airway cells, including lung immune cells, epithelial cells, smooth muscle cells, and fibroblasts, leading to airway inflammation and remodeling. Finally, the review sheds light on the current knowledge of different therapeutic approaches for treating obese asthmatic individuals. Given the fact that the prevalence of asthma and obesity has been increasing rapidly in recent years, it is necessary to understand the molecular mechanisms that play a role in the disease pathophysiology of obese asthmatic individuals for developing novel therapies.
Collapse
Affiliation(s)
| | - Ibrahim A. Janahi
- Department of Medical Education, Sidra Medicine, Doha 26999, Qatar;
- Department of Pediatric Medicine, Sidra Medicine, Doha 26999, Qatar
- Weill Cornell Medicine, Doha 24144, Qatar
- Correspondence: ; Tel.: +974-40032201
| |
Collapse
|
18
|
Wang Y, Xie W, Feng Y, Xu Z, He Y, Xiong Y, Chen L, Li X, Liu J, Liu G, Wu Q. Epithelial‑derived exosomes promote M2 macrophage polarization via Notch2/SOCS1 during mechanical ventilation. Int J Mol Med 2022; 50:96. [PMID: 35616134 PMCID: PMC9170191 DOI: 10.3892/ijmm.2022.5152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alveolar macrophages (AMs) play an essential role in ventilator-induced lung injury (VILI). Exosomes and their cargo, including microRNAs (miRNAs/miRs) serve as regulators of the intercellular communications between macrophages and epithelial cells (ECs), and are involved in maintaining homeostasis in lung tissue. The present study found that exosomes released by ECs subjected to cyclic stretching promoted M2 macrophage polarization. It was demonstrated that miR-21a-5p, upregulated in epithelial-derived exosomes, increased the percentage of M2 macrophages by suppressing the expression of Notch2 and the suppressor of cytokine signaling 1 (SOCS1). The overexpression of Notch2 decreased the percentage of M2 macrophages. However, these effects were reversed by the downregulation of SOCS1. The percentage of M2 macrophages was increased in both short-term high- and low-tidal-volume mechanical ventilation, and the administration of exosomes-derived from cyclically stretched ECs had the same function. However, the administration of miR-21a-5p antagomir decreased M2 macrophage activation induced by cyclically stretched ECs or ventilation. Thus, the present study demonstrates that the intercellular transferring of exosomes from ECs to AMs promotes M2 macrophage polarization. Exosomes may prove to be a novel treatment for VILI.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
19
|
Yang N, Li X. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages. Biochem Pharmacol 2022; 202:115112. [DOI: 10.1016/j.bcp.2022.115112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
20
|
Li Q, Shen Y, Guo X, Xu Y, Mao Y, Wu Y, He F, Wang C, Chen Y, Yang Y. Betanin Dose-Dependently Ameliorates Allergic Airway Inflammation by Attenuating Th2 Response and Upregulating cAMP-PKA-CREB Pathway in Asthmatic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3708-3718. [PMID: 35298142 DOI: 10.1021/acs.jafc.2c00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allergic asthma is a refractory disease that affects hundreds of millions of people worldwide. Betanin is a natural plant-derived nutrient and possesses health-promoting properties. The effects of betanin on allergic asthma remain unknown. Herein, the effects and mechanisms of betanin on allergic asthma were explored in ovalbumin (OVA)-induced BALB/c mice. Betanin in doses of 0, 20, 60, and 180 mg/kg was applied. Peripheral inflammatory cells, IgE, pulmonary pathology, T cell subsets, cytokine levels, protein expressions of the cAMP-PKA-CREB/CREM pathway, and gut microbial profile were measured. The 60 and 180 mg/kg/day betanin doses significantly downregulated IgE, eotaxin, eosinophil infiltration, mucus hyperproduction, and Th2. A 180 mg/kg/day betanin dose also significantly reduced percentages of Th17, Tc17, and Tc2 and Th2- and Th17-signature cytokines and upregulated the cAMP-PKA-CREB pathway. Additionally, 20 mg/kg/day betanin altered the gut microbial profile. In conclusion, betanin dose-dependently alleviated allergic asthma and upregulated the cAMP-PKA-CREB pathway in mice. This study provides a novel nutritional strategy to treat allergic asthma.
Collapse
Affiliation(s)
- Qin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yunqin Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Xingyue Guo
- Department of Nutrition, School of Public Health (Guangzhou), Sun Yat-sen University, Guangzhou 510080, China
| | - Yixuan Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yinfan Wu
- Department of Clinical Nutrition, Shanghai Fourth People Hospital, School of Medicine, Tongji University, Shanghai 200331, China
| | - Fang He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Caixia Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou 510623, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
21
|
Feng H, Yin Y, Zheng R, Kang J. Rosiglitazone ameliorated airway inflammation induced by cigarette smoke via inhibiting the M1 macrophage polarization by activating PPARγ and RXRα. Int Immunopharmacol 2021; 97:107809. [PMID: 34182323 DOI: 10.1016/j.intimp.2021.107809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Rosiglitazone, an exogenous ligand of PPARγ, plays an important anti-inflammatory role during the inflammation caused by cigarette smoke (CS). CS exposure induces pulmonary inflammation via activating macrophage polarization. However, the effects of rosiglitazone on macrophage polarization induced by CS are unclear. METHODS 36 male Wistar rats were randomly divided into 3 groups: control, CS and ROSI. In the CS group, rats were passively exposed to cigarette smoke for consecutive 3 months. In the ROSI group, rats were treated with rosiglitazone (3 mg/kg/day, ip) during CS exposure period. Alveolar macrophages of rats were isolated and cultured with CSE. The slices of lung tissues were stained with hematoxylin and eosin. The histomorphology was observed to evaluate emphysema and the pulmonary function was detected. Cells in bronchoalveolar lavage fluid (BALF) were examined and the expression of cytokines TNF-α and IL-1β was detected by ELISA and qPCR. The alveolar macrophage polarization was evaluated by immunohistochemistry and flow cytometry assay in vivo and by qPCR in vitro. The protein level of PPARγ and RXRα was measured by Western blot. RESULTS CS exposure induced significant emphysema, diminished FEV0.2/FVC, elevated PEF, and higher level of total cells, neutrophils and cytokines (TNF-α and IL-1β) in BALF compared with control group, whereas rosiglitazone partly ameliorated above disorders. CS exposure activated M1 and M2 macrophage polarization in vivo and in vitro, whereas rosiglitazone inhibited CS induced M1 macrophage polarization and decreased the ratio of M1/M2. The effects of rosiglitazone on macrophage polarization were partly blocked after AMs treated with the antagonists of PPARγ and RXRα, and were synergistically enhanced by the agonist of RXRα. CS exposure decreased the expression of PPARγ and RXRα in lung tissues and AMs, and rosiglitazone partly reversed CS-mediated suppression of PPARγ and RXRα. CONCLUSION Rosiglitazone ameliorated the emphysema and inflammation in lung tissues induced by CS exposure via inhibiting the M1 macrophage polarization through activating PPARγ and RXRα.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, PR China.
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
22
|
Zou Y, Zhou Q, Zhang Y. MicroRNA-21 released from mast cells-derived extracellular vesicles drives asthma in mice by potentiating airway inflammation and oxidative stress. Am J Transl Res 2021; 13:7475-7491. [PMID: 34377230 PMCID: PMC8340267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Mast cells-derived extracellular vesicles (EVs) play vital roles in various physiological and pathophysiological conditions. However, the cargoes of mast cells-derived EVs in asthma have not been established. Here, we set to identify the role of microRNA-21 (miRNA-21) from mast cells-derived EVs in ozone- and lipopolysaccharide (LPS)-induced mouse airway epithelial cells (MIC-iCell-a006 cells) and asthmatic mice. METHODS After ozone or LPS treatment, MIC-iCell-a006 cells were subjected to a microarray analysis to screen differentially expressed miRNAs, and then co-cultured with EVs. miR-21 was silenced in cells, followed by CCK-8, scratch, and Transwell assays. Mice were challenged with ovalbumin, and antioxidant enzymes and inflammatory cell infiltration were assessed after EVs and miR-21 inhibitor treatments. The relation between miR-21 and DDAH1 was evaluated by Dual-luciferase assay, and changes in Wnt/β-catenin pathway related proteins were examined by western blot. Finally, the involvement of the DDAH1/Wnt/β-catenin axis in miR-21-mediated oxidative stress and inflammation was verified by rescue experiments. RESULTS miR-21 expression was upregulated in MIC-iCell-a006 cells induced by ozone or LPS. miR-21 was enriched in mast cells-derived EVs, and EVs increased miR-21 expression in MIC-iCell-a006 cells. miR-21 inhibitor increased cell activity and alleviated oxidative stress and inflammation. In asthmatic mice, miR-21 expression was increased, and EVs decreased antioxidant enzymes and increased inflammatory cells, whose effects were reversed by miR-21 knockdown. miR-21 targeted DDAH1 to mediate the Wnt/β-catenin signaling, and down-regulation of DDAH1 inhibited the action of miR-21 inhibitor. CONCLUSION The miR-21 secreted from mast cells-derived EVs promotes oxidative stress and inflammatory responses in asthmatic mice via the DDAH1/Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Ying Zou
- Department of Respiratory and Critical Medicine, Shanghai Putuo District Liqun Hospital Shanghai 200333, P. R. China
| | - Qixing Zhou
- Department of Respiratory and Critical Medicine, Shanghai Putuo District Liqun Hospital Shanghai 200333, P. R. China
| | - Yunfeng Zhang
- Department of Respiratory and Critical Medicine, Shanghai Putuo District Liqun Hospital Shanghai 200333, P. R. China
| |
Collapse
|
23
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|