1
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2025; 51:e2115. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
4
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Chakravarti B, Akhtar Siddiqui J, Anthony Sinha R, Raza S. Targeting autophagy and lipid metabolism in cancer stem cells. Biochem Pharmacol 2023; 212:115550. [PMID: 37060962 DOI: 10.1016/j.bcp.2023.115550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells with self-renewal ability and tumor initiating properties. Unlike the other non-stem cancer cells, CSCs resist traditional therapy and remain a major cause of disease relapse. With the recent advances in metabolomics, various studies have demonstrated that CSCs have distinct metabolic properties. Metabolic reprogramming in CSCs contributes to self-renewal and maintenance of stemness. Accumulating evidence suggests that rewiring of energy metabolism is a key player that enables to meet energy demands, maintains stemness, and sustains cancer growth and invasion. CSCs use various mechanisms such as increased glycolysis, redox signaling, and autophagy modulation to overcome nutritional deficiency and sustain cell survival. The alterations in lipid metabolism acquired by the CSCs support biomass production through increased dependence on fatty acid synthesis and β-oxidation, and contribute to oncogenic signaling pathways. This review summarizes our current understanding of lipid metabolism in CSCs and how pharmacological regulation of autophagy and lipid metabolism influences CSC phenotype. Increased dependence on lipid metabolism appears as an attractive strategy to eliminate CSCs using therapeutic agents that specifically target CSCs based on their modulation of lipid metabolism.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India.
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India.
| |
Collapse
|
6
|
Kafoud A, Salahuddin Z, Ibrahim RS, Al-Janahi R, Mazurakova A, Kubatka P, Büsselberg D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules 2023; 13:563. [PMID: 36979499 PMCID: PMC10046851 DOI: 10.3390/biom13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Neuroblastoma (NB) is an extracranial tumor of the peripheral nervous system arising from neural crest cells. It is the most common malignancy in infants and the most common extracranial solid tumor in children. The current treatment for high-risk NB involves chemotherapy and surgical resection followed by high-dose chemotherapy with autologous stem-cell rescue and radiation treatment. However, those with high-risk NB are susceptible to relapse and the long-term side effects of standard chemotherapy. Polyphenols, including the sub-class of flavonoids, contain more than one aromatic ring with hydroxyl groups. The literature demonstrates their utility in inducing the apoptosis of neuroblastoma cells, mostly in vitro and some in vivo. This review explores the use of various polyphenols outlined in primary studies, underlines the pathways involved in apoptotic activity, and discusses the dosage and delivery of these polyphenols. Primary studies were obtained from multiple databases with search the terms "neuroblastoma", "flavonoid", and "apoptosis". The in vitro studies showed that polyphenols exert an apoptotic effect on several NB cell lines. These polyphenols include apigenin, genistein, didymin, rutin, quercetin, curcumin, resveratrol, butein, bisphenols, and various plant extracts. The mechanisms of the therapeutic effects include calpain-dependent pathways, receptor-mediated apoptosis, and, notably, and most frequently, mitochondrial apoptosis pathways, including the mitochondrial proteins Bax and Bcl-2. Overall, polyphenols demonstrate potency in decreasing NB proliferation and inducing apoptosis, indicating significant potential for further in vivo research.
Collapse
Affiliation(s)
- Aisha Kafoud
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Zoya Salahuddin
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Raghad Sabaawi Ibrahim
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Reem Al-Janahi
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
7
|
Munshi M, Zilani MNH, Islam MA, Biswas P, Das A, Afroz F, Hasan MN. Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
9
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
10
|
Rahman MA, Hannan MA, Dash R, Rahman MDH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front Pharmacol 2021; 12:639628. [PMID: 34025409 PMCID: PMC8138161 DOI: 10.3389/fphar.2021.639628] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon-si, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
11
|
Kilarkaje N, Al-Qaryyan M, Al-Bader MD. Trans-resveratrol imparts disparate effects on transcription of DNA damage sensing/repair pathway genes in euglycemic and hyperglycemic rat testis. Toxicol Appl Pharmacol 2021; 418:115510. [PMID: 33775663 DOI: 10.1016/j.taap.2021.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Prevention or repair of DNA damage is critical to inhibit carcinogenesis in living organisms. Using quantitative RT2 Profiler™ PCR array, we investigated if trans-resveratrol could modulate the transcription of DNA damage sensing/repair pathway genes in euglycemic and non-obese type 2 diabetic Goto-Kakizaki rat testis. Trans-resveratrol imparted disparate effects on gene expressions. In euglycemic rats, it downregulated 79% and upregulated 2% of genes. However, in diabetic rats, it upregulated only 2% and downregulated 4% of genes. As such, diabetes upregulated 16% and downregulated 4% of genes. Trans-resveratrol normalized the expression of 9 (60%) out of 15 upregulated genes in diabetic rats. In euglycemic rats, trans-resveratrol inhibited ATM/ATR, DNA damage repair, pro-cell cycle progression, and apoptosis signaling genes. However, it increased Cdkn1a and Sumo1, indicating cell cycle arrest, apoptosis, and cytostasis in conjunction with increased DNA double-strand breaks and apoptosis. Diabetes increased DNA damage and apoptosis but did not affect ATM/ATR and double-strand break repair genes, although it increased few single-strand repair genes. Diabetes increased Abl1 and Sirt1, which may be related to apoptosis, but their increase may well suggest the enhanced cell cycle progression and putative carcinogenicity. The transcription of Rad17 and Smc1a increased in diabetic rats indicating G2 phase arrest and increases in a few DNA single-strand breaks repair genes suggesting DNA damage repair. Trans-resveratrol inhibits the cell cycle and causes cell death in euglycemic rat testis but normalizes diabetes-induced genes related to DNA damage and cell cycle control, suggesting its usefulness in maintaining DNA integrity in diabetes.
Collapse
Affiliation(s)
| | - Mariam Al-Qaryyan
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| | - Maie D Al-Bader
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
12
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
13
|
Salekeen R, Barua J, Shaha PR, Islam KMD, Islam ME, Billah MM, Rahman SMM. Marine phycocompound screening reveals a potential source of novel senotherapeutics. J Biomol Struct Dyn 2021; 40:6071-6085. [PMID: 33533325 DOI: 10.1080/07391102.2021.1877822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cells undergo a controlled and systematic cycle of growth, replication and death. However, the integrity of this process gradually declines, leading to accumulation of senescent cells, a major hallmark of biological ageing. Dietary algae, particularly marine algae, have been long reported to exert anti-ageing benefits as cosmeceuticals and nutraceuticals with limited understanding of the molecular mechanisms underlying their activity. In this study, we have incorporated 1,202 previously reported bioactive small phycocompounds and subjected them to cheminformatic queries to assess these interactions. In-silico ADMET, 2-phase docking, metabolic pathway interaction and molecular dynamics simulations reveal multiple marine phycocompounds to have safe and effective senolytic potentials. We employed a novel deep convolutional neural network driven screening approach to identify (2R*, 3S*, 6R*, 7S*, 10R*, 13R*)-7,13-Dihydroxy-2,6-cyclo-1(9),14-xenicadiene-18,19-dial derived from Dilophus Fasciola, Laurendecumenyne A from Laurencia decumbens and 4-Bromo-3-ethyl-9-[(2E)-2-penten-4-yn-1-yl]-2,8-dioxabicyclo[5.2.1]decan-6-ol from Laurencia sp. to be potent inhibitors of multiple target senescent-cell anti-apoptotic pathway proteins. We simulated the best overall target inhibitors, specific protein inhibitors and molecular pathway regulators with each target protein and found stable interactions with minimum deviations (mean RMSD = 0.17 ± 0.01 nm) and gyrations (mean Rg = 1.64 ± 0.16 nm) of the simulated protein-compound complexes. Finally, molecular mechanics calculation suggests potent (mean ΔG = -69.56 ± 27.19 kCal/mol) and frequent hydrophobic interactions between the top performing marine phycocompounds and target proteins.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Joydip Barua
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Punam Rani Shaha
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - S M Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
14
|
Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer's Disease. Antioxidants (Basel) 2020; 10:antiox10010023. [PMID: 33379372 PMCID: PMC7823298 DOI: 10.3390/antiox10010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a decline in cognitive function and neuronal damage. Although the precise pathobiology of AD remains elusive, accumulating evidence suggests that mitochondrial dysfunction is one of the underlying causes of AD. Mutations in mitochondrial or nuclear DNA that encode mitochondrial components may cause mitochondrial dysfunction. In particular, the dysfunction of electron transport chain complexes, along with the interactions of mitochondrial pathological proteins are associated with mitochondrial dysfunction in AD. Mitochondrial dysfunction causes an imbalance in the production of reactive oxygen species, leading to oxidative stress (OS) and vice versa. Neuroinflammation is another potential contributory factor that induces mitochondrial dysfunction. Phytochemicals or other natural compounds have the potential to scavenge oxygen free radicals and enhance cellular antioxidant defense systems, thereby protecting against OS-mediated cellular damage. Phytochemicals can also modulate other cellular processes, including autophagy and mitochondrial biogenesis. Therefore, pharmacological intervention via neuroprotective phytochemicals can be a potential strategy to combat mitochondrial dysfunction as well as AD. This review focuses on the role of phytochemicals in mitigating mitochondrial dysfunction in the pathogenesis of AD.
Collapse
|
15
|
Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer's Disease. Biomedicines 2020; 9:biomedicines9010005. [PMID: 33374126 PMCID: PMC7824196 DOI: 10.3390/biomedicines9010005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the formation of intracellular aggregate composed of heavily phosphorylated tau protein and extracellular deposit of amyloid-β (Aβ) plaques derived from proteolysis cleavage of amyloid precursor protein (APP). Autophagy refers to the lysosomal-mediated degradation of cytoplasmic constituents, which plays a critical role in maintaining cellular homeostasis. Importantly, recent studies reported that dysregulation of autophagy is associated in the pathogenesis of AD, and therefore, autophagy modulation has gained attention as a promising approach to treat AD pathogenesis. In AD, both the maturation of autolysosomes and its retrograde transports have been obstructed, which causes the accumulation of autophagic vacuoles and eventually leads to degenerating and dystrophic neurites function. However, the mechanism of autophagy modulation in APP processing and its pathogenesis have not yet been fully elucidated in AD. In the early stage of AD, APP processing and Aβ accumulation-mediated autophagy facilitate the removal of toxic protein aggregates via mTOR-dependent and -independent pathways. In addition, a number of autophagy-related genes (Atg) and APP are thought to influence the development of AD, providing a bidirectional link between autophagy and AD pathology. In this review, we summarized the current observations related to autophagy regulation and APP processing in AD, focusing on their modulation associated with the AD progression. Moreover, we emphasizes the application of small molecules and natural compounds to modulate autophagy for the removal and clearance of APP and Aβ deposits in the pathological condition of AD.
Collapse
|
16
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
17
|
Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin's Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules 2020; 10:biom10111469. [PMID: 33105719 PMCID: PMC7690450 DOI: 10.3390/biom10111469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenolic compound derived from the South Asian turmeric plant (Curcuma longa), has well-characterized antioxidant, anti-inflammatory, anti-protein-aggregate, and anticancer properties. Neuroblastoma (NB) is a cancer of the nervous system that arises primarily in pediatric patients. In order to reduce the multiple disadvantages and side effects of conventional oncologic modalities and to potentially overcome cancer drug resistance, natural substances such as curcumin are examined as complementary and supportive therapies against NB. In NB cell lines, curcumin by itself promotes apoptosis and cell cycle arrest through the suppression of serine–threonine kinase Akt and nuclear factor kappa of activated B-cells (NF-κB) signaling, induction of mitochondrial dysfunction, and upregulation of p53 and caspase signaling. While curcumin demonstrates anti-NB efficacy in vitro, cross-validation between NB cell types is currently lacking for many of its specific mechanistic activities. Furthermore, curcumin’s low bioavailability by oral administration, poor absorption, and relative insolubility in water pose challenges to its clinical introduction. Numerous curcumin formulations, including nanoparticles, nanocarriers, and microemulsions, have been developed, with these having some success in the treatment of NB. In the future, standardization and further basic and preclinical trials will be required to ensure the safety of curcumin formulations. While the administration of curcumin is clinically safe even at high doses, clinical trials are necessary to substantiate the practical efficacy of curcumin in the prevention and treatment of NB.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Aranka Brockmüller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
- Correspondence: ; Tel.: +974-4492-8334
| |
Collapse
|
18
|
Leis K, Baska A, Bereźnicka W, Marjańska A, Mazur E, Lewandowski BT, Kałużny K, Gałązka P. Resveratrol in the treatment of neuroblastoma: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0021/revneuro-2020-0021.xml. [PMID: 32920543 DOI: 10.1515/revneuro-2020-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/21/2020] [Indexed: 11/15/2022]
Abstract
Resveratrol, polyphenol naturally occurring in grapes or nuts, has anti-cancer properties in the treatment of neuroblastoma - the most common childhood solid tumor. It affects cancer cells by increasing apoptosis, inducing cell necrosis and reducing tumor mass. Mechanism of action - (1) converting procaspases, mainly procaspases three and nine into active forms - caspases, (2) blocking kinases, and also (3) leading the cell to the S-cell cycle, where it is most effective while increasing the concentration of cyclin E and lowering the concentration of p21 protein. In vitro, as well as, rodent animal models studies are available and show promising results. Therapeutic doses, currently within 10-100 μmol/L, are also being tested, as well as other forms of resveratrol, such as its trans-4,4'-dihydroxystilbene analog and polyphenol lipoconjugates. In our review, we presented the known molecular mechanisms of polyphenol anti-tumor activity against neuroblastoma and discussed the studies confirming its effectiveness.
Collapse
Affiliation(s)
- Kamil Leis
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Aleksandra Baska
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Weronika Bereźnicka
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Agata Marjańska
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Ewelina Mazur
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Bartosz Tadeusz Lewandowski
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| | - Krystian Kałużny
- Chair and Clinic of Rehabilitation, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, 85-067,Poland
| | - Przemysław Gałązka
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094Bydgoszcz, Poland
| |
Collapse
|
19
|
Calvani M, Subbiani A, Bruno G, Favre C. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7534693. [PMID: 32855766 PMCID: PMC7443044 DOI: 10.1155/2020/7534693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of β-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with β-blockers in neuroblastoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gennaro Bruno
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
20
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
21
|
Rahman MA, Saha SK, Rahman MS, Uddin MJ, Uddin MS, Pang MG, Rhim H, Cho SG. Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Front Cell Dev Biol 2020; 8:283. [PMID: 32391363 PMCID: PMC7193248 DOI: 10.3389/fcell.2020.00283] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy, a cellular self-digestion process that is activated in response to stress, has a functional role in tumor formation and progression. Cancer stem cells (CSCs) accounting for a minor proportion of total cancer cells-have distinct self-renewal and differentiation abilities and promote metastasis. Researchers have shown that a numeral number of natural products using traditional experimental methods have been revealed to target CSCs. However, the specific role of autophagy with respect to CSCs and tumorigenesis using natural products are still unknown. Currently, CSCs are considered to be one of the causative reasons underlying the failure of anticancer treatment as a result of tumor recurrence, metastasis, and chemo- or radio-resistance. Autophagy may play a dual role in CSC-related resistance to anticancer treatment; it is responsible for cell fate determination and the targeted degradation of transcription factors via growth arrest. It has been established that autophagy promotes drug resistance, dormancy, and stemness and maintenance of CSCs. Surprisingly, numerous studies have also suggested that autophagy can facilitate the loss of stemness in CSCs. Here, we review current progress in research related to the multifaceted connections between autophagy modulation and CSCs control using natural products. Overall, we emphasize the importance of understanding the role of autophagy in the maintenance of different CSCs and implications of this connection for the development of new strategies for cancer treatment targeting natural products.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network, Islamic University, Kushtia, Bangladesh
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea.,Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
22
|
From bench to counter: Discovery and validation of a peony extract as tyrosinase inhibiting cosmeceutical. Eur J Med Chem 2019; 184:111738. [DOI: 10.1016/j.ejmech.2019.111738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
|
23
|
Olivares-Marin IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem 2019; 43:e13008. [PMID: 31385323 DOI: 10.1111/jfbc.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Resveratrol is a phytochemical that may promote health. However, it has also been reported to be a toxic compound. The molecular mechanism by which resveratrol acts remains unclear. The inhibition of the oxidative phosphorylation (OXPHOS) pathway appears to be the molecular mechanism of resveratrol. Taking this into account, we propose that the cytotoxic properties of resveratrol depend on the energy (e.g., carbohydrates, lipids, and proteins) availability in the cells. In this regard, in a condition with low energy accessibility, resveratrol could enhance ATP starvation to lethal levels. In contrast, when cells are supplemented with high quantities of energy and resveratrol, the inhibition of OXPHOS might produce a low-energy environment, mimicking the beneficial effects of caloric restriction. This review suggests that investigating a possible complex relationship between caloric intake and the differential effects of resveratrol on OXPHOS may be justified. PRACTICAL APPLICATIONS: A low-calorie diet accompanied by significant levels of resveratrol might modify cellular bioenergetics, which could impact cellular viability and enhance the anti-cancer properties of resveratrol.
Collapse
Affiliation(s)
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
24
|
Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol Appl Pharmacol 2019; 370:65-77. [PMID: 30878505 DOI: 10.1016/j.taap.2019.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/30/2023]
Abstract
The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 μM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 μM) and non-cancer HUVEC and 3T3 (IC50≥600 μM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 μM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 μM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 μM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.
Collapse
|
25
|
Han Y, Jo H, Cho JH, Dhanasekaran DN, Song YS. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer. Int J Mol Sci 2019; 20:925. [PMID: 30791624 PMCID: PMC6412705 DOI: 10.3390/ijms20040925] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-suppressive effects of resveratrol have been shown in various types of cancer. However, regulation of tumor microenvironment by resveratrol is still unclear. Recent findings suggest resveratrol can potentiate its tumor-suppressive effect through modulation of the signaling pathways of cellular components (fibroblasts, macrophages and T cells). Also, studies have shown that resveratrol can suppress malignant phenotypes of cancer cells acquired in response to stresses of the tumor microenvironment, such as hypoxia, oxidative stress and inflammation. We discuss the effects of resveratrol on cancer cells in stress environment of tumors as well as interactions between cancer cells and non-cancer cells in this review.
Collapse
Affiliation(s)
- Youngjin Han
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - HyunA Jo
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma city, OK 73012, USA.
| | - Yong Sang Song
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
26
|
Yen CM, Tsai CW, Chang WS, Yang YC, Hung YW, Lee HT, Shen CC, Sheu ML, Wang JY, Gong CL, Cheng WY, Bau DAT. Novel Combination of Arsenic Trioxide (As 2O 3) Plus Resveratrol in Inducing Programmed Cell Death of Human Neuroblastoma SK-N-SH Cells. Cancer Genomics Proteomics 2018; 15:453-460. [PMID: 30343279 DOI: 10.21873/cgp.20104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
AIM Arsenic trioxide (As2O3), known as pi-shuang and the most toxic compound in traditional Chinese medicine, has been used as an antitumor agent for thousands of years. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phenol that has significant anti-bacterial, anti-fungaI and antiaging activities. Our study aimed to examine the combined anticancer effects of As2O3 and resveratrol against human neuroblastoma SK-N-SH cells, and elucidate the underlying intracellular signaling. MATERIALS AND METHODS SK-N-SH cells were treated with an extremely low-dose (2-4 μM) of As2O3 alone or combined with 75 μg/ml resveratrol for further comparisons. Cell viability, apoptotic signaling as well as synergistic cytotoxic effects were estimated using the MTT assay, microscopy observation, flow cytometric analysis for loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), and typical quantitative western blotting analysis. Student's t-test, and one- and two-way analysis of variance (ANOVA) were used for examination of significant differences. RESULTS The combined treatment was more effective than single treatment of As2O3 or resveratrol alone in suppressing cell viability, which correlated with the elevation of ROS levels. The intracellular mechanisms of cytotoxicity of As2O3 plus resveratrol were revealed as ROS accumulation and relative decrease of MMP, leading to activation of caspase-3 and -9, but not of caspase-1, -7 and-8. Combination treatment reduced the expression of B-cell lymphoma 2 (BCL2), BH3 interacting domain death agonist (BID), and BCL-x/L. CONCLUSION Combined treatment at extremely low concentration of two agents from natural products, As2O3 and resveratrol, has high potential as a cocktail of anticancer drugs for neuroblastoma.
Collapse
Affiliation(s)
- Chun-Ming Yen
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, R.O.C.,Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Chin Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Ju-Yu Wang
- Basic Medical Science, Department of Nursing, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Wen-Yu Cheng
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C. .,Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
27
|
Saha B, Patro BS, Koli M, Pai G, Ray J, Bandyopadhyay SK, Chattopadhyay S. trans-4,4'-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget 2017; 8:73905-73924. [PMID: 29088756 PMCID: PMC5650311 DOI: 10.18632/oncotarget.17879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
In view of the inadequacy of neuroblastoma treatment, five hydroxystilbenes and resveratrol (Resv) were screened for their cytotoxic property against human neuroblastoma cell lines. The mechanism of cytotoxic action of the most potent compound, trans-4,4'-dihydroxystilbene (DHS) was investigated in vitro using human neuroblastoma cell lines. DHS was also tested in a mouse xenograft model of human neuroblastoma tumor. The MTT, sub-G1, annexin V and clonogenic assays as well as microscopy established higher cytotoxicity of DHS than Resv to the IMR32 cell line. DHS (20 μM) induced mitochondrial membrane permeabilization (MMP) in the cells, as revealed from JC-1 staining, cytochrome c and ApaF1 release and caspases-9/3 activation. DHS also induced lysosomal membrane permeabilization (LMP) to release cathepsins B, L and D, and the cathepsins inhibitors partially reduced MMP/caspase-3 activation. The ROS, produced by DHS activated the p38 and JNK MAPKs to augment the BAX activity and BID-cleavage, and induce LMP and MMP in the cells. DHS (100 mg/kg) also inhibited human neuroblastoma tumor growth in SCID mice by 51%. Hence, DHS may be a potential chemotherapeutic option against neuroblastoma. The involvement of an independent LMP as well as a partially LMP-dependent MMP by DHS is attractive as it provides options to target both mitochondria and lysosome.
Collapse
Affiliation(s)
- Bhaskar Saha
- Vijaygarh Jyotish Ray College, Jadavpur, Kolkata 700 032, India
- S. N. Pradhan Centre for Neuroscience, Ballygunge Science College, University of Calcutta, Kolkata 700 019, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ganesh Pai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neuroscience, Ballygunge Science College, University of Calcutta, Kolkata 700 019, India
| | | | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
28
|
Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9356-9367. [PMID: 27960279 DOI: 10.1021/acs.jafc.6b04549] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resveratrol (Res), a natural phytoalexin found in a variety of plants, has significant antitumor activity. Pyruvate kinase M2 (PKM2) has abnormally high expression in various tumor cells, and it has been implicated in the survival of tumors. However, whether and how Res inhibits PKM2 expression is poorly understood. In the present study, we found that treatment with Res inhibited cell proliferation and induced cell apoptosis. The IC50 values of Res against DLD1, HeLa, and MCF-7 cells were 75 ± 4.54, 50 ± 3.65, and 50 ± 3.32 μM, respectively. To elucidate mechanisms underlying its antitumor activities, serial experiments were performed. Results showed that reduction of PKM2 expression in tumor cells by Res treatment increased the expression of ER stress and mitochondrial fission proteins but reduced cell viability and the levels of fusion proteins. These phenomena were reversed by artificial overexpression of PKM2. Quantitative analyses showed that the expression of microRNA-326 (miR-326) was increased upon Res treatment. Treatment with the miR-326 mimic reduced PKM2 expression, promoting recovery from ER stress and mitochondrial fission. Overall, these results demonstrate that miR-326/PKM2-mediated ER stress and mitochondrial dysfunction participate in apoptosis induced by Res. These results provide novel insight into the molecular mechanisms by which Res suppresses tumors and further support for the use of Res as an antitumor drug.
Collapse
Affiliation(s)
- Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Yingying Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University , Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University , Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University , Taiyuan 030006, China
| |
Collapse
|
29
|
Rahman MA, Bishayee K, Sadra A, Huh SO. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta Gen Subj 2016; 1861:23-36. [PMID: 27815218 DOI: 10.1016/j.bbagen.2016.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 10/29/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Drug resistance from apoptosis is a challenging issue with different cancer types, and there is an interest in identifying other means of inducing cytotoxicity. Here, treatment of neuroblastoma cells with oxyresveratrol (OXYRES), a natural antioxidant, led to dose-dependent cell death and increased autophagic flux along with activation of caspase-dependent apoptosis. METHODS For cell viability, we performed the CCK-8 assay. Protein expression changes were with Western blot and immunocytochemistry. Silencing of proteins was with siRNA. The readouts for cell cycle, mitochondria membrane potential, caspase-3, autophagy and apoptosis were performed with flow cytometry. RESULTS Phosphorylation of p38 MAPK increased with OXYRES treatment and inhibition of p38 reduced autophagy and cell death from OXYRES. In contrast, PI3K/AKT/mTOR signaling decreased in the target cells with OXYRES and inhibition of PI3K or mTOR enhanced OXYRES-mediated cytotoxicity with increased levels of autophagy. Modulation of either of the apoptosis and autophagy flux pathways affected the extent of cell death by OXYRES, but did not affect the indicators of these pathways with respect to each other. Both pathways were independent of ROS generation or p53 activation. CONCLUSION OXYRES led to cell death from autophagy, which was independent of apoptosis induction. The OXYRES effects were due to changes in the activity levels of p38 MAPK and PI3K/AKT/mTOR. GENERAL SIGNIFICANCE With two independent and parallel pathways for cytotoxicity induction in target cells, this study puts forward a potential utility for OXYRES or the pathways it represents as novel means of inducing cell death in neuroblastoma cells.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea.
| |
Collapse
|
30
|
Hu M, Liu B. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:325-32. [PMID: 27382348 PMCID: PMC4930900 DOI: 10.4196/kjpp.2016.20.4.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/08/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023]
Abstract
Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.
Collapse
Affiliation(s)
- Min Hu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Bo Liu
- Deapartment of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
31
|
Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp Mol Med 2016; 48:e210. [PMID: 26891914 PMCID: PMC4892869 DOI: 10.1038/emm.2015.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death.
Collapse
|
32
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Sun D, Yue Q, Guo W, Li T, Zhang J, Li G, Liu Z, Sun J. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors 2015. [PMID: 26212417 DOI: 10.1002/biof.1221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Qingwei Yue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Weihua Guo
- Department of Radiology, The second Hoppital of Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Neurosurgery, the fourth hospital of Jinan City, Jinan, Shandong, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Guibao Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Psychiatry School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| |
Collapse
|
34
|
Huang Y, Hu X, Liu G, Liu H, Hu J, Feng Z, Tang B, Qian J, Wang Q, Zhang Y, Pu Y. A potential anticancer agent 1,2-di(quinazolin-4-yl)diselane induces apoptosis in non-small-cell lung cancer A549 cells. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1283-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
36
|
Liu Y, Chakravarty S, Dey M. Phenethylisothiocyanate alters site- and promoter-specific histone tail modifications in cancer cells. PLoS One 2013; 8:e64535. [PMID: 23724058 PMCID: PMC3665791 DOI: 10.1371/journal.pone.0064535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/16/2013] [Indexed: 01/05/2023] Open
Abstract
Site-specific histone modifications are important epigenetic regulators of gene expression. As deregulation of genes often results in complex disorders, corrective modulation of site-specific histone marks could be a powerful therapeutic or disease-preventive strategy. However, such modulation by dietary compounds and the resulting impact on disease risk remain relatively unexplored. Here we examined phenethylisothiocyanate (PEITC), a common dietary compound derived from cruciferous vegetables with known chemopreventive properties under experimental conditions, as a possible modulator of histone modifications in human colon cancer cells. The present study reports novel, dynamic, site-specific chemical changes to histone H3 in a gene-promoter-specific manner, associated with PEITC exposure in human colon tumor-derived SW480 epithelial cells. In addition, PEITC attenuated cell proliferation in a concentration- and time-dependent manner, likely mediated by caspase-dependent apoptotic signalling. The effects of PEITC on histone modifications and gene expression changes were achieved at low, non-cytotoxic concentrations, in contrast to the higher concentrations necessary to halt cancer cell proliferation. Increased understanding of specific epigenetic alterations by dietary compounds may provide improved chemopreventive strategies for reducing the healthcare burden of cancer and other human diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Suvobrata Chakravarty
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Moul Dey
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| |
Collapse
|
37
|
WU CF, YANG JY, WANG F, WANG XX. Resveratrol: botanical origin, pharmacological activity and applications. Chin J Nat Med 2013. [DOI: 10.1016/s1875-5364(13)60001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|