1
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
2
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
3
|
Labrak Y, Alhouayek M, Mwema A, d'Auria L, Ucakar B, van Pesch V, Muccioli GG, des Rieux A. The combined administration of LNC-encapsulated retinoic acid and calcitriol stimulates oligodendrocyte progenitor cell differentiation in vitro and in vivo after intranasal administration. Int J Pharm 2024; 659:124237. [PMID: 38762167 DOI: 10.1016/j.ijpharm.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Intranasal administration is an efficient strategy for bypassing the BBB, favoring drug accumulation in the brain, and improving its efficiency. Lipid nanocapsules (LNC) are suitable nanocarriers for the delivery of lipophilic drugs via this route and can be used to encapsulate lipophilic molecules such as retinoic acid (RA) and calcitriol (Cal). As the hallmarks of multiple sclerosis (MS) are neuroinflammation and oligodendrocyte loss, our hypothesis was that by combining two molecules known for their pro-differentiating properties, encapsulated in LNC, and delivered by intranasal administration, we would stimulate oligodendrocyte progenitor cells (OPC) differentiation into oligodendrocytes and provide a new pro-remyelinating therapy. LNC loaded with RA (LNC-RA) and Cal (LNC-Cal) were stable for at least 8 weeks. The combination of RA and Cal was more efficient than the molecules alone, encapsulated or not, on OPC differentiation in vitro and decreased microglia cell activation in a dose-dependent manner. After the combined intranasal administration of LNC-RA and LNC-Cal in a mouse cuprizone model of demyelination, increased MBP staining was observed in the corpus callosum. In conclusion, intranasal delivery of lipophilic drugs encapsulated in LNC is a promising strategy for myelinating therapies.
Collapse
Affiliation(s)
- Y Labrak
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - M Alhouayek
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - A Mwema
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - L d'Auria
- Université catholique de Louvain (UCLouvain), Institute of Neuroscience, Neurochemistry Unit, 1200 Brussels, Belgium
| | - B Ucakar
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - V van Pesch
- Université catholique de Louvain (UCLouvain), Institute of Neuroscience, Neurochemistry Unit, 1200 Brussels, Belgium
| | - G G Muccioli
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium.
| | - A des Rieux
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| |
Collapse
|
4
|
Janubová M, Žitňanová I. The effects of vitamin D on different types of cells. Steroids 2024; 202:109350. [PMID: 38096964 DOI: 10.1016/j.steroids.2023.109350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.
Collapse
Affiliation(s)
- Mária Janubová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
5
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
6
|
Martynova E, Khaibullin T, Salafutdinov I, Markelova M, Laikov A, Lopukhov L, Liu R, Sahay K, Goyal M, Baranwal M, Rizvanov AA, Khaiboullina S. Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int J Mol Sci 2023; 24:3542. [PMID: 36834957 PMCID: PMC9959388 DOI: 10.3390/ijms24043542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, 420021 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetic, Kazan State Medical University, 420088 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Leonid Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV. Cholecalciferol (VD3) Attenuates L-DOPA-Induced Dyskinesia in Parkinsonian Mice Via Modulation of Microglia and Oxido-Inflammatory Mechanisms. Niger J Physiol Sci 2022; 37:175-183. [PMID: 38243560 PMCID: PMC10800002 DOI: 10.54548/njps.v37i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 01/21/2024]
Abstract
L-DOPA, the gold standard for managing Parkinson's disease (PD) is fraught by motor fluctuations termed L-Dopa-Induced Dyskinesia (LID). LID has very few therapeutic options. Hence, the need for preclinical screening of new interventions. Cholecalciferol (VD3) treatment reportedly improves motor deficit in experimental Parkinsonism. Therefore, the novel anti-dyskinetic effect of VD3 and its underlying mechanisms in LID was investigated. Dyskinesia was induced by chronic L-DOPA administration in parkinsonian (6-OHDA- lesioned) mice. The experimental groups: Control, Dyskinesia, Dyskinesia/VD3, and Dyskinesia/Amantadine were challenged with L-DOPA to determine the abnormal involuntary movements (AIMs) score during 14 days of VD3 (30 mg/kg) or Amantadine (40 mg/kg) treatment. Behavioral Axial, Limb & Orolingual (ALO) AIMs were scored for 1 min at every 20 mins interval, over a duration of 100 mins on days 1,3,7,11 and 14. Using western blot, striatum was assessed for expression of dopamine metabolic enzymes: Tyrosine Hydroxylase (TH) and Monoamine Oxidase-B (MAO-B); CD11b, BAX, P47phox, and IL-1β. Cholecalciferol significantly attenuated AIMs only on days 11 & 14 with maximal reduction of 32.7%. Expression of TH and MAO-B was not altered in VD3 compared with dyskinetic mice. VD3 significantly inhibited oxidative stress (P47phox), apoptosis (BAX), inflammation (IL-1β) and microglial activation (CD11b). VD3 showed anti-dyskinetic effects behaviorally by attenuating abnormal involuntary movements, modulation of striatal oxidative stress, microglial responses, inflammation, and apoptotic signaling; without affecting dopamine metabolic enzymes. Its use in the management of dyskinesia is promising. More studies are required to further evaluate these findings. Keywords: Cholecalciferol; L-DOPA-Induced Dyskinesia; Parkinson's Disease; Microglial; Oxidative stress; Inflammation.
Collapse
Affiliation(s)
| | - AbdulRazaq Bidemi Nafiu
- Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University Dutse, 720223, Dutse, Nigeria .
| | - Abdulbasit Amin
- Neuroscience & Inflammation unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, 240003, Ilorin, Nigeria.
| | - Olalekan Michael Ogundele
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | - Charles C Lee
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | - Bamidele Victor Owoyele
- Neuroscience & Inflammation unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, 240003, Ilorin, Nigeria.
| |
Collapse
|
9
|
Cui X, Eyles DW. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022; 14:4353. [PMID: 36297037 PMCID: PMC9610817 DOI: 10.3390/nu14204353] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Twenty of the last one hundred years of vitamin D research have involved investigations of the brain as a target organ for this hormone. Our group was one of the first to investigate brain outcomes resulting from primarily restricting dietary vitamin D during brain development. With the advent of new molecular and neurochemical techniques in neuroscience, there has been increasing interest in the potential neuroprotective actions of vitamin D in response to a variety of adverse exposures and how this hormone could affect brain development and function. Rather than provide an exhaustive summary of this data and a listing of neurological or psychiatric conditions that vitamin D deficiency has been associated with, here, we provide an update on the actions of this vitamin in the brain and cellular processes vitamin D may be targeting in psychiatry and neurology.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
| | - Darryl W. Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol Q4076, Australia
- Queensland Brain Institute, University of Queensland, St Lucia Q4076, Australia
| |
Collapse
|
10
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
11
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
12
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
13
|
Yang HJ, Kim MJ, Kim SS, Cho YW. Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:449-457. [PMID: 34448462 PMCID: PMC8405441 DOI: 10.4196/kjpp.2021.25.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022]
Abstract
The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride cotransporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.
Collapse
Affiliation(s)
- Hye Jin Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Mi Jung Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sung Soo Kim
- Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Wuk Cho
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
Santos M, da Silva T, da Silva F, Siebert C, Kroth A, Silveira E, Wyse A, Partata W. Effects of vitamin D administration on nociception and spinal cord pro-oxidant and antioxidant markers in a rat model of neuropathic pain. Braz J Med Biol Res 2021; 54:e11207. [PMID: 34378677 PMCID: PMC8365876 DOI: 10.1590/1414-431x2021e11207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) are involved in neuropathic pain, a complicated condition after nerve tissue lesion. Vitamin D appears to improve symptoms of pain and exhibits antioxidant properties. We investigated the effects of oral administration of vitamin D3, the active form of vitamin D, on nociception, the sciatic functional index (SFI), and spinal cord pro-oxidant and antioxidant markers in rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. Vitamin D3 (500 IU/kg per day) attenuated the CCI-induced decrease in mechanical withdrawal threshold and thermal withdrawal latency (indicators of antinociception) and SFI. The vitamin prevented increased lipid hydroperoxide levels in injured sciatic nerve without change to total antioxidant capacity (TAC). Vitamin D3 prevented increased lipid hydroperoxide, superoxide anion generation (SAG), and hydrogen peroxide (H2O2) levels in the spinal cord, which were found in rats without treatment at 7 and 28 days post-CCI. A significant negative correlation was found between mechanical threshold and SAG and between mechanical threshold and H2O2 at day 7. Vitamin D3 also prevented decreased spinal cord total thiols content. There was an increase in TAC in the spinal cord of vitamin-treated CCI rats, compared to CCI rats without treatment only at 28 days. No significant changes were found in body weight and blood parameters of hepatic and renal function. These findings demonstrated, for first time, that vitamin D modulated pro-oxidant and antioxidant markers in the spinal cord. Since antinociception occurred in parallel with oxidative changes in the spinal cord, the oxidative changes may have contributed to vitamin D-induced antinociception.
Collapse
Affiliation(s)
- M.C.Q. Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T.C.B. da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - F.B.O. da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C. Siebert
- Departamento de Bioquimica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A. Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brasil
| | - E.M.S. Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.T.S. Wyse
- Departamento de Bioquimica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W.A. Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
15
|
Abstract
It has been 20 years since we first proposed vitamin D as a "possible" neurosteroid.( 1 ) Our work over the last two decades, particularly results from our cellular and animal models, has confirmed the numerous ways in which vitamin D differentiates the developing brain. As a result, vitamin D can now confidently take its place among all other steroids known to regulate brain development.( 2 ) Others have concentrated on the possible neuroprotective functions of vitamin D in adult brains. Here these data are integrated, and possible mechanisms outlined for the various roles vitamin D appears to play in both developing and mature brains and how such actions shape behavior. There is now also good evidence linking gestational and/or neonatal vitamin D deficiency with an increased risk of neurodevelopmental disorders, such as schizophrenia and autism, and adult vitamin D deficiency with certain degenerative conditions. In this mini-review, the focus is on what we have learned over these past 20 years regarding the genomic and nongenomic actions of vitamin D in shaping brain development, neurophysiology, and behavior in animal models. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darryl Walter Eyles
- Queensland Centre for Mental Health ResearchThe Park Centre for Mental HealthWacolAustralia
- Queensland Brain InstituteUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
16
|
McCarty MF, Lerner A. Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson's Disease. Int J Mol Sci 2020; 21:3624. [PMID: 32455532 PMCID: PMC7279222 DOI: 10.3390/ijms21103624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors-most prominently peroxynitrite-which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase-the source of its precursor superoxide-or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy.
Collapse
Affiliation(s)
| | - Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
17
|
Marashly ET, Bohlega SA. Riboflavin Has Neuroprotective Potential: Focus on Parkinson's Disease and Migraine. Front Neurol 2017; 8:333. [PMID: 28775706 PMCID: PMC5517396 DOI: 10.3389/fneur.2017.00333] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
With the huge negative impact of neurological disorders on patient's life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson's disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future.
Collapse
Affiliation(s)
- Eyad T. Marashly
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saeed A. Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Vitamin D2 suppresses amyloid-β 25-35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci 2016; 161:37-44. [PMID: 27477351 DOI: 10.1016/j.lfs.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022]
Abstract
AIMS Present emerging world is emphasizing the implication of vitamin D deficiency associated with development of inflammation and neurodegenerative disorder like Alzheimer's disease (AD). The chief neuropathological hallmark of AD is aggregation of amyloid-beta (Aβ) peptides surrounding microglial cells in human brain. Microglial activation plays a key role in inflammatory response and neuronal injury. Naturally abundant vitamin D2 (VD2) exhibiting anti-inflammatory activities are yet to explore more. This study has investigated the inhibitory effect of VD2 on inflammatory activities of BV2 microglial cells. MAIN METHODS Cellular compatibility of VD2 and Aβ25-35 protein in treated BV2 microglial cells were measured by CCK-8 assay. Induction of iNOS, COX-2 and NF-κB signaling cascade were measured by western blotting, whereas pro-inflammatory cytokines were measured by ELISA. In addition, generation of ROS was detected by fluorescence intensity. KEY FINDINGS Morphological observations showed that Aβ25-35 induced BV2 cells stimulation noticeably got reduced in VD2 pre-treated group at 24h time period. Anti-inflammatory activities of VD2 was observed demonstrating the inhibition of up-regulated iNOS and COX-2 protein expression further confirmed by attenuating the activated microglia released pro-inflammatory cytokines IL-1β, IL-6, TNF- α and ROS, while blocking the phosphorylation of NF-κB p65 in nucleus by preventing IκB-α degradation and phosphorylation in cytosol. SIGNIFICANCE The present study revealed that VD2 blocked the phosphorylation of NF-κB inflammatory signaling pathway in Aβ25-35 induced activated BV2 microglial cells by suppressing ROS generation and inflammatory cytokines. Our finding suggests that vitamin D2 has therapeutic potential against inflammation and Alzheimer's disease.
Collapse
|
19
|
Kurtys E, Eisel ULM, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia. Neurochem Int 2016; 99:206-214. [PMID: 27465516 DOI: 10.1016/j.neuint.2016.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/18/2016] [Indexed: 01/27/2023]
Abstract
Neuroinflammation is a common phenomenon in the pathology of many brain diseases. In this paper we explore whether selected vitamins and fatty acids known to modulate inflammation exert an effect on microglia, the key cell type involved in neuroinflammation. Previously these nutrients have been shown to exert anti-inflammatory properties acting on specific inflammatory pathways. We hypothesized that combining nutrients acting on converging anti-inflammatory pathways may lead to enhanced anti-inflammatory properties as compared to the action of a single nutrient. In this study, we investigated the anti-inflammatory effect of combinations of nutrients based on the ability to inhibit the LPS-induced release of nitric oxide and interleukin-6 from BV-2 cells. Results show that omega-3 fatty acids, vitamins A and D can individually reduce the LPS-induced secretion of the pro-inflammatory cytokines by BV-2 cells. Moreover, we show that vitamins A, D and omega-3 fatty acids (docosahexaenoic and eicosapentaenoic) at concentrations where they individually had little effect, significantly reduced the secretion of the inflammatory mediator, nitric oxide, when they were combined. The conclusion of this study is that combining different nutrients acting on convergent anti-inflammatory pathways may result in an increased anti-inflammatory efficacy.
Collapse
Affiliation(s)
- E Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J M Verkuyl
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - L M Broersen
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
20
|
Nanocapsules with Polyelectrolyte Shell as a Platform for 1,25-dihydroxyvitamin D3 Neuroprotection: Study in Organotypic Hippocampal Slices. Neurotox Res 2016; 30:581-592. [PMID: 27422380 PMCID: PMC5047951 DOI: 10.1007/s12640-016-9652-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
Calcitriol (1,25-dihydroxyvitamin D3), an active metabolite of vitamin D3, besides the role in calcium and phosphorus metabolism, plays a role in maintaining the functions of the brain. Active forms of vitamin D3 stimulate neurotrophic factors’ expression, regulate brain immune processes, and prevent neuronal damage. Therefore, a potential utility of vitamin D3 in a therapy of neurodegenerative disorders should be taken into account. On the other hand, systemic vitamin D3 treatment carries the risk of undesirable effects, e.g., hypercalcemia. Thus, 1,25-dihydroxyvitamin D3 targeting delivery by nanoparticles would be a tremendous advancement in treatment of brain disorders. Calcitriol was enclosed in emulsion-templated nanocapsules with different polymeric shells: PLL (Poly(l-lysine hydrobromide)), PLL/PGA (/Poly(l-glutamic acid)), and PLL/PGA-g-PEG (Poly(l-glutamic acid) grafted with polyethylene glycol). The average size of all synthesized nanocapsules ranged from −80 to −100 nm. Biocompatibilities of synthesized nanocarriers were examined in hippocampal organotypic cultures in basal conditions and after treatment with lipopolysaccharide (LPS) using various biochemical tests. We demonstrated that nanocapsules coated with PLL were toxic, while PLL/PGA- and PLL/PGA-g-PEG-covered ones were nontoxic and used for further experiments. Our study demonstrated that in LPS-treated hippocampal slices, both types of loaded nanoparticles have protective ability. Our findings underlined that the neuroprotective action of vitamin D3 in both free and nanoparticle forms seems to be related to the suppression of LPS-induced nitric oxide release.
Collapse
|
21
|
Fawaz L, Mrad MF, Kazan JM, Sayegh S, Akika R, Khoury SJ. Comparative effect of 25(OH)D3 and 1,25(OH)2D3 on Th17 cell differentiation. Clin Immunol 2016; 166-167:59-71. [PMID: 27041081 DOI: 10.1016/j.clim.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
Vitamin D is a secosteroid hormone that plays an important regulatory role in calcium homeostasis and bone metabolism. Immune cells can both produce and respond to 1,25(OH)2D3. CD4+ T cells from vitamin D receptor (VDR) KO mice produce higher levels of IFN-γ and IL-17 than their wild type counterparts, and play a crucial role in the pathogenesis of autoimmune diseases (AID). We are particularly interested in studying the effect of vitamin D on pathogenic Th17 cells in humans. We investigated the in vitro effect of 1,25(OH)2D3 and 25(OH)D3 on the differentiation and cytokine production of primary CD4+ T cells from normal donors, and cultured in Th17 polarizing conditions. Both forms of vitamin D reduced the expression of pathogenic Th17 markers and their secretion of pro-inflammatory cytokines (IL-17A, IFN-γ). Furthermore, both vitamin D forms induced an expansion of CD25hi cells and upregulated their expression of CTLA-4 and Foxp3 regulatory markers.
Collapse
Affiliation(s)
- Lama Fawaz
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - May F Mrad
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jalal M Kazan
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souraya Sayegh
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Reem Akika
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
22
|
|
23
|
Abstract
OPINION STATEMENT Vitamin D status has been proposed as relevant to many neurological disorders. Data suggest that vitamin D may be important for the development of the nervous system, and it also plays a role in neuroimmunology and neuroprotection. Lower levels of circulating 25-hydroxyvitamin D have been linked with increased risk of multiple sclerosis (MS) and Alzheimer's disease (AD). While people with amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and stroke have lower vitamin D levels than those without the diseases, it is unclear if this is because hypovitaminosis D contributes to disease risk or is a consequence of immobility and other factors caused by the disease. Lower levels of vitamin D have been associated with worse prognosis in MS, PD, ALS, and stroke, while no longitudinal studies have been performed to evaluate such an association in AD. Small pilot trials have been performed to evaluate vitamin D supplementation for some of these diseases, but there have been no phase III studies to support vitamin D supplementation in these patient populations; further, ideal levels of 25-hydroxyvitamin D are not known. Thus, while some expert panels or individuals have suggested routine testing and supplementation for patients with these neurological conditions, it is our opinion that there are currently insufficient data to support high-dose vitamin D supplementation to specifically treat or prevent these conditions.
Collapse
|
24
|
Yoon H, Jang YH, Kim SJ, Lee SJ, Kim SK. Toll-like Receptor 2 is Dispensable for an Immediate-early Microglial Reaction to Two-photon Laser-induced Cortical Injury In vivo. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:461-5. [PMID: 26330759 PMCID: PMC4553406 DOI: 10.4196/kjpp.2015.19.5.461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022]
Abstract
Microglia, the resident macrophages in the central nervous system, can rapidly respond to pathological insults. Toll-like receptor 2 (TLR2) is a pattern recognition receptor that plays a fundamental role in pathogen recognition and activation of innate immunity. Although many previous studies have suggested that TLR2 contributes to microglial activation and subsequent pathogenesis following brain tissue injury, it is still unclear whether TLR2 has a role in microglia dynamics in the resting state or in immediate-early reaction to the injury in vivo. By using in vivo two-photon microscopy imaging and Cx3cr1GFP/+ mouse line, we first monitored the motility of microglial processes (i.e. the rate of extension and retraction) in the somatosensory cortex of living TLR2-KO and WT mice; Microglial processes in TLR2-KO mice show the similar motility to that of WT mice. We further found that microglia rapidly extend their processes to the site of local tissue injury induced by a two-photon laser ablation and that such microglial response to the brain injury was similar between WT and TLR2-KO mice. These results indicate that there are no differences in the behavior of microglial processes between TLR2-KO mice and WT mice when microglia is in the resting state or encounters local injury. Thus, TLR2 might not be essential for immediate-early microglial response to brain tissue injury in vivo.
Collapse
Affiliation(s)
- Heera Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Yong Ho Jang
- Department of Oral Physiology and Neuroscience, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Sang Jeong Kim
- Department of Physiology, School of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Sung Joong Lee
- Department of Oral Physiology and Neuroscience, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|