1
|
Islam MR, Rauf A, Akter S, Akter H, Al-Imran MIK, Islam S, Nessa M, Shompa CJ, Shuvo MNR, Khan I, Al Abdulmonem W, Aljohani ASM, Imran M, Iriti M. Epigallocatechin 3-gallate-induced neuroprotection in neurodegenerative diseases: molecular mechanisms and clinical insights. Mol Cell Biochem 2025; 480:3363-3383. [PMID: 39832108 DOI: 10.1007/s11010-025-05211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties. EGCG protects neurons in several ways, such as by lowering oxidative stress, stopping Aβ from aggregation together, changing cell signaling pathways, and decreasing inflammation. Furthermore, it promotes autophagy and improves mitochondrial activity, supporting neuronal survival. Clinical studies have demonstrated that EGCG supplementation can reduce neurodegenerative biomarkers and enhance cognitive function. This review provides insights into the molecular mechanisms and therapeutic potential of EGCG in treating various NDs. EGCG reduces oxidative stress by scavenging free radicals and enhancing antioxidant enzyme activity, aiding neuronal defense. It also protects neurons and improves cognitive abilities by inhibiting the toxicity and aggregation of Aβ peptides. It changes important cell signaling pathways like Nrf2, PI3K/Akt, and MAPK, which are necessary for cell survival, cell death, and inflammation. Additionally, it has strong anti-inflammatory properties because it inhibits microglial activation and downregulates pro-inflammatory cytokines. It improves mitochondrial function by reducing oxidative stress, increasing ATP synthesis, and promoting mitochondrial biogenesis, which promotes neurons' survival and energy metabolism. In addition, it also triggers autophagy, a cellular process that breaks down and recycles damaged proteins and organelles, eliminating neurotoxic aggregates and maintaining cellular homeostasis. Moreover, it holds significant promise as an ND treatment, but future research should focus on increasing bioavailability and understanding its long-term clinical effects. Future studies should focus on improving EGCG delivery and understanding its long-term effects in therapeutic settings. It can potentially be a therapeutic agent for managing NDs, indicating a need for further research.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Sumiya Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Happy Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Samiul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Meherun Nessa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Chaity Jahan Shompa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Nabil Rihan Shuvo
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imtiaz Khan
- Department of Entomology, The University of Agriculture, University of Peshawar, Peshawar, KP, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121, Florence, Italy.
| |
Collapse
|
2
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Shen Q, Ma S, Li L, Xia Y. Tanshinone IIA attenuates fluoride-induced spinal cord injury by inhibiting ferroptosis and inflammation. Heliyon 2024; 10:e40549. [PMID: 39687171 PMCID: PMC11648119 DOI: 10.1016/j.heliyon.2024.e40549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive fluoride exposure can lead to health problems, such as fluorosis and neurotoxicity. However, effective therapeutic strategies for neurofluorosis remain elusive due to a limited understanding of the underlying molecular mechanisms. This study aimed to investigate the effects of Tanshinone IIA on spinal cord injury induced by high-fluoride exposure. To identify dysregulated genes associated with ferroptosis, we conducted an intersection analysis between differentially expressed genes in fluoride-treated HOS cells (GSE70719) and ferroptosis-related genes from the FerrDb database. A rat model of fluoride-induced spinal cord injury was established, revealing evidence of aberrant molecular and structural changes. Furthermore, the study demonstrated that Tanshinone IIA restored the altered expression of nine ferroptosis-related genes, eight fluorosis-related inflammatory indicators, and the observed structural changes. Overall, these findings suggest that Tanshinone IIA therapeutic potential in the treatment of fluoride-induced spinal cord injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Qingfeng Shen
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Shibo Ma
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Lingbo Li
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, 434020, Hubei Province, China
| | - Yingpeng Xia
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| |
Collapse
|
6
|
Jin R, Wang M, Shukla M, Lei Y, An D, Du J, Li G. J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway. Transl Res 2024; 274:21-34. [PMID: 39245209 PMCID: PMC11563885 DOI: 10.1016/j.trsl.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Dong An
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Jiwen Du
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Guohong Li
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
7
|
Yu J, Wu M, Shi M, Gong Y, Gao F, Gu H, Dang B. Up-regulation of BMAL1 by epigallocatechin-3-gallate improves neurological damage in SBI rats. Brain Res Bull 2024; 215:111033. [PMID: 39032586 DOI: 10.1016/j.brainresbull.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Brain Muscle ARNT-Like Protein 1 (BMAL1) suppresses oxidative stress in brain injury during surgery. Epigallocatechin-3-gallate (EGCG), a monomer in green tea, has been identified as an antioxidant and a potential agonist for BMAL1. In this work, the mechanism by which BMAL1 is regulated was investigated, as well as the therapeutic effect of EGCG on surgically injured rats. The pathological environment after brain injury during surgery was simulated by excising the right frontal lobe of rats. Rats received an intraperitoneal injection of EGCG immediately after surgery. Neurological scores and cerebral edema were recorded after surgery. Fluoro-Jade C staining, TUNEL staining, western blot, and lipid peroxidation analyses were conducted 3 days later. Here we show that the endogenous BMAL1 level decreased after brain injury. Postoperative administration of EGCG up-regulated the content of BMAL1 around the cerebral cortex, reduced the oxidative stress level, reduced neuronal apoptosis and the number of degenerated neurons, alleviated cerebral edema, and improved neurological scores in rats. This suggests that BMAL1 is an effective target for treating surgical brain injury, as well as that EGCG may be a promising agent for alleviating postoperative brain injury.
Collapse
Affiliation(s)
- Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China.
| |
Collapse
|
8
|
Maestri D. Groundnut and tree nuts: a comprehensive review on their lipid components, phytochemicals, and nutraceutical properties. Crit Rev Food Sci Nutr 2024; 64:7426-7450. [PMID: 39093582 DOI: 10.1080/10408398.2023.2185202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.
Collapse
Affiliation(s)
- Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET). Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
9
|
Mu Q, Yao K, Syeda MZ, Wan J, Cheng Q, You Z, Sun R, Zhang Y, Zhang H, Lu Y, Luo Z, Li Y, Liu F, Liu H, Zou X, Zhu Y, Peng K, Huang C, Chen X, Tang L. Neutrophil Targeting Platform Reduces Neutrophil Extracellular Traps for Improved Traumatic Brain Injury and Stroke Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308719. [PMID: 38520727 DOI: 10.1002/advs.202308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Indexed: 03/25/2024]
Abstract
Traumatic brain injuries (TBI) and stroke are major causes of morbidity and mortality in both developing and developed countries. The complex and heterogeneous pathophysiology of TBI and cerebral ischemia-reperfusion injury (CIRI), in addition to the blood-brain barrier (BBB) resistance, is a major barrier to the advancement of diagnostics and therapeutics. Clinical data showed that the severity of TBI and stroke is positively correlated with the number of neutrophils in peripheral blood and brain injury sites. Furthermore, neutrophil extracellular traps (NETs) released by neutrophils correlate with worse TBI and stroke outcomes by impairing revascularization and vascular remodeling. Therefore, targeting neutrophils to deliver NETs inhibitors to brain injury sites and reduce the formation of NETs can be an optimal strategy for TBI and stroke therapy. Herein, the study designs and synthesizes a reactive oxygen species (ROS)-responsive neutrophil-targeting delivery system loaded with peptidyl arginine deiminase 4 (PAD4) inhibitor, GSK484, to prevent the formation of NETs in brain injury sites, which significantly inhibited neuroinflammation and improved neurological deficits, and improved the survival rate of TBI and CIRI. This strategy may provide a groundwork for the development of targeted theranostics of TBI and stroke.
Collapse
Affiliation(s)
- Qingchun Mu
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Kai Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Madiha Zahra Syeda
- Gaozhou People's Hospital, Maoming, 525200, China
- St. Michael's Hospital, Fully Affiliated Hospital of University of Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Jinlong Wan
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Qian Cheng
- Basic Medical College, Guilin Medical University, Guilin, 541199, China
| | - Zhen You
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Yufei Zhang
- Basic Medical College, Guilin Medical University, Guilin, 541199, China
| | - Huamiao Zhang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuting Lu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhicheng Luo
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Yang Li
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Fuyao Liu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huiping Liu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xinyu Zou
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Yanfen Zhu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kesong Peng
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | | | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Longguang Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| |
Collapse
|
10
|
Chen DY, Wu PF, Zhu XY, Zhao WB, Shao SF, Xie JR, Yuan DF, Zhang L, Li K, Wang SN, Zhao H. Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury. Chin J Traumatol 2024; 27:153-162. [PMID: 38458896 PMCID: PMC11138350 DOI: 10.1016/j.cjtee.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
Collapse
Affiliation(s)
- Di-You Chen
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China; Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Peng-Fei Wu
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Xi-Yan Zhu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wen-Bing Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Feng Shao
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing-Ru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan-Feng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kui Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
11
|
Su Y, Qiu P, Cheng L, Zhang L, Peng W, Meng X. Catechin Protects against Lipopolysaccharide-induced Depressive-like Behaviour in Mice by Regulating Neuronal and Inflammatory Genes. Curr Gene Ther 2024; 24:292-306. [PMID: 38783529 DOI: 10.2174/0115665232261045231215054305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression. OBJECTIVE The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms. METHODS Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups. RESULTS In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS. CONCLUSION Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.
Collapse
Affiliation(s)
- Yanfang Su
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
12
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
13
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Li Y, Ge J, Ma K, Kong J. Epigallocatechin-3-gallate exerts protective effect on epithelial function via PI3K/AKT signaling in thrombosis. Microvasc Res 2022; 144:104408. [PMID: 35878868 DOI: 10.1016/j.mvr.2022.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Venous thrombosis (VT) is one of the most frequent cardiovascular diseases, which seriously endangers people's health. Recently, the protective role of epigallocatechin-3-gallate (EGCG) against multiple cardiovascular diseases has been well studied. Nevertheless, whether EGCG is implicated in the progression of VT is still unclear. METHODS Rat models of VT were established by inferior vena cava (IVC) ligation. Histological characterization of the IVC tissues was examined by hematoxylin-eosin (H&E) staining. TUNEL assay was utilized to detect cell apoptosis in IVC tissues. The concentrations of the oxidative stress biomarkers, malondialdehyde (MDA) and superoxide dismutase (SOD), were estimated by corresponding kits. In addition, the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 in rat plasma were estimated by ELISA. Further, the expression levels of apoptosis markers (Bax, Bcl-2, and Cleaved-caspase 3) as well as key molecules p-PI3K and p-AKT in phosphoinositide 3-kinase (PI3K)/AKT signaling pathway were assessed by western blot. RESULTS Compared to the sham group, the model group showed obvious thrombus formation in IVC tissues, while the EGCG treatment significantly repressed thrombosis. EGCG inhibited cell apoptosis in IVC tissues of VT rat models. The decreased SOD concentration and increased MDA concentration in the plasma of VT rats were reversed by EGCG treatment. Additionally, the elevated levels of TNF-α, IL-6 and IL-8 in the plasma of VT rats can be partially reduced by the treatment of EGCG. Finally, we also found that EGCG reduced the levels of phosphorylated (p)-PI3K and p-AKT in IVC tissues of VT rat models, indicating that the hyperactivation of the PI3K/AKT signaling pathway was inhibited by EGCG. CONCLUSION This study proves that EGCG alleviates thrombosis, cell apoptosis, inflammatory response, and oxidative stress injury in VT by inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jingping Ge
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Ke Ma
- Department of Acupuncture, Qinhuai District Hospital of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Jie Kong
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
15
|
Dadgostar E, Rahimi S, Nikmanzar S, Nazemi S, Naderi Taheri M, Alibolandi Z, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochem Res 2022; 47:860-871. [PMID: 35088218 DOI: 10.1007/s11064-021-03512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-D-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rahimi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Nazemi
- Tracheal Disease Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Naderi Taheri
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alibolandi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
17
|
McCarty MF, Lerner A. The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother 2021; 21:559-570. [PMID: 33749495 DOI: 10.1080/14737175.2021.1907182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION A delayed second wave of brain trauma is mediated in large part by microglia that are activated to a pro-inflammatory M1 phenotype by DAMP proteins released by dying neurons. These microglia can promote apoptosis or necrosis in neighboring neurons by producing a range of pro-inflammatory cytokines and the deadly oxidant peroxynitrite. This second wave could therefore be mitigated with agents that blunt the post-traumatic M1 activation of microglia and that preferentially promote a pro-healing M2 phenotype. AREAS COVERED The literature on nutraceuticals that might have clinical potential in this regard. EXPERT OPINION The chief signaling pathway whereby DAMPs promote M1 microglial activation involves activation of toll-like receptor 4 (TLR4), NADPH oxidase, NF-kappaB, and the stress activated kinases JNK and p38. The green tea catechin EGCG can suppress TLR4 expression. Phycocyanobilin can inhibit NOX2-dependent NADPH oxidase, ferulate and melatonin can oppose pro-inflammatory signal modulation by NADPH oxidase-derived oxidants. Long-chain omega-3 fatty acids, the soy isoflavone genistein, the AMPK activator berberine, glucosamine, and ketone bodies can down-regulate NF-kappaB activation. Vitamin D activity can oppose JNK/p38 activation. A sophisticated program of nutraceutical supplementation may have important potential for mitigating the second phase of neuronal death and aiding subsequent healing.
Collapse
Affiliation(s)
- Mark F McCarty
- Department of research, Catalytic Longevity Foundation, San Diego, California, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
18
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
19
|
Intracisternal administration of tanshinone IIA-loaded nanoparticles leads to reduced tissue injury and functional deficits in a porcine model of ischemic stroke. IBRO Neurosci Rep 2021; 10:18-30. [PMID: 33842909 PMCID: PMC8019951 DOI: 10.1016/j.ibneur.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. Results Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. Conclusion The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.
Collapse
Key Words
- ADC, Apparent Diffusion Coefficient
- ANOVA, analysis of variance
- AU, arbitrary units
- BBB, blood brain barrier
- Baic, Baicalin
- CNS, central nervous system
- CSF, cerebral spinal fluid
- DAMPS, damaged-associated molecular patterns
- DLS, dynamic light scattering
- DTI, Diffusion Tensor Imaging
- DWI, Diffusion-Weighted Imaging
- Edar, Edaravone
- FA, fractional anisotropy
- FDA, Food and Drug Administration
- GABA, γ-aminobutyric acid
- GM, gray matter
- IC, inhibitory concentration
- ICH, intracerebral hemorrhage
- IL-6, interleukin 6
- IM, intramuscular
- Ischemic stroke
- LPS, lipopolysaccharide
- MCA, middle cerebral artery
- MCAO, middle cerebral artery occlusion
- MLS, midline shift
- NP, nanoparticle
- NSCs, neural stem cells
- Nanomedicine
- PBS, phosphate buffered saline
- PEG–PLGA, polyethyleneglycol–polylactic-co-glycolic acid
- PLGA nanoparticle
- PLGA, Poly (lactic-co-glycolic acid)
- PLGA-b-PEG-OH, poly (lactide-co-glycolide)-b-poly (ethylene glycol)-maleimide
- Pig stroke model
- Piog, Pioglitazone
- Puer, Puerarin
- ROS, reactive oxygen species
- Resv, Resveratrol
- SOD, superoxide dismutase
- STAIR, Stroke Therapy Academic and Industry Roundtable
- T2*, T2Star
- T2FLAIR, T2 Fluid Attenuated Inversion Recovery
- T2W, T2Weighted
- TD, transdermal
- TEM, transmission electron microscopy
- TNF-α, tumor necrosis factor α
- Tan IIA, Tanshinone IIA
- Tan IIA-NPs, Tan IIA PLGA NPs
- Tan IIA-NPs, Tan IIA-loaded nanoparticles
- Tanshinone IIA
- UGA, University of Georgia
- WM, white matter
- ddH2O, double-distilled water
- tPA, Tissue plasminogen activator
Collapse
|
20
|
McCarty MF, Lerner A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: focus on oxidative stress. Expert Rev Neurother 2020; 21:157-168. [PMID: 33287596 DOI: 10.1080/14737175.2021.1861940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Ischemic stroke and traumatic brain injury are leading causes of acute mortality, and in the longer run, major causes of significant mental and physical impairment. Most of the brain neuronal cell death in the minutes and hours following an ischemic stroke or brain trauma is mediated by the process of excitotoxicity, in which sustained elevations of extracellular glutamate, reflecting a failure of ATP-dependent mechanism which sequester glutamate in neurons and astrocytes, drive excessive activation of NMDA receptors. Areas covered: A literature search was undertaken to clarify the molecular mechanisms whereby excessive NMDA activation leads to excitotoxic neuronal death, and to determine what safe nutraceutical agents might have practical potential for rescuing at-risk neurons by intervening in these mechanisms. Expert opinion: Activation of both NADPH oxidase and neuronal nitric oxide synthase in the microenvironment of activated NMDA receptors drives production of superoxide and highly toxic peroxynitrite. This leads to excessive activation of PARP and p38 MAP kinase, mitochondrial dysfunction, and subsequent neuronal death. Heme oxygenase-1 (HO-1) induction offers protection via inhibition of NADPH oxidase and promotion of cGMP generation. Phase 2-inductive nutraceuticals can induce HO-1, and other nutraceuticals can mimic the effects of its products biliverdin and carbon monoxide.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Technion Israel Institute of Technology Ruth and Bruce Rappaport Faculty of Medicine- Research, Haifa, Israel (Retired)
| |
Collapse
|
21
|
Xue Y, Ding J, Liu Y, Pan Y, Zhao P, Ren Z, Xu J, Ye L, Xu Y. Preparation and Evaluation of Recombinant Human Erythropoietin Loaded Tween 80-Albumin Nanoparticle for Traumatic Brain Injury Treatment. Int J Nanomedicine 2020; 15:8495-8506. [PMID: 33154639 PMCID: PMC7608583 DOI: 10.2147/ijn.s264025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a serious health problem with few available treatment options. Rh-erythropoietin (rh-EPO) is a potential therapeutic drug for TBI, but it cannot cross the blood-brain barrier (BBB) directly. In this regard, a novel strategy to deliver rh-EPO for enhanced TBI treatment is via the development of Tween 80 modified albumin nanoparticles using electrostatic spray technology. METHODS The rh-EPO loaded Tween 80 modified albumin nanoparticles (rh-EPO-Tw-ABNPs) were prepared by electrostatic spray technology, while the process parameters were optimized via a single factor design. Investigation of physicochemical properties, bioactivity and stability of rh-EPO-Tw-ABNPs was carried out. The in vitro release and biocompatibility with nerve cells were also analyzed. The in vivo brain targeting efficiency, brain edema relieving effect and the expression of aquaporin 4 (AQP4) and glial fibrillary acidic protein (GFAP) in the brain were evaluated in TBI model rats. RESULTS The particle size of optimal rh-EPO-Tw-ABNPs was about 438 ± 45 nm, with a zeta potential of -25.42 ± 0.8 mv. The average drug loading ratio of rh-EPO-Tw-ABNPs was 21.3± 3.7 IU/mg with a relative bioactivity of 91.6 ± 4.1%. The in vitro release of rh-EPO from the nanoparticles was rather slow, while neither the blank Tw-ABNPs nor rh-EPO-Tw-ABNPs exhibited toxicity on the microglia cells. Furthermore, in vivo experiments indicated that the rh-EPO-Tw-ABNPs could enhance the distribution of EPO in the brain and relieve brain edema more effectively. Moreover, compared with an rh-EPO injection, the rh-EPO-Tw-ABNPs could increase the AQP4 level but reduced GFAP expression in the brain with more efficiency. CONCLUSION The rh-EPO-Tw-ABNPs could enhance the transport of rh-EPO into the brain with superior therapeutic effect for TBI.
Collapse
Affiliation(s)
- Yuanfeng Xue
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Junhong Ding
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Yulong Liu
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yuchun Pan
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Penglai Zhao
- Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing210029, People’s Republic of China
| | - Zhiwen Ren
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Jian Xu
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Liangliang Ye
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing211200, People’s Republic of China
| | - Ying Xu
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
22
|
Farkhondeh T, Pourbagher-Shahri AM, Ashrafizadeh M, Folgado SL, Rajabpour-Sanati A, Khazdair MR, Samarghandian S. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 2020; 15:1792-1798. [PMID: 32246619 PMCID: PMC7513986 DOI: 10.4103/1673-5374.280300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The over-activated microglial cells induce neuroinflammation which has the main role in neurological disorders. The over-activated microglia can disturb neuronal function by releasing inflammatory mediators leading to neuronal dysfunctions and death. Thus, inhibition of over-activated microglia may be an effective therapeutic approach for modulating neuroinflammation. Experimental studies have indicated anti-neuroinflammatory effects of flavonoids such as green tea catechins. The current research was aimed to review the effect of green tea catechins in inhibiting microglial cells, inflammatory cascades, and subsequent neurological diseases.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Silvia Llorens Folgado
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
23
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
24
|
The Attenuation of Traumatic Brain Injury via Inhibition of Oxidative Stress and Apoptosis by Tanshinone IIA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4170156. [PMID: 32454938 PMCID: PMC7218958 DOI: 10.1155/2020/4170156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major source of mortality and long-term disability worldwide. The mechanisms associated with TBI development are poorly understood, and little progress has been made in the treatment of TBI. Tanshinone IIA is an effective agent to treat a variety of disorders; however, the mechanisms of Tanshinone IIA on TBI remain unclear. The aim of the present study was to investigate the therapeutic potential of Tanshinone IIA on TBI and its underlying molecular mechanisms. Changes in microvascular permeability were examined to determine the extent of TBI with Evans blue dye. Brain edema was assessed by measuring the wet weight to dry weight ratio. The expression levels of CD11, interleukin- (IL-) 1β, and tumor necrosis factor- (TNF-) α mRNA were determined by reverse transcription-quantitative PCR. Aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and p47phox protein expression levels were detected by western blotting. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-PX) activities, and malondialdehyde (MDA) content were determined using commercial kits. Cell apoptosis was detected by western blotting and TUNEL staining. Tanshinone IIA (10 mg/kg/day, intraperitoneal administration) significantly reduced brain water content and vascular permeability at 12, 24, 48, and 72 h after TBI. Tanshinone IIA downregulated the mRNA expression levels of various factors induced by TBI, including CD11, IL-1β, and TNF-α. Notably, CD11 mRNA downregulation suggested that Tanshinone IIA inhibited microglia activation. Further results showed that Tanshinone IIA treatment significantly downregulated AQP4 and GFAP expression. TBI-induced oxidative stress and apoptosis were markedly reversed by Tanshinone IIA, with an increase in SOD and GSH-PX activities and a decrease in the MDA content. Moreover, Tanshinone IIA decreased TBI-induced NADPH oxidase activation via the inhibition of p47phox. Tanshinone IIA attenuated TBI, and its mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
|
25
|
Wu Y, Cui J. (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2209-2220. [PMID: 32062732 DOI: 10.1007/s00210-020-01841-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has shown robust neuroprotective effects on various brain injury models in rodents. Herein, we aimed to investigate if EGCG protects against TBI and unravel the underlying mechanisms. A total of 102 mice were used for this study. TBI was induced by controlled cortical impact (CCI). EGCG was given immediately after TBI injury. Neurological functions were accessed by corner test, paw placement, modified neurological severity score, rotarod test, and Morris water maze test. AMPK inhibitor and AMPKα1-knockout mice were used to further study the signaling pathways involved in the observed effects. Our results show that EGCG significantly ameliorated CCI-induced neurological impairment, including spatial learning and memory. EGCG suppressed CCI-induced inflammation and oxidative stress. Furthermore, EGCG downregulated the phosphorylation of IKKα/β, IκBα, and nuclear translocation of NF-κB p65; upregulated AMPK phosphorylation; and altered corresponding changes in the phosphorylation of the downstream target's ribosomal protein S6, AS160, and CaMKKß. Our data demonstrate that EGCG protects against CCI-induced TBI through the activation of the AMPK pathway in mice, suggesting that EGCG might be a promising therapeutic intervention preventing locomotor and cognitive impairments after TBI.
Collapse
Affiliation(s)
- Yinyin Wu
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China.
| | - Jing Cui
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China
| |
Collapse
|
26
|
Bodoira R, Maestri D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:927-942. [PMID: 31910006 DOI: 10.1021/acs.jafc.9b07160] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuts contain a vast array of phenolic compounds having important biological properties. They include substances allocated into the five major groups named phenolic acids, flavonoids, tannins, phenolic lignans, and stilbene derivatives. The complexity in composition does not allow for setting a universal extraction procedure suitable for extraction of all nut phenolics. The use of non-conventional extraction techniques, such as those based on microwave, ultrasound, and compressed fluids, combined with generally recognized as safe solvents is gaining major interest. With regard to the latter, ethanol, water, and ethanol-water mixtures have proven to be effective as extracting solvents and allow for clean, safe, and low-cost extraction operations. In recent years, there has been an increasing interest in biological properties of natural phenolic compounds, especially on their role in the prevention of several diseases in which oxidative stress reactions are involved. This review provides an updated and comprehensive overview on nut phenolic extraction and their chemical profiles and bioactive properties.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC) , Avenida Vélez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC) , Avenida Vélez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| |
Collapse
|
27
|
Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2018; 109:2155-2172. [PMID: 30551473 DOI: 10.1016/j.biopha.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are considered one of the leading causes of morbidity and mortality among diabetic patients. Diabetic cardiomyopathy (DCM) is a type of cardiovascular damage presents in diabetic patients independent of the coexistence of ischemic heart disease or hypertension. It is characterized by impaired diastolic relaxation time, myocardial dilatation and hypertrophy and reduced systolic and diastolic functions of the left ventricle. Molecular mechanisms underlying these pathological changes in the diabetic heart are most likely multifactorial and include, but not limited to, oxidative/nitrosative stress, increased advanced glycation end products, mitochondrial dysfunction, inflammation and cell death. The aim of this review is to address the major molecular mechanisms implicated in the pathogenesis of DCM. In addition, this review provides studies conducted to determine the pharmacological effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, focusing on its therapeutic potential against the processes involved in the pathogenesis and progression of DCM. EGCG has been shown to exert several potential therapeutic properties both in vitro and in vivo. Given its therapeutic potential, EGCG might be a promising drug candidate to decrease the morbidity and mortality associated with DCM and other diabetes complications.
Collapse
|
28
|
Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 2018; 23:281-294. [DOI: 10.1080/1028415x.2018.1500124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ali Reza Khalatbary
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emad Khademi
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Epigallocatechin Gallate Attenuates Bladder Dysfunction via Suppression of Oxidative Stress in a Rat Model of Partial Bladder Outlet Obstruction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1393641. [PMID: 30140361 PMCID: PMC6081539 DOI: 10.1155/2018/1393641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022]
Abstract
Purpose To investigate the protective effect of epigallocatechin gallate (EGCG), a green tea extract, and its underlying mechanism on bladder dysfunction in a rat model of bladder outlet obstruction (BOO). Materials and Methods Sprague-Dawley rats of BOO were surgically induced and followed by treatment with EGCG (5 mg/kg/day) or saline (control) via intraperitoneal injection. Cystometry was performed on four weeks postoperatively in conscious rats. H&E, Masson trichrome, and TUNEL staining were performed to observe tissue alterations. Oxidative stress markers were measured, and protein expression of Nrf2-ARE pathway was examined by immunohistochemistry and Western blotting. Results Our data showed that EGCG could increase the peak voiding pressure and bladder compliance and prolong micturition interval of BOO rats compared with control and finally reduce the frequency of urinary. EGCG could ameliorate the increase of collagen fibers and ROS induced by obstruction and increase the activity of SOD, GSH-Px, and CAT. The level of cell apoptosis was decreased in BOO rats treated with EGCG compared with control, and caspase-3 expression was reduced as well. Moreover, EGCG could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions EGCG alleviates BOO-induced bladder dysfunction via suppression of oxidative stress and activation of the protein expression of Nrf2-ARE pathway.
Collapse
|
30
|
Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol 2018; 16:285-293. [PMID: 29571125 PMCID: PMC5952873 DOI: 10.1016/j.redox.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Merry W Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
31
|
Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, Simirgiotis M, Huminiecki Ł, Horbanczuk OK, Nabavi SM, Mocan A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Mao XY, Jin MZ, Chen JF, Zhou HH, Jin WL. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther 2017; 183:137-151. [PMID: 29055715 DOI: 10.1016/j.pharmthera.2017.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet sources are closely involved in the pathogenesis of diverse neuropsychiatric disorders and cancers, in addition to inherited factors. Currently, natural products or nutraceuticals (commonly called medical foods) are increasingly employed for adjunctive therapy of these patients. However, the potential molecular mechanisms of the nutrient efficacy remain elusive. In this review, we summarized the neuroprotective and anti-cancer mechanisms of nutraceuticals. It was concluded that the nutraceuticals exerted neuroprotection and suppressed tumor growth possibly through the differential modulations of redox homeostasis. In addition, the balance between reactive oxygen species (ROS) production and ROS elimination was manipulated by multiple molecular mechanisms, including cell signaling pathways, inflammation, transcriptional regulation and epigenetic modulation, which were involved in the therapeutic potential of nutraceutical antioxidants against neurological diseases and cancers. We specifically proposed that ROS scavenging was integral in the neuroprotective potential of nutraceuticals, while alternation of ROS level (either increase or decrease) or disruption of redox homeostasis (ROS addiction) constituted the anti-cancer property of these compounds. We also hypothesized that ROS-associated ferroptosis, a novel type of lipid ROS-dependent regulatory cell death, was likely to be a critical mechanism for the nutraceutical antioxidants. Targeting ferroptosis is advantageous to develop new nutraceuticals with more effective and lower adverse reactions for curing patients with neuropsychiatric diseases or carcinomas.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jin-Fei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|
33
|
Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS JOURNAL 2017; 19:1615-1625. [PMID: 28905273 DOI: 10.1208/s12248-017-0123-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.
Collapse
Affiliation(s)
| | - Aleksandra Ichkova
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sighild Lemarchant
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,Basic Science Departments, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
34
|
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5813793. [PMID: 28791306 PMCID: PMC5534279 DOI: 10.1155/2017/5813793] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/04/2023]
Abstract
Nowadays, the society is facing a large health problem with the rising of new diseases, including cancer, heart diseases, diabetes, neurodegenerative diseases, and obesity. Thus, it is important to invest in substances that enhance the health of the population. In this context, epigallocatechin gallate (EGCG) is a flavonoid found in many plants, especially in tea. Several studies support the notion that EGCG has several benefits in fighting cancer, heart diseases, diabetes, and obesity, among others. Nevertheless, the poor intestinal absorbance and instability of EGCG constitute the main drawback to use this molecule in prevention and therapy. The encapsulation of EGCG in nanocarriers leads to its enhanced stability and higher therapeutic effects. A comprehensive review of studies currently available on the encapsulation of EGCG by means of nanocarriers will be addressed.
Collapse
Affiliation(s)
- Andreia Granja
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Iúri Frias
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marina Pinheiro
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 2017; 18:367-382. [PMID: 28341876 DOI: 10.1007/s10522-017-9696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
|
36
|
Ribeiro MC, Santos Â, Riachi LG, Rodrigues ACB, Coelho GC, Marcellini PS, Bento CADM, de Maria CAB. The effects of roasted yerba mate (Ilex paraguariensis A. ST. Hil.) consumption on glycemia and total serum creatine phosphokinase in patients with traumatic brain injury. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Wei X, Hu CC, Zhang YL, Yao SL, Mao WK. Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury. ACTA ACUST UNITED AC 2016; 36:576-583. [DOI: 10.1007/s11596-016-1628-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
|
38
|
Seo DY, Lee SR, Kwak HB, Seo KW, McGregor RA, Yeo JY, Ko TH, Bolorerdene S, Kim N, Ko KS, Rhee BD, Han J. Voluntary stand-up physical activity enhances endurance exercise capacity in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:287-95. [PMID: 27162483 PMCID: PMC4860371 DOI: 10.4196/kjpp.2016.20.3.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/15/2022]
Abstract
Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Kyo Won Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Robin A McGregor
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Ji Young Yeo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Tae Hee Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Saranhuu Bolorerdene
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
39
|
Neuroprotective Activity of (-)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity. J Immunol Res 2016; 2016:4962351. [PMID: 27191001 PMCID: PMC4844887 DOI: 10.1155/2016/4962351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.
Collapse
|