1
|
Boualam K, Scialla S, Fasolino I, Russo T, Scarpa E, De Cesare N, Guarino V, De Santis R, Sobeh M, Taarji N, Abboussi O, Taghzouti K, D'Amora U. Role of natural plant extracts and hyaluronic acid derivatives in intranasal strategies for brain delivery. A review. Int J Biol Macromol 2025; 315:144636. [PMID: 40419061 DOI: 10.1016/j.ijbiomac.2025.144636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
In the last two decades, different routes of administration have been explored for the treatment of central nervous system (CNS) disorders, involving biomolecules and drugs. Among them, transmucosal route is gaining particular interest, due to its low toxicity in chronic treatments, as well as high and rapid drug absorption, making it suitable for systemic delivery of various drugs. Indeed, it allows an easy bypass of the blood-brain barrier by using the olfactory region, promoting a direct drug delivery to the brain. Despite its advantages, some side effects like nasal irritation and rapid drainage remain relevant. Recent scientific studies are focusing on the design of mucoadhesive carriers to enhance drug residence time on the mucosa and providing sustained release. Hyaluronic acid (HA) is emerging as a valid solution for nasal delivery, with potential in treating CNS disorders. The main driving idea of this narrative review is to present the state of art on gels and micro/nanoparticles based on HA functionalized with natural extracts for treating the CNS via the nasal route. Future research aims to address existing challenges to improve their formulations for effective CNS delivery.
Collapse
Affiliation(s)
- K Boualam
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - S Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - I Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy.
| | - T Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - E Scarpa
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - N De Cesare
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - V Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy
| | - M Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - N Taarji
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - O Abboussi
- Team of Physiology and Physiopathology, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - K Taghzouti
- Team of Physiology and Physiopathology, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - U D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v. le J.F. Kennedy 54, Mostra d'Oltremare, Pad. 20, 80125 Naples, Italy.
| |
Collapse
|
2
|
Cantero-Téllez A, Moreno-Fierros L, Gutiérrez-Ospina G, Santiago-Prieto AC, Juárez I, Rodríguez-Sosa M, Hernández-Echeagaray E. Systemic Neuroprotection by Chlorogenic Acid: Antioxidant and Anti-inflammatory Evaluation in Early Neurodegeneration Induced by 3-Nitropropionic Acid in Mice. Neurochem Res 2025; 50:113. [PMID: 40038202 PMCID: PMC11880071 DOI: 10.1007/s11064-025-04356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Neurodegeneration is characterized by the progressive loss of neurons commonly attributed to neurological causes. Studies published over the past two decades suggest that neurodegeneration may occur due to systemic diseases that compromise energy metabolism throughout the body. This metabolic imbalance develops over decades before neurodegeneration is clinically documented or inferred. It is now accepted that long-lasting oxidative stress and inflammation link neurodegeneration with altered energy metabolism in the body. Systemic prevention of these factors may reduce the odds of developing neurodegeneration and delay or prevent its progression as individuals age. Chlorogenic acid (CGA) is a polyphenol prevalent in fruits and vegetables that exhibits antioxidant and anti-inflammatory properties. It may serve as a systemic neuroprotectant when consumed regularly before the onset of neurodegeneration. To test this possibility, an experimental model of striatal early neurodegeneration induced by systemic administration of 3-nitropropionic acid (3-NP) was used. This toxin inhibits succinate dehydrogenase (SDH), disrupts electron flow and leads to increased production of reactive oxygen species (ROS) and a pro-inflammatory environment. The severity of symptoms induced by 3-NP varies depending on dosage, duration of exposure and administration route. In the brain, 3-NP affects striatal medium spiny neurons in the basal ganglia and in less degree pyramidal neurons from frontal cortex, a feature observed in Huntington's disease (HD). The aim of this study was to investigate the antioxidant and anti-inflammatory properties of CGA in the 3-NP-induced model of early neurodegeneration. Systemic administration of CGA significantly reduced lipid peroxidation and promoted an anti-inflammatory profile in the brain when co-administered with 3-NP. These results support that CGA could serve as a systemic neuroprotectant in individuals challenged by environmental toxins that disrupt mitochondrial function.
Collapse
Affiliation(s)
- Angélica Cantero-Téllez
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-I, UNAM, Av. de los Barrios # 1, Los Reyes Iztacala, C.P.54090, Tlalnepantla de Baz, Estado de México, México
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva S/N, C.U., Coyoacán, 04510, Ciudad de México, México
| | - Ana Cecilia Santiago-Prieto
- Laboratorio de Anatomía Patológica, Hospital H+Querétaro, Privada Ignacio Zaragoza 16, Centro, 76000, Santiago de Querétaro, Qro, Mexico
| | - Imelda Juárez
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Miriam Rodríguez-Sosa
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Elizabeth Hernández-Echeagaray
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México.
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-I, UNAM, Av. de los Barrios # 1, Los Reyes Iztacala, C.P.54090, Tlalnepantla de Baz, Estado de México, México.
| |
Collapse
|
3
|
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting. Mol Med 2024; 30:158. [PMID: 39327568 PMCID: PMC11425901 DOI: 10.1186/s10020-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1β, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Mona E Noureldeen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Neamatallah T. Caffeic acid phenethyl ester attenuates indomethacin-induced gastric ulcer in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1791-1801. [PMID: 37740773 DOI: 10.1007/s00210-023-02730-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Gastric ulcer is one of the most frequent gastrointestinal ailments worldwide. Indomethacin, one of the most potent NSAIDs, suffers undesirable ulcerogenic activity. Caffeic acid phenethyl ester (CAPE) has known health benefits. The current study examined the potential of CAPE to combat indomethacin-induced gastric ulcers in rats. Animals were randomized into 5 groups: control, Indomethacin (50 mg/kg) mg/kg), Indomethacin + CAPE (5 mg/kg/day), Indomethacin + CAPE (10 mg/kg), and Indomethacin + Omeprazole (30 mg/kg). CAPE prevented the rise in ulcer index, attenuated histopathological changes and preserved gastric mucin concentration. CAPE efficiently significantly prevented accumulation of malondialdehude (MDA) and prevented exhaustion of the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Further, CAPE prevented the rise in the expression of tumor necrosis factor-α (TNF-α), cyclo-oxygenase-2 (COX-2) and nuclear factor kapp-B (NFκB). This was associated with down-regulation of Bax and up-regulation of Bcl-2 mRNA. Finally, CAPE prevented induced indomethacin-induced decrease in heat shock protein 70 (HSP70) in gastric tissues. In conclusion, CAPE possesses the ability to prevent indomethacin-induced gastric ulcer in rats. This involves, at least partially, antioxidation, anti-inflammation, anti-apoptosis and enhancement of HSP70 expression.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
6
|
In vitro evaluation of antioxidant activity and biocompatibility of caffeic acid phenethyl ester loaded in polymeric micelles. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
8
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
9
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
10
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
11
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
12
|
Kulkarni NP, Vaidya B, Narula AS, Sharma SS. Neuroprotective Potential of Caffeic Acid Phenethyl Ester (CAPE) in CNS Disorders: Mechanistic and Therapeutic Insights. Curr Neuropharmacol 2021; 19:1401-1415. [PMID: 34102977 PMCID: PMC8762179 DOI: 10.2174/1570159x19666210608165509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, traumatic brain injury (TBI), depression, and anxiety are responsible for thousands of deaths worldwide every year. With the increase in life expectancy, there has been a rise in the prevalence of these disorders. Age is one of the major risk factors for these neurological disorders, and with the aged population set to rise to 1.25 billion by 2050, there is a growing concern to look for new therapeutic molecules to treat age-related diseases. Caffeic acid phenethyl ester (CAPE) is a molecule obtained from a number of botanical sources, such as the bark of conifer trees as well as propolis which is extracted from beehives. Though CAPE remains relatively unexplored in human trials, it possesses antioxidant, anti-inflammatory, antimitogenic, and anti-cancer activities, as shown by preclinical studies. Apart from this, it also exhibits tremendous potential for the treatment of neurological disorders through the modulation of multiple molecular pathways and attenuation of behavioural deficits. In the present article, we have reviewed the therapeutic potential of CAPE and its mechanisms in the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Shyam Sunder Sharma
- Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India; E-mail:
| |
Collapse
|
13
|
Menezes da Silveira CCS, Luz DA, da Silva CCS, Prediger RDS, Martins MD, Martins MAT, Fontes-Júnior EA, Maia CSF. Propolis: A useful agent on psychiatric and neurological disorders? A focus on CAPE and pinocembrin components. Med Res Rev 2020; 41:1195-1215. [PMID: 33174618 DOI: 10.1002/med.21757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Propolis consists of a honeybee product, with a complex mix of substances that have been widely used in traditional medicine. Among several compounds present in propolis, caffeic acid phenethyl ester (CAPE), and pinocembrin emerge as two principal bioactive compounds, with benefits in a variety of body systems. In addition to its well-explored pharmacological properties, neuropharmacological activities have been poorly discussed. In an unprecedented way, the present review addresses the current finding on the promising therapeutic purposes of propolis, focusing on CAPE and pinocembrin, highlighting its use on neurological disturbance, as cerebral ischemia, neuroinflammation, convulsion, and cognitive impairment, as well as psychiatric disorders, such as anxiety and depression. In addition, we provide a critical analysis, discussion, and systematization of the molecular mechanisms which underlie these central nervous system effects. We hypothesize that the pleiotropic action of CAPE and pinocembrin, per se or associated with other substances present in propolis may result in the therapeutic activities reported. Inhibition of the pro-inflammatory cascade, antioxidant activity, and positive neurotrophic modulatory effects consist of the main molecular targets attributed to CAPE and pinocembrin in health benefits.
Collapse
Affiliation(s)
- Cinthia C S Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla C S da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Biological Science Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
14
|
Konar A, Kalra RS, Chaudhary A, Nayak A, Guruprasad KP, Satyamoorthy K, Ishida Y, Terao K, Kaul SC, Wadhwa R. Identification of Caffeic Acid Phenethyl Ester (CAPE) as a Potent Neurodifferentiating Natural Compound That Improves Cognitive and Physiological Functions in Animal Models of Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:561925. [PMID: 33244299 PMCID: PMC7685006 DOI: 10.3389/fnagi.2020.561925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-based screening of bioactive compounds has served as an important gateway in drug discovery. In the present report, using human neuroblastoma cells and enrolling an extensive three-step screening of 57 phytochemicals, we have identified caffeic acid phenethyl ester (CAPE) as a potent neurodifferentiating natural compound. Analyses of control and CAPE-induced neurodifferentiated cells revealed: (i) modulation of several key proteins (NF200, MAP-2, NeuN, PSD95, Tuj1, GAP43, and GFAP) involved in neurodifferentiation process; and (ii) attenuation of neuronal stemness (HOXD13, WNT3, and Msh-2) and proliferation-promoting (CDC-20, CDK-7, and BubR1) proteins. We anticipated that the neurodifferentiation potential of CAPE may be beneficial for the treatment of neurodegenerative diseases and tested it using the Drosophila model of Alzheimer’s disease (AD) and mice model of amnesia/loss of memory. In both models, CAPE exhibited improved disease symptoms and activation of physiological functions. Remarkably, CAPE-treated mice showed increased levels of neurotrophin-BDNF, neural progenitor marker-Nestin, and differentiation marker-NeuN, both in the cerebral cortex and hippocampus. Taken together, we demonstrate the differentiation-inducing and therapeutic potential of CAPE for neurodegenerative diseases.
Collapse
Affiliation(s)
- Arpita Konar
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Anupama Chaudhary
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Aashika Nayak
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kanive P Guruprasad
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kapaettu Satyamoorthy
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | | | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,KAUL-Tech Co., Ltd., Tsuchiura, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
15
|
Caffeic acid phenethyl ester counteracts doxorubicin-induced chemobrain in Sprague-Dawley rats: Emphasis on the modulation of oxidative stress and neuroinflammation. Neuropharmacology 2020; 181:108334. [PMID: 33011199 DOI: 10.1016/j.neuropharm.2020.108334] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cognitive dysfunction (chemobrain) is one of the major complaints for cancer patients treated with chemotherapy such as Doxorubicin (DOX). The induction of oxidative stress and neuroinflammation were identified as major contributors to such adverse effect. Caffeic acid phenethyl ester (CAPE) is a natural polyphenolic compound, that exhibits unique context-dependent antioxidant activity. It exhibits pro-oxidant effects in cancer cells, while it is a potent antioxidant and cytoprotective in normal cells. The present study was designed to investigate the potential neuroprotective effects of CAPE against DOX-induced cognitive impairment. Chemobrain was induced in Sprague Dawley rats via systemic DOX administration once per week for 4 weeks (2 mg/kg/week, i.p.). CAPE was administered at 10 or 20 μmol/kg/day, i.p., 5 days per week for 4 weeks. Morris water maze (MWM) and passive avoidance tests were used to assess learning and memory functions. Oxidative stress was evaluated via the colorimetric determination of GSH and MDA levels in both hippocampal and prefrontal cortex brain regions. However, inflammatory markers, acetylcholine levels, and neuronal cell apoptosis were assessed in the same brain areas using immunoassays including either ELISA, western blotting or immunohistochemistry. DOX produced significant impairment in learning and memory as indicated by the data generated from MWM and step-through passive avoidance tests. Additionally DOX-triggered oxidative stress as evidenced from the reduction in GSH levels and increased lipid peroxidation. Treatment with DOX resulted in neuroinflammation as indicated by the increase in NF-kB (p65) nuclear translocation in addition to boosting the levels of pro-inflammatory mediators (COX-II/TNF-α) along with the increased levels of glial fibrillary acid protein (GFAP) in the tested tissues. Moreover, DOX reduced acetylcholine levels and augmented neuronal cell apoptosis as supported by the increased active caspase-3 levels. Co-treatment with CAPE significantly counteracted DOX-induced behavioral and molecular abnormalities in rat brain tissues. Our results provide the first preclinical evidence for CAPE promising neuroprotective activity against DOX-induced neurodegeneration and memory deficits.
Collapse
|
16
|
Haider M, Salman M, Kaushik P, Bharadwaj N, Aggarwal NB, Tabassum H, Parvez S. Chrysin ameliorates 3 nitropropinoic acid induced neurotoxicity targeting behavioural, biochemical and histological alterations. Int J Neurosci 2020; 132:450-458. [DOI: 10.1080/00207454.2020.1821677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Madiha Haider
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd. Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Bharadwaj
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Bharal Aggarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson's disease. Eur J Pharmacol 2020; 883:173342. [PMID: 32634439 DOI: 10.1016/j.ejphar.2020.173342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and oxidative stress and mitochondrial dysfunction play a major role in the pathogenesis of PD. Since conventional therapeutics are not sufficient for the treatment of PD, the development of new agents with anti-oxidant potential is crucial. Caffeic Acid Phenethyl Ester (CAPE), a biologically active flavonoid of propolis, possesses several biological properties such as immunomodulatory, anti-inflammatory and anti-oxidative. In the present study, we investigated the neuroprotective effects of CAPE against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cells. The neuroprotective effects were detected by using cell viability, Annexin V, Hoechst staining, total caspase activity, cell cycle, as well as western blotting. Besides, the anti-oxidative activity was measured by the production of reactive oxygen species and mitochondrial function was determined by measurement of mitochondrial membrane potential (ΔΨm). We found that CAPE significantly increased cell viability and decreased apoptotic cell death (~20%) after 150 μM 6-OHDA exposure following 24 h. 1.25 μM CAPE also prevented 6-OHDA-induced changes in condensed nuclear morphology. Furthermore, treatment with 1.25 μM CAPE increased mitochondrial membrane potential in 6-OHDA-exposed cells. CAPE inhibited 6-OHDA-induced caspase activity (~2 fold) and production of reactive oxygen species. In addition, 150 μM 6-OHDA-induced down-regulation of Bcl-2 and Akt levels and up-regulation of Bax and cleaved caspase-9/caspase-9 levels were partially restored by 1.25 μM CAPE treatment. These results revealed a neuroprotective potential of CAPE against 6-OHDA-induced apoptosis in an in vitro PD model and may be a potential therapeutic candidate for the prevention of neurodegeneration in Parkinson's Disease.
Collapse
|
18
|
Salman M, Tabassum H, Parvez S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr Neurosci 2020; 25:100-109. [DOI: 10.1080/1028415x.2020.1721645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6565396. [PMID: 32148547 PMCID: PMC7042511 DOI: 10.1155/2020/6565396] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Shafika Mohd Sairazi
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - K. N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
20
|
Yordanov Y. Caffeic acid phenethyl ester (CAPE): pharmacodynamics and potential for therapeutic application. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e38573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is the major pharmacologically-active component of some propolis types, rich in polyphenols, such as poplar propolis types. CAPE has the potential to be applied as a pharmaceutical as it possesses most of the pharmacological activities of propolis, such as anti-proliferative, antioxidant, immunomodulatory, antidiabetic, anti-inflammatory and antimicrobial. Its advantage is that it lacks some of the downsides of total propolis extracts, such as inability for unified standardization, which is cornerstone for implementing its therapeutic potential as a drug. The current paper provides an overview on the pharmacodynamic principles of CAPE. We present literature search outcomes form ClinicalTrials.gov database and from scientific publications, available on Scopus and Crossref databases. We take a round view of CAPE’s potential therapeutic implications in light of approved drugs with related modes of action.
Collapse
|
21
|
Silveira Regueira‐Neto M, Relison Tintino S, Pereira da Silva AR, Socorro Costa M, Morais Oliveira‐Tintino CD, Augusti Boligon A, Menezes IRA, Queiroz Balbino V, Melo Coutinho HD. Comparative Analysis of the Antibacterial Activity and HPLC Phytochemical Screening of the Brazilian Red Propolis and the Resin of
Dalbergia ecastaphyllum. Chem Biodivers 2019; 16:e1900344. [DOI: 10.1002/cbdv.201900344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Silveira Regueira‐Neto
- Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Centro de BiociênciasUFPE Recife PE 50030-440 Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Center for Biological and Health SciencesRegional University of Cariri, URCA Crato CE 63100-160 Brazil
| | - Ana Raquel Pereira da Silva
- Laboratory of Microbiology and Molecular Biology, Center for Biological and Health SciencesRegional University of Cariri, URCA Crato CE 63100-160 Brazil
| | - Maria Socorro Costa
- Laboratory of Microbiology and Molecular Biology, Center for Biological and Health SciencesRegional University of Cariri, URCA Crato CE 63100-160 Brazil
| | - Cícera Datiane Morais Oliveira‐Tintino
- Laboratory of Pharmatoxicological Prospecting of Bioactive Products, Department of AntibioticsFederal University of Pernambuco, UFPE Recife PE 50030-440 Brazil
| | - Aline Augusti Boligon
- Phytochemical Research Laboratory, Department of Industrial PharmacyFederal University of Santa Maria Santa Maria RS 97050-180 Brazil
| | - Irwin R. A. Menezes
- Laboratory of Microbiology and Molecular Biology, Center for Biological and Health SciencesRegional University of Cariri, URCA Crato CE 63100-160 Brazil
| | - Valdir Queiroz Balbino
- Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Centro de BiociênciasUFPE Recife PE 50030-440 Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Center for Biological and Health SciencesRegional University of Cariri, URCA Crato CE 63100-160 Brazil
| |
Collapse
|
22
|
Andrade JKS, Denadai M, Andrade GRS, da Cunha Nascimento C, Barbosa PF, Jesus MS, Narain N. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Res Int 2018; 109:278-287. [DOI: 10.1016/j.foodres.2018.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
|
23
|
Maino B, Spampinato AG, Severini C, Petrella C, Ciotti MT, D'Agata V, Calissano P, Cavallaro S. The trophic effect of nerve growth factor in primary cultures of rat hippocampal neurons is associated to an anti-inflammatory and immunosuppressive transcriptional program. J Cell Physiol 2018; 233:7178-7187. [PMID: 29741791 DOI: 10.1002/jcp.26744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Nerve growth factor, the prototype of a family of neurotrophins, elicits differentiation and survival of peripheral and central neuronal cells. Although its neural mechanisms have been studied extensively, relatively little is known about the transcriptional regulation governing its effects. We have previously observed that in primary cultures of rat hippocampal neurons treatment with nerve growth factor for 72 hr increases neurite outgrowth and cell survival. To obtain a comprehensive view of the underlying transcriptional program, we performed whole-genome expression analysis by microarray technology. We identified 541 differentially expressed genes and characterized dysregulated pathways related to innate immunity: the complement system and neuro-inflammatory signaling. The exploitation of such genes and pathways may help interfering with the intracellular mechanisms involved in neuronal survival and guide novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Barbara Maino
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Antonio G Spampinato
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, Italy.,European Brain Research Institute, Roma, Italy
| | - Carla Petrella
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, Italy
| | | | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| |
Collapse
|
24
|
Kumar M, Bansal N. Caffeic acid phenethyl ester rescued streptozotocin-induced memory loss through PI3-kinase dependent pathway. Biomed Pharmacother 2018; 101:162-173. [PMID: 29486334 DOI: 10.1016/j.biopha.2018.02.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The present study was undertaken to elucidate the role of PI3-kinase signaling in memory enhancing potential of caffeic acid phenethyl ester (CAPE) against cognitive defects in rats after centrally administered streptozotocin as a model of Alzheimer's disease. The Morris water maze and elevated plus maze paradigms showed profound loss of memory in adult Wistar rats (180-200 g) injected with streptozotocin (3 mg/kg) bilaterally (STZ-ICV) on day 1 and 3. Intraperitoneal administration of CAPE (6 mg/kg, i.p., 28 days) attenuated STZ-ICV triggered memory loss in rats. Treatment with PI3-kinase inhibitor (wortmannin, 5 μg/rat, ICV) or NOS blocker (L-NAME, 20 mg/kg, i.p., 28 days) interfered with memory restorative function of CAPE in STZ treated rats. In biochemical analysis markers of oxidative stress (TBARS, GSH, SOD, CAT), nitrite, AChE, TNF-α, eNOS and NFκB were measured in brain of rats on day 28. Interestingly, L-Arginine (100 mg/kg, i.p., 28 days) group exhibited moderate (p > 0.05) decline in memory functions. The brain oxidative stress, TNF-α, AChE activity and NFκB levels were elevated, and eNOS level was lowered by STZ-ICV treatment. Administration of CAPE lowered oxidative stress, AChE, nitrite and TNF-α levels in brain of rats. The eNOS level was enhanced and NFκB level was decreased by CAPE in STZ treated rats. Wortmannin injection elevated the brain oxidative stress, AChE activity and TNF-α levels, and decreased the nitrite, eNOS and NFκB level. Rise of brain oxidative stress parameters, AChE activity, TNF-α, eNOS and NFκB levels, and decline in brain nitrite content was observed in L-NAME treated group. L-Arginine administration showed modest effects (p > 0.05) on oxidative stress parameters. Brain nitrite content was enhanced although eNOS, NFκB levels, and AChE activity was decimated by L-Arginine treatment. It can be concluded that PI3-kinase mediated nitric oxide facilitation is an essential feature of CAPE action in STZ-ICV treated rats.
Collapse
Affiliation(s)
- Manish Kumar
- PhD Research Scholar, IKG Punjab Technical University, Kapurthala, Punjab, 144603, India; Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| |
Collapse
|
25
|
Ferreira RS, Dos Santos NAG, Martins NM, Fernandes LS, Dos Santos AC. Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells from Cisplatin-Induced Neurotoxicity by Activating the NGF-Signaling Pathway. Neurotox Res 2017; 34:32-46. [PMID: 29260495 DOI: 10.1007/s12640-017-9849-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Cisplatin is a highly effective chemotherapeutic drug that is toxic to the peripheral nervous system. Findings suggest that axons are early targets of the neurotoxicity of cisplatin. Although many compounds have been reported as neuroprotective, there is no effective treatment against the neurotoxicity of cisplatin. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective potential mainly attributed to antioxidant and anti-inflammatory mechanisms. We have recently demonstrated the neurotrophic potential of CAPE in a cellular model of neurotoxicity related to Parkinson's disease. Now, we have assessed the neurotrophic and neuroprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. CAPE (10 μM) attenuated the inhibition of neuritogenesis and the downregulation of markers of neuroplasticity (GAP-43, synapsin I, synaptophysin, and 200-kD neurofilament) induced by cisplatin (5 μM). This concentration of cisplatin does not affect cell viability, and it was used in order to assess the early neurotoxic events triggered by cisplatin. When a lethal dose of cisplatin was used (IC50 = 32 μM), CAPE (10 μM) increased cell viability. The neurotrophic effect of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but it might involve the activation of the NGF-high-affinity receptors (trkA). The involvement of other neurotrophin receptors such as trkB and trkC is unlikely. This is the first study to demonstrate the protective potential of CAPE against the neurotoxicity of cisplatin and to suggest the involvement of trkA receptors in the neuroprotective mechanism of CAPE. Based on these findings, the beneficial effect of CAPE on cisplatin-induced peripheral neuropathy should be further investigated.
Collapse
Affiliation(s)
- Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nádia Maria Martins
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laís Silva Fernandes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
26
|
Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 2017; 109:1018-1025. [DOI: 10.1016/j.fct.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/28/2023]
|
27
|
Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food Chem Toxicol 2017; 107:572-580. [DOI: 10.1016/j.fct.2017.03.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/22/2023]
|
28
|
Szwajgier D, Borowiec K, Pustelniak K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017; 9:nu9050477. [PMID: 28489058 PMCID: PMC5452207 DOI: 10.3390/nu9050477] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
The neuroprotective role of phenolic acids from food has previously been reported by many authors. In this review, the role of phenolic acids in ameliorating depression, ischemia/reperfusion injury, neuroinflammation, apoptosis, glutamate-induced toxicity, epilepsy, imbalance after traumatic brain injury, hyperinsulinemia-induced memory impairment, hearing and vision disturbances, Parkinson’s disease, Huntington’s disease, anti-amyotrophic lateral sclerosis, Chagas disease and other less distributed diseases is discussed. This review covers the in vitro, ex vivo and in vivo studies concerning the prevention and treatment of neurological disorders (on the biochemical and gene expression levels) by phenolic acids.
Collapse
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Kamila Borowiec
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Katarzyna Pustelniak
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| |
Collapse
|