1
|
Madison MK, Doiron TS, Stashevsky J, Zhang N, Yancey M, Gil CH, Aridi HD, Woods EJ, Murphy MP, Miller SJ. Allogenic Vertebral Body Adherent Mesenchymal Stromal Cells Promote Muscle Recovery in Diabetic Mouse Model of Limb Ischemia. Ann Vasc Surg 2025; 110:522-533. [PMID: 39343376 DOI: 10.1016/j.avsg.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI) carries a significant risk for amputation, especially in diabetic patients with poor options for revascularization. Phase I trials have demonstrated efficacy of allogeneic mesenchymal stromal cells (MSC) in treating diabetic CLTI. Vertebral bone-adherent mesenchymal stromal cells (vBA-MSC) are derived from vertebral bodies of deceased organ donors, which offer the distinct advantage of providing a 1,000x greater yield compared to that of living donor bone aspiration. This study describes the effects of intramuscular injection of allogenic vBA-MSC in promoting limb perfusion and muscle recovery in a diabetic CLTI mouse model. METHODS A CLTI mouse model was created through unilateral ligation of the femoral artery in male polygenic diabetic TALLYHO mice. The treated mice were injected with vBA-MSC into the gracilis muscle of the ischemic limb 7 days post ligation. Gastrocnemius or tibialis muscle was assessed postmortem for fibrosis by collagen staining, capillary density via immunohistochemistry, and mRNA by quantitative real-time polymerase chain reaction (PCR). Laser Doppler perfusion imaging and plantar flexion muscle testing (MT) were performed to quantify changes in limb perfusion and muscle function. RESULTS Compared to vehicle (Veh) control, treated mice demonstrated indicators of muscle recovery, including decreased fibrosis, increased perfusion, muscle torque, and angiogenesis. PCR analysis of muscle obtained 7 and 30 days post vBA-MSC injection showed an upregulation in the expression of MyoD1 (P = 0.03) and MyH3 (P = 0.008) mRNA, representing muscle regeneration, vascular endothelial growth factor A (VEGF-A) (P = 0.002; P = 0.004) signifying angiogenesis as well as interleukin (IL-10) (P < 0.001), T regulatory cell marker Foxp3 (P = 0.04), and M2-biased macrophage marker Mrc1 (CD206) (P = 0.02). CONCLUSIONS These findings indicate human allogeneic vBA-MSC ameliorate ischemic muscle damage and rescue muscle function. These results in a murine model will enable further studies to develop potential therapies for diabetic CLTI patients.
Collapse
Affiliation(s)
- Mackenzie K Madison
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Theresa S Doiron
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jennifer Stashevsky
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marlee Yancey
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang-Hyun Gil
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanaa Dakour Aridi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Shen Z, Tang X, Zhang Y, Jia Y, Guo X, Guo X, Bao J, Xie X, Xing Y, Xing J, Tian S. Efficacy and safety of mesenchymal stem cell therapies for ischemic stroke: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:886-897. [PMID: 39159204 PMCID: PMC11386217 DOI: 10.1093/stcltm/szae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The efficacy and safety of mesenchymal stem cells (MSCs) in the treatment of ischemic stroke (IS) remains controversial. Therefore, this study aimed to evaluate the efficacy and safety of MSCs for IS. METHODS A literature search until May 23, 2023, was conducted using PubMed, EMBASE, the Cochrane Library, and the Web of Science to identify studies on stem cell therapy for IS. Interventional and observational clinical studies of MSCs in patients with IS were included, and the safety and efficacy were assessed. Two reviewers extracted data and assessed the quality independently. The meta-analysis was performed using RevMan5.4. RESULTS Fifteen randomized controlled trials (RCTs) and 15 non-randomized trials, including 1217 patients (624 and 593 in the intervention and control arms, respectively), were analyzed. MSCs significantly improved patients' activities of daily living according to the modified Rankin scale (mean difference [MD]: -0.26; 95% confidence interval [CI]: -0.50 to -0.01; P = .04) and National Institutes of Health Stroke Scale score (MD: -1.69; 95% CI: -2.66 to -0.73; P < .001) in RCTs. MSC treatment was associated with lower mortality rates in RCTs (risk ratio: 0.44; 95% CI: 0.28-0.69; P < .001). Fever and headache were among the most reported adverse effects. CONCLUSIONS Based on our review, MSC transplantation improves neurological deficits and daily activities in patients with IS. In the future, prospective studies with large sample sizes are needed for stem cell studies in ischemic stroke. This meta-analysis has been registered at PROSPERO with CRD42022347156.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xian Tang
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yaxin Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yicun Jia
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xin Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiaosu Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Junqiang Bao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiongwei Xie
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yuan Xing
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Jun Xing
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Shujuan Tian
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| |
Collapse
|
3
|
Furgiuele S, Cappello E, Ruggeri M, Camilli D, Palasciano G, Guerrieri MW, Michelagnoli S, Dorrucci V, Pompeo F. One-Year Analysis of Autologous Peripheral Blood Mononuclear Cells as Adjuvant Therapy in Treatment of Diabetic Revascularizable Patients Affected by Chronic Limb-Threatening Ischemia: Real-World Data from Italian Registry ROTARI. J Clin Med 2024; 13:5275. [PMID: 39274487 PMCID: PMC11396002 DOI: 10.3390/jcm13175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Wounds in diabetic patients with peripheral arterial disease (PAD) may be poorly responsive to revascularization and conventional therapies. Background/Objective: This study's objective is to analyze the results of regenerative cell therapy with peripheral blood mononuclear cells (PBMNCs) as an adjuvant to revascularization. Methods: This study is based on 168 patients treated with endovascular revascularization below the knee plus three PBMNC implants. The follow-up included clinical outcomes at 1-2-3-6 and 12 months based on amputations, wound healing, pain, and TcPO2. Results: The results at 1 year for 122 cases showed a limb rescue rate of 94.26%, a complete wound healing in 65.59% of patients, and an improvement in the wound area, significant pain relief, and increased peripheral oxygenation. In total, 64.51% of patients completely healed at 6 months, compared to the longer wound healing time reported in the literature in the same cohort of patients, suggesting that PBMNCs have an adjuvant effect in wound healing after revascularization. Conclusions: PBMNC regenerative therapy is a safe and promising treatment for diabetic PAD. In line with previous experiences, this registry shows improved healing in diabetic patients with below-the-knee arteriopathy. The findings support the use of this cell therapy and advocate for further research.
Collapse
Affiliation(s)
- Sergio Furgiuele
- Unit of Vascular and Endovascular Surgery, High Specialty Hospital "Mediterranea", 80122 Napoli, Italy
| | - Enrico Cappello
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Massimo Ruggeri
- Unit of Vascular Surgery, San Camillo de Lellis Hospital, 02100 Rieti, Italy
| | - Daniele Camilli
- Casa di Cura Santa Caterina della Rosa Asl RM 2, 00176 Roma, Italy
| | - Giancarlo Palasciano
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimiliano Walter Guerrieri
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- UOC Vascular Surgery, San Donato Hospital, 52100 Arezzo, Italy
| | - Stefano Michelagnoli
- Vascular and Endovascular Surgery Unit, San Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Vittorio Dorrucci
- Department of Vascular Surgery, Umberto I Hospital, 96100 Venice, Italy
| | - Francesco Pompeo
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
4
|
Zhong T, Gao N, Guan Y, Liu Z, Guan J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS NANO 2023; 17:25157-25174. [PMID: 38063490 PMCID: PMC10790628 DOI: 10.1021/acsnano.3c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Collapse
Affiliation(s)
- Ting Zhong
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ning Gao
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ya Guan
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhongting Liu
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Dubský M, Husáková J, Sojáková D, Fejfarová V, Jude EB. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence? Mol Diagn Ther 2023; 27:673-683. [PMID: 37740111 PMCID: PMC10590286 DOI: 10.1007/s40291-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/24/2023]
Abstract
This current opinion article critically evaluates the efficacy of autologous cell therapy (ACT) for chronic limb-threatening ischemia (CLTI), especially in people with diabetes who are not candidates for standard revascularization. This treatment approach has been used in 'no-option' CLTI in the last two decades and more than 1700 patients have received ACT worldwide. Here we analyze the level of published evidence of ACT as well as our experience with this treatment method. Many studies have shown that ACT is safe and an effective method for patients with the most severe lower limb ischemia. However, some trials did not show any benefit of ACT, and there is some heterogeneity in the types of injected cells, route of administration and assessed endpoints. Nevertheless, we believe that ACT plays an important role in a comprehensive treatment of patients with diabetic foot and severe ischemia.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic.
| | - Jitka Husáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | - Dominika Sojáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton Under Lyne, UK.
- University of Manchester, Lancashire, UK.
| |
Collapse
|
6
|
Cheng HLM. A primer on in vivo cell tracking using MRI. Front Med (Lausanne) 2023; 10:1193459. [PMID: 37324153 PMCID: PMC10264782 DOI: 10.3389/fmed.2023.1193459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Cell tracking by in vivo magnetic resonance imaging (MRI) offers a collection of multiple advantages over other imaging modalities, including high spatial resolution, unlimited depth penetration, 3D visualization, lack of ionizing radiation, and the potential for long-term cell monitoring. Three decades of innovation in both contrast agent chemistry and imaging physics have built an expansive array of probes and methods to track cells non-invasively across a diverse range of applications. In this review, we describe both established and emerging MRI cell tracking approaches and the variety of mechanisms available for contrast generation. Emphasis is given to the advantages, practical limitations, and persistent challenges of each approach, incorporating quantitative comparisons where possible. Toward the end of this review, we take a deeper dive into three key application areas - tracking cancer metastasis, immunotherapy for cancer, and stem cell regeneration - and discuss the cell tracking techniques most suitable to each.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
7
|
Troisi N, D'Oria M, Fernandes E Fernandes J, Angelides N, Avgerinos E, Liapis C, Hussein E, Sen I, Gloviczki P, Poredos P, Pandey S, Biscetti F, Juszynski M, Zlatanovic P, Ferraresi R, Piaggesi A, Peinado Cebrian J, Mansilha A, Antignani PL. International Union of Angiology Position Statement on no-option chronic limb threatening ischemia. INT ANGIOL 2022; 41:382-404. [PMID: 36053161 DOI: 10.23736/s0392-9590.22.04933-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This position paper, written by members of International Union of Angiology (IUA) Youth Committee and senior experts, shows an overview of therapeutical approaches for patients with chronic limb-threatening ischemia (CLTI) and absence of 'standard' solutions for revascularization. The aim was to demonstrate the accurate management of the 'no-option' CLTI patient including the wound treatment and the rehabilitation, considering always the goal of the increase of quality of life of the patients.
Collapse
Affiliation(s)
- Nicola Troisi
- Unit of Vascular Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy -
| | - Mario D'Oria
- Division of Vascular and Endovascular Surgery, Cardiovascular Department, University Hospital of Trieste, Trieste, Italy
| | | | - Nikos Angelides
- Cardiovascular Unit, Old Nicosia General Hospital, University of Nicosia, Nicosia, Cyprus
| | - Efthymios Avgerinos
- Clinic of Vascular and Endovascular Surgery, Athens Medical Center, Athens, Greece
| | - Christos Liapis
- Clinic of Vascular and Endovascular Surgery, Athens Medical Center, Athens, Greece
| | - Emad Hussein
- Department of Vascular and Endovascular Surgery, Ain Shams University, Cairo, Egypt
| | - Indrani Sen
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Peter Gloviczki
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Pavel Poredos
- Department for Vascular Disease, University of Ljubljana, Ljubljana, Slovenia
| | | | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michal Juszynski
- Department of Vascular Surgery and Angiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Petar Zlatanovic
- Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Roberto Ferraresi
- Clinic of Diabetic Foot, San Carlo Clinic, Paderno Dugnano, Milan, Italy
| | - Alberto Piaggesi
- Section of Diabetic Foot, Department of Medicine, University of Pisa, Pisa, Italy
| | - Javier Peinado Cebrian
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Toledo, Toledo, Spain
| | - Armando Mansilha
- Department of Vascular Surgery, Faculty of Medicine of University of Porto, Hospital São João, Porto, Portugal
| | | |
Collapse
|
8
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
9
|
Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes‑associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med 2021; 48:173. [PMID: 34278463 DOI: 10.3892/ijmm.2021.5006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 01/13/2023] Open
Abstract
Cell therapy is becoming an attractive alternative for the treatment of patients with no‑option critical limb ischemia (CLI). The main benefits of cell therapy are the induction of therapeutic angiogenesis and neovascularization that lead to an increase in blood flow in the ischemic limb and tissue regeneration in non‑healing cutaneous trophic lesions. In the present review, the current state of the art of strategies in the cell therapy field are summarized, focusing on intra‑operative autologous cell concentrates in diabetic patients with CLI, examining different sources of cell concentrates and their mechanisms of action. The present study underlined the detrimental effects of the diabetic condition on different sources of autologous cells used in cell therapy, and also in delaying wound healing capacity. Moreover, relevant clinical trials and critical issues arising from cell therapy trials are discussed. Finally, the new concept of cell therapy as an adjuvant therapy to increase wound healing in revascularized diabetic patients is introduced.
Collapse
Affiliation(s)
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Massimo Ruggeri
- Department of Vascular Surgery, San Camillo de Lellis Hospital, I‑02100 Rieti, Italy
| | | |
Collapse
|
10
|
Scatena A, Petruzzi P, Maioli F, Lucaroni F, Ambrosone C, Ventoruzzo G, Liistro F, Tacconi D, Di Filippi M, Attempati N, Palombi L, Ercolini L, Bolognese L. Autologous Peripheral Blood Mononuclear Cells for Limb Salvage in Diabetic Foot Patients with No-Option Critical Limb Ischemia. J Clin Med 2021; 10:2213. [PMID: 34065278 PMCID: PMC8161401 DOI: 10.3390/jcm10102213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMNCs) are reported to prevent major amputation and healing in no-option critical limb ischemia (NO-CLI). The aim of this study is to evaluate PBMNC treatment in comparison to standard treatment in NO-CLI patients with diabetic foot ulcers (DFUs). The study included 76 NO-CLI patients admitted to our centers because of CLI with DFUs. All patients were treated with the same standard care (control group), but 38 patients were also treated with autologous PBMNC implants. Major amputations, overall mortality, and number of healed patients were evaluated as the primary endpoint. Only 4 out 38 amputations (10.5%) were observed in the PBMNC group, while 15 out of 38 amputations (39.5%) were recorded in the control group (p = 0.0037). The Kaplan-Meier curves and the log-rank test results showed a significantly lower amputation rate in the PBMNCs group vs. the control group (p = 0.000). At two years follow-up, nearly 80% of the PBMNCs group was still alive vs. only 20% of the control group (p = 0.000). In the PBMNC group, 33 patients healed (86.6%) while only one patient healed in the control group (p = 0.000). PBMNCs showed a positive clinical outcome at two years follow-up in patients with DFUs and NO-CLI, significantly reducing the amputation rate and improving survival and wound healing. According to our study results, intramuscular and peri-lesional injection of autologous PBMNCs could prevent amputations in NO-CLI diabetic patients.
Collapse
Affiliation(s)
- Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Pasquale Petruzzi
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Filippo Maioli
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Cristina Ambrosone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Giorgio Ventoruzzo
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesco Liistro
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| | - Danilo Tacconi
- Infectious Disease Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Marianna Di Filippi
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Nico Attempati
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Leonardo Ercolini
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Leonardo Bolognese
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| |
Collapse
|
11
|
Hur J, Kang JY, Kim YK, Lee SY, Jeon S, Kim Y, Jung CK, Rhee CK. Evaluation of Human MSCs Treatment Frequency on Airway Inflammation in a Mouse Model of Acute Asthma. J Korean Med Sci 2020; 35:e188. [PMID: 32537953 PMCID: PMC7295606 DOI: 10.3346/jkms.2020.35.e188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Studies in experimental models of allergic asthma have shown that mesenchymal stem cells (MSCs) have therapeutic potential for T-helper 2 (TH2) cell-mediated inflammation. However, the mechanisms underlying these therapeutic effects are not fully understood and their safety has not been confirmed. METHODS Using a mouse model of experimental allergic asthma, we investigated the efficacy of human adipose-derived mesenchymal stem cells (hADSCs) or human bone marrow-derived mesenchymal stem cells (hBMSCs) according to treatment frequency and timing. RESULTS Ovalbumin (OVA)-sensitized and -challenged mice exhibited airway hyperresponsiveness (AHR), airway inflammation, and significant increases in TH2 cytokine levels. Both double and single human mesenchymal stem cell (hMSC) treatments significantly decreased AHR and bronchoalveolar lavage fluid counts. In addition, single treatment with hMSCs showed significant attenuation of allergic airway inflammation. However, double treatment with hMSCs during OVA -sensitization and -challenge further increased inflammatory cell infiltration, and TH2 cytokine levels. CONCLUSION The results of treatment with hADSCs or hBMSCs suppresses AHR and airway inflammation. However, double hMSC treatment significantly induces eosinophilic airway inflammation and lung histological changes. Therefore, double hMSC treatment is ineffective against asthma and single injection frequency appears to be more important for the treatment of asthma. These results suggest that hMSC therapy can be used for treatment of asthma patients but that it should be used carefully.
Collapse
Affiliation(s)
- Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sora Jeon
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yourha Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
12
|
High Frequency of Intravenous Injection of Human Adipose Stem Cell Conditioned Medium Improved Embryo Development of Mice in Advanced Maternal Age through Antioxidant Effects. Animals (Basel) 2020; 10:ani10060978. [PMID: 32512813 PMCID: PMC7341498 DOI: 10.3390/ani10060978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In this study, we examined the anti-oxidative effect of human adipose stem cell conditioned medium (ASC-CM) on the ovary and uterus of mice in advanced maternal age (AMA) and the optimal conditions of intravenous injection for ASC-CM administration. Human ASC-CM upregulated expression of antioxidant genes, restored the quality of oocytes derived from aged ovaries and resulted in improved in vitro and in vivo embryo development. The anti-oxidative effect human ASC-CM was optimized with high frequency of administration. Comprehensively, our study successfully introduced the potential of ASC-CM as an antioxidant intervention against age-related infertility in AMA. Abstract Advanced maternal age (AMA) has become prevalent globally. With aging, weakened antioxidant defense causes loss of normal function in the ovary and uterus due to oxidative stress. Here, we aimed to improve embryo development in AMA mice by intravenous injection (IV) of human adipose stem cell conditioned medium (ASC-CM) at various frequencies and intervals as an antioxidant intervention. Four- and six-month-old female ICR (Institute of Cancer Research) mice were randomly divided into groups IV treated with human ASC-CM under different conditions, and in vitro and in vivo embryo development were evaluated. Consequently, compared to the control group, blastocyst formation rate of parthenotes was significantly promoted in 4-month-old mice and the mean number of implanted fetuses after natural mating was significantly increased by approximately two-fold in 6-month-old mice. Through gene analysis, the anti-apoptotic and anti-oxidative effects of human ASC-CMs were confirmed in the ovaries and uterus of pregnant mice at both ages. In particular, ovarian expression of gpx1 and catalase drastically increased in 6-month-old mice. Furthermore, the levels of gpx1 and catalase were further increased, with a high frequency of injection regardless of age. Thus, we demonstrated for the first time the anti-oxidative effect of human ASC-CM administration against ovarian aging and the optimal injection condition.
Collapse
|
13
|
Lu D, Jiang Y, Deng W, Zhang Y, Liang Z, Wu Q, Jiang X, Zhang L, Gao F, Cao Y, Chen B, Xue Y. Long-Term Outcomes of BMMSC Compared with BMMNC for Treatment of Critical Limb Ischemia and Foot Ulcer in Patients with Diabetes. Cell Transplant 2019; 28:645-652. [PMID: 30917698 PMCID: PMC7103602 DOI: 10.1177/0963689719835177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/01/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
We first compared long-term clinical outcomes in treating critical limb ischemia (CLI) and foot ulcer in patients with diabetes between autologous bone marrow mesenchymal stem cell (BMMSC) and bone-marrow-derived mononuclear cell (BMMNC) transplants. Forty-one patients were enrolled and followed up for 3 years. They received an 18-day standard treatment before stem cell transplantation. Patients with bilateral CLI and foot ulcer were injected intramuscularly or basally with BMMSC, BMMNC, or normal saline (NS). Cox model analysis showed significant differences in the hazard ratio (HR) for amputation with treatment by BMMSC (HR 0.21 [95% CI (0.05, 0.95)], P = 0.043), infection of foot (HR 5.30 [95% CI (1.89, 14.92)], P = 0.002), and age ≥64 (HR 3.01 [95% CI (1.11, 8.15)], P = 0.030), but no significant differences by BMMNC at 9 months after transplantation. Regarding ulcer healing and recurrence rate, the BMMSC group demonstrated a significant difference from the NS group during the 3-6 months after transplantation or healing, but the BMMNC group did not. This trial suggests that, compared with BMMNC treatment, BMMSC treatment leads to a longer time of limb salvage and blood flow improvement, and, when compared with conventional therapy, it can promote limb blood flow and ulcerative healing, and reduce ulcer recurrence and amputation within 9 months.
Collapse
Affiliation(s)
- Debin Lu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong, PR China
- Department of Endocrinology and Metabolism, Southwest Hospital, Third
Military Medical University, Chongqing, PR China
- * All three authors contributed equally to the study of this
article
| | - Youzhao Jiang
- Department of Endocrinology, Banan People’s Hospital of Chongqing, PR
China
- * All three authors contributed equally to the study of this
article
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center (Chongqing
Fourth People’s Hospital), Chongqing, PR China
- * All three authors contributed equally to the study of this
article
| | - Yan Zhang
- Department of Neurology, Chongqing Emergency Medical Center (Chongqing
Fourth People’s Hospital), Chongqing, PR China
| | - Ziwen Liang
- Department of Endocrinology and Metabolism, Southwest Hospital, Third
Military Medical University, Chongqing, PR China
| | - Qinan Wu
- Department of Endocrinology and Metabolism, Southwest Hospital, Third
Military Medical University, Chongqing, PR China
| | - Xiaoyan Jiang
- Department of Endocrinology and Metabolism, Southwest Hospital, Third
Military Medical University, Chongqing, PR China
| | - Ling Zhang
- Outpatient Department, Southwest Hospital, Third Military Medical
University, Chongqing, PR China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong, PR China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong, PR China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Southwest Hospital, Third
Military Medical University, Chongqing, PR China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
14
|
Hamidian Jahromi S, Davies JE. Concise Review: Skeletal Muscle as a Delivery Route for Mesenchymal Stromal Cells. Stem Cells Transl Med 2019; 8:456-465. [PMID: 30720934 PMCID: PMC6477141 DOI: 10.1002/sctm.18-0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated extensive capacity to modulate a catabolic microenvironment toward tissue repair. The fate, biodistribution, and dwell time of the in vivo delivered MSCs largely depend on the choice of the cell delivery route. Intramuscular (IM) delivery of MSCs is clinically safe and has been used for the effective treatment of local pathologies. Recent findings have shown that the secretome of the IM‐delivered MSCs enters the circulation and provides systemic effects on distant organs. In addition, muscle tissue provides a safe residence for the delivered MSCs and an extended secretorily active dwell time compared with other delivery routes. There are, however, controversies concerning the fate of MSCs post IM‐delivery and, specifically, into an injured site with proinflammatory cues. This review seeks to provide a brief overview of the fate and efficacy of IM‐delivered MSCs and to identify the gaps that require further assessment for adoption of this promising route in the treatment of systemic disease. stem cells translational medicine2019;8:456–465
Collapse
Affiliation(s)
- Shiva Hamidian Jahromi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Arutyunyan IV, Fatkhudinov TK, Elchaninov AV, Makarov AV, Vasyukova OA, Usman NY, Marey MV, Volodina MA, Kananykhina EY, Lokhonina AV, Bolshakova GB, Goldshtein DV, Sukhikh GT. Understanding mechanisms of the umbilical cord-derived multipotent mesenchymal stromal cell-mediated recovery enhancement in rat model of limb ischemia. GENES & CELLS 2018; 13:82-89. [DOI: 10.23868/201805010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Umbilical cord-derived multipotent mesenchymal stromal cells (UC-MMSCs) are considered as a strong candidate for cell therapy of lower limb ischemia. Sustained calf muscle ischemia with aseptic inflammatory response was induced in Sprague-Dawley rats by excision of femoral and popliteal arteries. uC-MSCs were injected into the calf muscle on day 7 after surgery. The animals were sacrificed on days 3, 10, and 30 after transplantation. Animals responded to the transplantation by temporary improvement in their locomotor function as assessed by the rota-rod performance test. Measured size of the lesions was significantly smaller in the experimental group than in the control group at all time points throughout the observation. The transplantation stimulated angiogenic processes on day 10 after transplantation. Living transplanted cells were traced for up to 30 days after transplantation, during which time they migrated to the damaged area to be partially eliminated by host macrophages; none of them differentiated into endothelial or smooth muscle cells of blood vessels. Additionally, the transplantation led to the predominance of activated pro-angiogenic and anti-inflammatory M2 macrophages by inhibiting the CD68+ macrophage infiltration and stimulating the CD206+ macrophage activation at the site of injury. A single intramuscular injection of allogeneic umbilical cord-derived mesenchymal stromal cells reproducibly facilitated recovery of structural and functional properties of surgically ischemized calf muscles in a rat. No differentiation of the transplanted cells in vivo was observed. The transplantation negatively regulated inflammation and enhanced tissue repair chiefly by modulating local patterns of macrophage activation.
Collapse
|
16
|
Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y, Zhou X, Yang B, Yang GL, Zhang J, Zang X, Ma S, Guan F. HDAC1 Silence Promotes Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Mouse Model of Traumatic Brain Injury via PI3K/AKT Pathway. Front Cell Neurosci 2018; 12:498. [PMID: 30662396 PMCID: PMC6328439 DOI: 10.3389/fncel.2018.00498] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell transplantation is a promising therapy for traumatic brain injury (TBI), but low efficiency of survival and differentiation of transplanted stem cells limits its clinical application. Histone deacetylase 1 (HDAC1) plays important roles in self-renewal of stem cells as well as the recovery of brain disorders. However, little is known about the effects of HDAC1 on the survival and efficacy of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in vivo. In this study, our results showed that HDAC1 silence promoted hUC-MSCs engraftment in the hippocampus and increased the neuroprotective effects of hUC-MSCs in TBI mouse model, which was accompanied by improved neurological function, enhanced neurogenesis, decreased neural apoptosis, and reduced oxidative stress in the hippocampus. Further mechanistic studies revealed that the expressions of phosphorylated PTEN (p-PTEN), phosphorylated Akt (p-Akt), and phosphorylated GSK-3β (p-GSK-3β) were upregulated. Intriguingly, the neuroprotective effects of hUC-MSCs with HDAC1 silence on behavioral performance of TBI mice was markedly attenuated by LY294002, an inhibitor of the PI3K/AKT pathway. Taken together, our findings suggest that hUC-MSCs transplantation with HDAC1 silence may provide a potential strategy for treating TBI in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiankang Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Jiewen Zhang
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, NY, United States
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| |
Collapse
|
17
|
Block TJ, Garza JR. Regenerative Cells for the Management of Osteoarthritis and Joint Disorders: A Concise Literature Review. Aesthet Surg J 2017; 37:S9-S15. [PMID: 29025215 DOI: 10.1093/asj/sjx015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of osteoarthritis (OA) and joint disorders represent a major cause of disability and a significant public health burden. As current approaches for the management of OA focus on slowing the progression of disease, without repairing the underlying damage, novel treatments are necessary to improve outcomes. Over the past decade, autologous cell-based therapies using regenerative cells from fat or bone marrow have become a major focus of research into new approaches for the treatment of osteoarthritis and joint disorders. This review is intended to summarize findings in existing literature and identify gaps in knowledge that should be addressed in order to advance the field. We acknowledge that some findings may appear inconsistent, but show that apparent inconsistency in the literature may be attributable to variation in source of cells, stage of disease, method of delivery, follow-up time, evaluation method, and a number of other idiosyncrasies of individual studies. Still, a number of themes emerge from the data and some broader conclusions may be drawn that can be used to guide future studies. Ultimately, we conclude that there is overwhelming evidence demonstrating the safety of the autologous cell-based therapies. Furthermore, the data support the claim that regenerative cells are capable of reversing progression of OA. Regenerative cells, and especially those from adipose tissue, represent a promising new approach for the treatment of OA. Future work should include appropriate controls, and focus on answering questions related to dose required, appropriate delivery vehicle, and the impact of multiple treatments. Additionally, future studies should look at short and long-term effects of the treatments, and use functional as well as radiologic methods to evaluate efficacy.
Collapse
Affiliation(s)
- Travis J Block
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jaime R Garza
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|