1
|
Manoharan SD, Abdul Hamid H, Md Hashim NF, Cheema MS, Chiroma SM, Mustapha M, Mehat MZ. Could protein phosphatase 2A and glycogen synthase kinase-3 beta be targeted by natural compounds to ameliorate Alzheimer's pathologies? Brain Res 2024; 1829:148793. [PMID: 38309553 DOI: 10.1016/j.brainres.2024.148793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3β) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3β activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3β with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3β inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3β levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3β as therapeutic targets of natural compounds are highlighted in this review.
Collapse
Affiliation(s)
- Sushmitaa Dhevii Manoharan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Samaila Musa Chiroma
- Newcastle University Medicine Malaysia (NUMed), Iskandar Puteri 79200, Johor, Malaysia.
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
El-Maraghy SA, Reda A, Essam RM, Kortam MA. The citrus flavonoid "Nobiletin" impedes STZ-induced Alzheimer's disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023; 31:2701-2717. [PMID: 37598127 PMCID: PMC10518278 DOI: 10.1007/s10787-023-01292-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/06/2023] [Indexed: 08/21/2023]
Abstract
The prominence of autophagy in the modulation of neurodegenerative disorders has sparked interest to investigate its stimulation in Alzheimer's disease (AD). Nobiletin possesses several bioactivities such as anti-inflammation, antioxidation, and neuroprotection. Consequently, the study's aim was to inspect the possible neurotherapeutic impact of Nobiletin in damping AD through autophagy regulation. Mice were randomly assigned into: Group I which received DMSO, Groups II, III, and IV obtained STZ (3 mg/kg) intracerebroventricularly once with Nobiletin (50 mg/kg/day; i.p.) in Group III and Nobiletin with EX-527 (2 mg/kg, i.p.) in Group IV. Interestingly, Nobiletin ameliorated STZ-induced AD through enhancing the motor performance and repressing memory defects. Moreover, Nobiletin de-escalated hippocampal acetylcholinesterase (AChE) activity and enhanced acetylcholine level while halting BACE1 and amyloid-β levels. Meanwhile, Nobiletin stimulated the autophagy process through activating the SIRT1/FoxO3a, LC3B-II, and ATG7 pathway. Additionally, Nobiletin inhibited Akt pathway and controlled the level of NF-κB and TNF-α. Nobiletin amended the oxidative stress through enhancing GSH and cutting down MDA levels. However, EX527, SIRT1 inhibitor, counteracted the neurotherapeutic effects of Nobiletin. Therefore, the present study provides a strong verification for the therapeutic influence of Nobiletin in AD. This outcome may be assigned to autophagy stimulation through SIRT1/FoxO3a, inhibiting AChE activity, reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aya Reda
- Expanded Programme of Immunization (EPI), Ministry of Health, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Gupta S, Jinka SKA, Khanal S, Bhavnani N, Almashhori F, Lallo J, Mathias A, Al-Rhayyel Y, Herman D, Holden JG, Fleming SM, Raman P. Cognitive dysfunction and increased phosphorylated tau are associated with reduced O-GlcNAc signaling in an aging mouse model of metabolic syndrome. J Neurosci Res 2023; 101:1324-1344. [PMID: 37031439 DOI: 10.1002/jnr.25196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by hyperglycemia, obesity, and hyperlipidemia, can increase the risk of developing late-onset dementia. Recent studies in patients and mouse models suggest a putative link between hyperphosphorylated tau, a component of Alzheimer's disease-related dementia (ADRD) pathology, and cerebral glucose hypometabolism. Impaired glucose metabolism reduces glucose flux through the hexosamine metabolic pathway triggering attenuated O-linked N-acetylglucosamine (O-GlcNAc) protein modification. The goal of the current study was to investigate the link between cognitive function, tau pathology, and O-GlcNAc signaling in an aging mouse model of MetS, agouti KKAy+/- . Male and female C57BL/6, non-agouti KKAy-/- , and agouti KKAy+/- mice were aged 12-18 months on standard chow diet. Body weight, blood glucose, total cholesterol, and triglyceride were measured to confirm the MetS phenotype. Cognition, sensorimotor function, and emotional reactivity were assessed for each genotype followed by plasma and brain tissue collection for biochemical and molecular analyses. Body weight, blood glucose, total cholesterol, and triglyceride levels were significantly elevated in agouti KKAy+/- mice versus C57BL/6 controls and non-agouti KKAy-/- . Behaviorally, agouti KKAy+/- revealed impairments in sensorimotor and cognitive function versus age-matched C57BL/6 and non-agouti KKAy-/- mice. Immunoblotting demonstrated increased phosphorylated tau accompanied with reduced O-GlcNAc protein expression in hippocampal-associated dorsal midbrain of female agouti KKAy+/- versus C57BL/6 control mice. Together, these data demonstrate that impaired cognitive function and AD-related pathology are associated with reduced O-GlcNAc signaling in aging MetS KKAy+/- mice. Overall, our study suggests that interaction of tau pathology with O-GlcNAc signaling may contribute to MetS-induced cognitive dysfunction in aging.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Sanjay K A Jinka
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Fayez Almashhori
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Yasmine Al-Rhayyel
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Danielle Herman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John G Holden
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sheila M Fleming
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
4
|
Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH, Kang JH. Repositioning of Anti-Diabetic Drugs against Dementia: Insight from Molecular Perspectives to Clinical Trials. Int J Mol Sci 2023; 24:11450. [PMID: 37511207 PMCID: PMC10380685 DOI: 10.3390/ijms241411450] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aβ production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Keren Esther Kristina Mantik
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Fonseca-Santos B, Cazarin CA, da Silva PB, Dos Santos KP, da Rocha MCO, Báo SN, De-Souza MM, Chorilli M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023:102689. [PMID: 37156330 DOI: 10.1016/j.nano.2023.102689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Alzheimer's disease (AD) is an illness that affects people aged 65 or older and affects around 6.5 million in the United States. Resveratrol is a chemical obtained from natural products and it exhibits biological activity based on inhibiting the formation, depolymerization of the amyloid, and decreasing neuroinflammation. Due to the insolubility of this compound; its incorporation in surfactant-based systems was proposed to design an intranasal formulation. A range of systems has been produced by mixing oleic acid, CETETH-20 and water. Polarised light microscopy (PLM), small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) confirm the initial liquid formulation (F) presented as microemulsion (ME). After dilution, the gelled systems were characterized as hexagonal mesophase and they showed feasibility proprieties. Pharmacological assays performed after intranasal administration showed the ability to improve learning and memory in animals, as well as remission of neuroinflammation via inhibition of interleukin.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil; Federal University of Bahia (UFBA), Health Sciences Institute, Department of Biotechnology, Salvador, Bahia 40170-115, Brazil.
| | - Camila André Cazarin
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Kaio Pini Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Márcia Maria De-Souza
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil.
| |
Collapse
|
6
|
Yılmaz ŞG, Almasri S, Karabulut YY, Korkmaz M, Bucak Ö, Balcı SO. Okadaic Acid-Induced Alzheimer's in Rat Brain: Phytochemical Cucurbitacin E Contributes to Memory Gain by Reducing TAU Protein Accumulation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:34-44. [PMID: 36594931 DOI: 10.1089/omi.2022.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive decline, with hallmark pathologies related to amyloid beta (Aβ) and TAU. Natural phytochemicals show promise for drug discovery to fill the current therapeutic innovation gap in AD. This study investigated the effect of cucurbitacin E (CuE), one of the bioactive components of Ecballium elaterium, on TAU fibril formation in okadaic acid-induced AD in rats. In a randomized design, we assigned 30 female Sprague Dawley rats to one of five experimental groups: (1) control, (2) stereotaxic surgery, (3) stereotaxic surgery + artificial cerebrospinal fluid, (4) stereotaxic surgery + okadaic acid (AD model), and (5) stereotaxic surgery + okadaic acid + CuE treatment. For experimental groups 4 and 5, rats were administered OKA-ICV (200 ng/kg) followed by CuE (4 mg/[kg·day], intraperitoneally) for 20 days. Expression of the MAPK1/3 and MAPK14 genes associated with TAU metabolism, hippocampal protein levels of these genes, cognitive functions of the rats, and histological accumulation of TAU in the brain were evaluated. Our findings in this preclinical model collectively suggest that phytochemical CuE contributes to memory gain by reducing TAU protein accumulation, which warrants further evaluation in future in vitro and in vivo studies.
Collapse
Affiliation(s)
- Şenay Görücü Yılmaz
- Department of Nutrition and Dietetics, Health Sciences Faculty, Gaziantep University, Gaziantep, Turkey
| | - Salam Almasri
- Department of Biochemistry Science and Technology, Gaziantep University, Turkey
| | | | - Murat Korkmaz
- Department of Medical Biology, Medical Faculty, Islam Science and Technology University, Gaziantep, Turkey
| | - Öznur Bucak
- Department of Medical Biology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Sibel Oğuzkan Balcı
- Department of Medical Biology, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
7
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
Doust YV, Sumargo N, Ziebell JM, Premilovac D. Insulin Resistance in the Brain: Evidence Supporting a Role for Inflammation, Reactive Microglia, and the Impact of Biological Sex. Neuroendocrinology 2022; 112:1027-1038. [PMID: 35279657 DOI: 10.1159/000524059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
Abstract
Increased intake of highly processed, energy-dense foods combined with a sedentary lifestyle are helping fuel the current overweight and obesity crisis, which is more prevalent in women than in men. Although peripheral organs such as adipose tissue contribute to the physiological development of obesity, emerging work aims to understand the role of the central nervous system to whole-body energy homeostasis and development of weight gain and obesity. The present review discusses the impact of insulin, insulin resistance, free fatty acids, and inflammation on brain function and how these differ between the males and females in the context of obesity. We highlight the potential of microglia, the resident immune cells in the brain, as mediators of neuronal insulin resistance that drive reduced satiety, increased food intake, and thus, obesity.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Sumargo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Pseudoginsenoside-F11 attenuates cognitive dysfunction and tau phosphorylation in sporadic Alzheimer's disease rat model. Acta Pharmacol Sin 2021; 42:1401-1408. [PMID: 33277592 PMCID: PMC8379201 DOI: 10.1038/s41401-020-00562-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
We previously reported that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, significantly ameliorated Alzheimer's disease (AD)-associated cognitive defects in APP/PS1 and SAMP8 mice by inhibiting Aβ aggregation and tau hyperphosphorylation, suggesting a potential therapeutic effect of PF11 in the treatment of AD. In the present study we further evaluated the therapeutic effects of PF11 on relieving cognitive impairment in a rat model of sporadic AD (SAD). SAD was induced in rats by bilateral icv infusion of streptozotocin (STZ, 3 mg/kg). The rats were treated with PF11 (2, 4, 8 mg·kg-1·d-1, ig) or a positive control drug donepezil (5 mg·kg-1·d-1, ig) for 4 weeks. Their cognitive function was assessed in the nest building, Y-maze, and Morris water maze tests. We showed that STZ icv infusion significantly affected the cognitive function, tau phosphorylation, and insulin signaling pathway in the hippocampus. Furthermore, STZ icv infusion resulted in significant upregulation of the calpain I/cyclin-dependent protein kinase 5 (CDK5) signaling pathway in the hippocampus. Oral administration of PF11 dose-dependently ameliorated STZ-induced learning and memory defects. In addition, PF11 treatment markedly reduced the neuronal loss, protected the synapse structure, and modulated STZ-induced expression of tau phosphorylation by regulating the insulin signaling pathway and calpain I/CDK5 signaling pathway in the hippocampus. Donepezil treatment exerted similar beneficial effects in STZ-infused rats as the high dose of PF11 did. This study highlights the excellent therapeutic potential of PF11 in managing AD.
Collapse
|
10
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Costa GP, Baldinotti RSM, Fronza MG, Nascimento JER, Dias ÍFC, Sonego MS, Seixas FK, Collares T, Perin G, Jacob RG, Savegnago L, Alves D. Synthesis, Molecular Docking, and Preliminary Evaluation of 2-(1,2,3-Triazoyl)benzaldehydes As Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemMedChem 2020; 15:610-622. [PMID: 32012463 DOI: 10.1002/cmdc.201900622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/20/2020] [Indexed: 12/11/2022]
Abstract
We described here our results on the use of thiourea as a ligand in the copper catalysed azide-alkyne cycloaddition (CuAAC) of 2-azidobenzaldehyde with alkynes. Reactions were performed reacting 2-azidobenzaldehyde with a range of terminal alkynes using 10 mol % of copper iodide as a catalyst, 20 mol % of thiourea as a ligand, triethylamine as base, DMSO as solvent at 100 °C under nitrogen atmosphere. The corresponding 2-(1H-1,2,3-triazoyl)-benzaldehydes (2-TBH) were obtained in moderated to excellent yields and according our experiments, the use of thiourea decreases the formation of side products. The obtained compounds were screened for their binding affinity with multiple therapeutic targets of AD by molecular docking: β-secretase (BACE), glycogen synthase kinase (GSK-3β) and acetylcholinesterase (AChE). The three compounds with highest affinity, 5 a (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzaldehyde), 5 b (2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzaldehyde), and 5 d (2-(4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazol-1-yl)benzaldehyde) were selected and evaluated on its antioxidant effect, in view of select the most promising one to perform the in vivo validation. Due the antioxidant potential ally to the affinity with BACE, GSK-3β and AChE, compound 5 b was evaluated in a mouse model of AD induced by intracerebroventricular injection of streptozotocin (STZ). Our results indicate that 5 b (1 mg/kg) treatment during 20 days is able to reverse the cognitive and memory impairment induced by STZ trough the modulation of AChE activity, amyloid cascade and GSK-3β expression.
Collapse
Affiliation(s)
- Gabriel P Costa
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Rodolfo S M Baldinotti
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Mariana G Fronza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | | | - Ítalo F C Dias
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Mariana Souza Sonego
- Grupo de Pesquisa em Oncologia, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | | | - Tiago Collares
- Grupo de Pesquisa em Oncologia, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Raquel G Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas RS, Brazil
| |
Collapse
|
12
|
Farhadi A, Vosough M, Zhang JS, Tahamtani Y, Shahpasand K. A Possible Neurodegeneration Mechanism Triggered by Diabetes. Trends Endocrinol Metab 2019; 30:692-700. [PMID: 31399291 DOI: 10.1016/j.tem.2019.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
Several conditions result in neurodegeneration; among which diabetes mellitus (DM) is of crucial importance. Tau (τ) malfunction is a major pathological process participating in neurodegeneration. Despite extensive considerations, the actual causative link between DM and τ abnormalities remains uncertain thus far. Phosphorylated (p)-τ at Thr-Pro motifs can exist in the two distinct cis and trans conformations. cis is neurotoxic, and is accumulated upon various stress conditions, such as nutrition depletion. We assume that pathogenic cis p-τ is the central mediator of neurodegeneration in DM, and propose why different brain areas give various responses to stress conditions. We herein juxtapose recent approaches in diabetic neurodegeneration and propose a therapeutic target to stop neuronal loss during DM.
Collapse
Affiliation(s)
- Aisan Farhadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jin-San Zhang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| |
Collapse
|
13
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
14
|
Trans-resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3β. Neurochem Res 2018; 44:357-373. [DOI: 10.1007/s11064-018-2683-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|