1
|
Singh S, Nara R, Yadav M, Sharma C, Agrawal S, Kumar A. Oil palm biomass: a potential feedstock for lignocellulolytic enzymes and biofuels production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11791-11814. [PMID: 40234315 DOI: 10.1007/s11356-025-36379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
The availability of low-cost feedstocks for the production of lignocellulolytic enzymes and bioenergy products is a major challenge for biofuel industry. Oil palm processing generates huge amount of residual biomass that can be utilized for cost-effective production of lignocellulolytic enzymes and second-generation biofuels. The cultivation of oil palm and extraction of oil generates residues in the form of oil palm empty fruit bunches, oil palm frond, and oil palm trunk that are rich source of cellulose and hemicelluloses. The integration of these oil palm-based residues to circular economy mitigates wastes disposal problems and provides clean energy. Oil palm biomass has also been proved as cost-effective substrates for the production enzymes under solid-state and submerged fermentation especially using fungi. The rapidly increasing global renewable energy demand requires the potential sources. The oil palm biomass can be suitable resource for generation of renewable energy. The conversion of oil palm biomass into biofuels requires efficient, cost-effective, and environmentally friendly pretreatment. Physical, chemical, and biological pretreatments and their combinations have been employed to remove lignin and to enhance the digestibility of carbohydrates available in oil palm-based residues. The advancement in pretreatment technologies and enzymatic hydrolysis resulted in release of maximum amount of sugars for biofuels production. This paper investigates the recent research progress on valorization of oil palm-based residues into cellulases, xylanases, ligninolytic enzymes, bioethanol, biobutanol, biomethane, bio-oil, and xylitol.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Rachna Nara
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Chhavi Sharma
- University Centre for Research and Development (UCRD), University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sharad Agrawal
- Department of Life Sciences, SBSR, Sharda University, Greater Noida, UP, India
| | - Amit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India.
| |
Collapse
|
2
|
Mateo S, Fabbrizi G, Moya AJ. Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers (Basel) 2025; 17:952. [PMID: 40219341 PMCID: PMC11991304 DOI: 10.3390/polym17070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Lignin, the most abundant aromatic polymer in nature, plays a critical role in lignocellulosic biomasses by providing structural support. However, its presence complicates the industrial exploitation of these materials for biofuels, paper production and other high-value compounds. Annually, the industrial extraction of lignin reaches an estimated 225 million tons, yet only a fraction is recovered for reuse, with most incinerated as low-value fuel. The growing interest in lignin potential has sparked research into sustainable recovery methods from lignocellulosic agro-industrial wastes. This review examines the chemical, physical and physicochemical processes for isolating lignin, focusing on innovative, sustainable technologies that align with the principles of a circular economy. Key challenges include lignin structural complexity and heterogeneity, which hinder its efficient extraction and application. Nonetheless, its properties such as high thermal stability, biodegradability and abundant carbon content place lignin as a promising material for diverse industrial applications, including chemical synthesis and energy generation. A structured analysis of advancements in lignin extraction, characterization and valorization offers insights into transforming this undervalued by-product into a vital resource, reducing reliance on non-renewable materials while addressing environmental sustainability.
Collapse
Affiliation(s)
- Soledad Mateo
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| | - Giacomo Fabbrizi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06122 Perugia, Italy;
- CIRIAF-CRB (Biomass Research Centre), Department of Engineering, Università degli Studi di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy
| | - Alberto J. Moya
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| |
Collapse
|
3
|
Roman K, Fedorowicz K. Analysis of Energy Efficiency in WPC Production from Pinus sylvestris Wood and Thermoplastic ABS Supported by the HWE Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:980. [PMID: 40077206 PMCID: PMC11901229 DOI: 10.3390/ma18050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
This study evaluates the mechanical energy consumption involved in producing wood-plastic composites (WPC) using Scots pine (Pinus sylvestris) and a acrylonitrile-butadiene-styrene terpolymer (ABS) thermoplastic. The research examines the effects of Hot Water Extraction (HWE) on the properties of Pinus sylvestris biomass and its application in biocomposite production. Two Pinus sylvestris fractions, f1 (0-1 mm) and f2 (1-4 mm), were analyzed with and without HWE during compaction. The energy requirements and material performance were assessed through moisture content control, ash content determination, and compaction testing. The results show that HWE significantly improves the physical and chemical properties of Pinus sylvestris, increasing its suitability for WPC production. The HWE-treated samples consumed less energy and exhibited a higher density compared to the untreated materials. Statistical analysis validated the reliability of the methodology and revealed significant differences in the energy efficiency and material compatibility between treated and untreated samples. This study highlights the potential use of Pinus sylvestris and ABS for renewable bio-composite production, underlining the critical role of HWE in enhancing the properties of lignocellulosic materials. The findings contribute to developing energy-efficient industrial processes aligning with circular economy objectives.
Collapse
Affiliation(s)
- Kamil Roman
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland
| | - Katarzyna Fedorowicz
- Faculty of Wood Technology, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Maestrello CC, Cavalcanti RMF, Guimarães LHS. Aspergillus labruscus ITAL 22.223 xylanase - immobilization and application for the obtainment of corncob xylan targeting xylitol production. Braz J Microbiol 2024; 55:3159-3170. [PMID: 39120654 PMCID: PMC11711435 DOI: 10.1007/s42770-024-01475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Corncob is an agro-residue rich in lignocellulosic material that can be used for the xylitol production, through its enzymatic conversion obtaining fermentable sugars and their subsequent fermentation. In light of the above, this study targeted the immobilization of Aspergillus labruscus xylanase and the use of the derivative to hydrolyze the corncob xylan for the obtainment of xylose, and its subsequent use for the production of xylitol. The extracellular xylanase was immobilized using different supports (sodium alginate, DEAE-Cellulose, DEAE-Sephadex and CM-Sephadex). Among all supports used, the best results were obtained with the DEAE-Cellulose derivative showing an efficiency of immobilization of 97-99%, yield of 93-95% and recovered activity of 81-100%. The sodium alginate derivative showed 3 cycles of reuse, with drop in activity of about 65% in the 3rd cycle using both CaCl2 and MnCl2 as crosslinkers. The best enzymatic activity for the DEAE-Cellulose derivative was observed at 55ºC and pH 5.0. This derivative presented reuse of 10 cycles using commercial xylan as substrate, and 4 cycles using corncob xylan. This derivative was used in an enzymatic reactor to hydrolyze corncob xylan, obtaining 2.7 mg/mL of xylose after 48 h of operation under optimal condition of temperature and pH. The xylose obtained from the corncob was fermented by Candida tropicalis for 96 h with consumption of 60%. The HPLC analyses indicated a production of 1.02 mg/mL of xylitol with 48 h of fermentation. In conclusion, this is the first report on the immobilization of the A. labrucus xylanase as an alternative for the obtainment of xylose from corncob xylan, and the subsequent production of xylitol.
Collapse
Affiliation(s)
- Chadia Chahud Maestrello
- Instituto de Química de Araraquara- UNESP, Avenida Prof. Francisco Degni 55, Araraquara, São Paulo, 14800-900, Brazil
| | | | - Luis Henrique Souza Guimarães
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil.
| |
Collapse
|
5
|
Bisarya A, Karim S, Narjinari H, Banerjee A, Arora V, Dhole S, Dutta A, Kumar A. Production of hydrogen from alcohols via homogeneous catalytic transformations mediated by molecular transition-metal complexes. Chem Commun (Camb) 2024; 60:4148-4169. [PMID: 38563372 DOI: 10.1039/d4cc00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H2 regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H2 storage, which include low-storage density and high cost of transportation apart from safety concerns. Global efforts have thus focussed on liquid organic hydrogen carriers (LOHCs), which have shown excellent potential for H2 storage while allowing safer large-scale transformation and easy on-site H2 generation. While water could be considered as the most convenient liquid inorganic hydrogen carrier (LIHC) on a long-term basis, the utilization of alcohols as LOHCs to generate on-demand H2 has tasted instant success. This has helped to draw a road-map of futuristic H2 storage and transportation. The current review brings to the fore the state-of-the-art developments in hydrogen generation from readily available, feed-agnostic bio-alcohols as LOHCs using molecular transition-metal catalysts.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Suhana Karim
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Anwesha Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA, Bhosari Pune - 411026, Maharashtra, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science & Technology Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
6
|
Paul M, Pandey NK, Banerjee A, Shroti GK, Tomer P, Gazara RK, Thatoi H, Bhaskar T, Hazra S, Ghosh D. An insight into omics analysis and metabolic pathway engineering of lignin-degrading enzymes for enhanced lignin valorization. BIORESOURCE TECHNOLOGY 2023; 379:129045. [PMID: 37044152 DOI: 10.1016/j.biortech.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Niteesh Kumar Pandey
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Gireesh Kumar Shroti
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Preeti Tomer
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rajesh Kumar Gazara
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Saugata Hazra
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Hasan S, Anwar Z, Khalid W, Afzal F, Zafar M, Ali U, Refai MY, Afifi M, AL-Farga A, Aljobair MO. Laccase Production from Local Biomass Using Solid State Fermentation. FERMENTATION-BASEL 2023; 9:179. [DOI: 10.3390/fermentation9020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The large family of enzymes, known as polyphenols oxidases, includes laccase. Due to the inclusion of a copper atom in their catalytic core, laccases are frequently referred to as multi-copper oxidases. Laccases are versatile enzymes that can catalyze the oxidation of a wide range of phenolic and non-phenolic substances. In the current study, a local strain of Aspergillus niger was used for solid-state fermentation to produce fungal laccase, as well as purify and optimize laccase. The enzyme profile, which was acquired using guaiacol to measure enzyme activity, showed that after five days of incubation, wheat straw provided the highest level of laccase activity, or 2.551 U/mL. A technique called response surface methodology (RSM) was used to examine the effects of various conditions on the production of enzymes. The RSM results demonstrated that after five days of incubation, the enzyme activity was at its highest at 45 °C, pH 5.5, and 30% moisture level, inoculated with 2 mL mycelium. Through ammonium sulphate precipitation and dialysis, the enzyme was purified. Additionally, column chromatography was used to further purify laccase. The next step was enzyme characterization to evaluate how temperature and pH affected enzyme activity. At 45 °C and pH 5.5, the isolated enzyme produced its highest level of activity. The findings of the current study showed that A. niger is capable of producing laccase in an economical and environmentally friendly way. Due to its unique oxidative and catalytic features, this enzyme has received a lot of attention recently.
Collapse
Affiliation(s)
- Shoaib Hasan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fareed Afzal
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Usman Ali
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Mohamed Afifi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Moneera O. Aljobair
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Chauhan S, Mitra S, Yadav M, Kumar A. Microbial production of lactic acid using organic wastes as low-cost substrates. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Lactic acid is a natural organic acid with diverse of applications in food, pharmaceutical, cosmetics, and chemical industry. Recently, the demand of lactic acid has been grown due to its utilization for polylactic acid production. Microbial production of lactic acid production is preferable due to optical purity of product, utilization of low cost substrates, and low energy requirement. Lignocellulosic biomass and other organic wastes are considered potential raw materials for cost-effective production of lactic acid. The raw materials are either hydrolyzed by enzymes or dilute acids to release the reducing sugars that are fermented in to lactic acid. This review has been focussed on microbial production of lactic acid using different organic wastes as low cost substrate.
Collapse
Affiliation(s)
- Sushmita Chauhan
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Shreya Mitra
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Mukesh Yadav
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| |
Collapse
|
9
|
de Cássia Spacki K, Corrêa RCG, Uber TM, Barros L, Ferreira ICFR, Peralta RA, de Fátima Peralta Muniz Moreira R, Helm CV, de Lima EA, Bracht A, Peralta RM. Full Exploitation of Peach Palm ( Bactris gasipaes Kunth): State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:3175. [PMID: 36432904 PMCID: PMC9696370 DOI: 10.3390/plants11223175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.
Collapse
Affiliation(s)
| | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Thaís Marques Uber
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosely Aparecida Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | | | | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
10
|
Iqbal D, Zhao Y, Zhao R, Russell SJ, Ning X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers (Basel) 2022; 14:2343. [PMID: 35745924 PMCID: PMC9229312 DOI: 10.3390/polym14122343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, developing countries require access to safe drinking water to support human health and facilitate long-term sustainable development, in which waste management and control are critical tasks. As the most plentiful, renewable biopolymer on earth, cellulose has significant utility in the delivery of potable water for human consumption. Herein, recent developments in the application of nanoscale cellulose and cellulose derivatives for water treatment are reviewed, with reference to the properties and structure of the material. The potential application of nanocellulose as a primary component for water treatment is linked to its high aspect ratio, high surface area, and the high number of hydroxyl groups available for molecular interaction with heavy metals, dyes, oil-water separation, and other chemical impurities. The ability of superhydrophobic nanocellulose-based textiles as functional fabrics is particularly acknowledged as designed structures for advanced water treatment systems. This review covers the adsorption of heavy metals and chemical impurities like dyes, oil-water separation, as well as nanocellulose and nanostructured derivative membranes, and superhydrophobic coatings, suitable for adsorbing chemical and biological pollutants, including microorganisms.
Collapse
Affiliation(s)
- Danish Iqbal
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Yintao Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Renhai Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Stephen J. Russell
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds LS2 9JT, UK;
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| |
Collapse
|
11
|
Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. ENVIRONMENTAL RESEARCH 2022; 206:112285. [PMID: 34710442 DOI: 10.1016/j.envres.2021.112285] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 05/27/2023]
Abstract
Globally, abundant agricultural wastes (AWs) are being generated each day to fulfil the increasing demands of the fast-growing population. The limited and/or improper management of the same has created an urgent need to devise strategies for their timely utilization and valorisation, for agricultural sustainability and human-food and health security. The AWs are generated from different sources including crop residue, agro-industries, livestock, and aquaculture. The main component of the crop residue and agro-industrial waste is cellulose, (the most abundant biopolymer), followed by lignin and hemicellulose (lignocellulosic biomass). The AWs and their processing are a global issue since its vast majority is currently burned or buried in soil, causing pollution of air, water and global warming. Traditionally, some crop residues have been used in combustion, animal fodder, roof thatching, composting, soil mulching, matchsticks and paper production. But, lignocellulosic biomass can also serve as a sustainable source of biofuel (biodiesel, bioethanol, biogas, biohydrogen) and bioenergy in order to mitigate the fossil fuel shortage and climate change issues. Thus, valorisation of lignocellulosic residues has the potential to influence the bioeconomy by producing value-added products including biofertilizers, bio-bricks, bio-coal, bio-plastics, paper, biofuels, industrial enzymes, organic acids etc. This review encompasses circular bioeconomy based various AW management strategies, which involve 'reduction', 'reusing' and 'recycling' of AWs to boost sustainable agriculture and minimise environmental pollution.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Mohammad Yakoob
- School of Bioengineering and Biosciences, Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | | |
Collapse
|
12
|
Galanakis CM. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022; 11:241. [PMID: 35053973 PMCID: PMC8775229 DOI: 10.3390/foods11020241] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
This review article revises the sustainable practices and applications to valorize valuable components recovered from cereal processing by-products. After introducing cereal processing by-products, their healthy compounds, and corresponding functional properties, the article explores reutilization opportunities of by-products emphasizing specific sources (e.g., oat and wheat bran, distillers' dried grains, etc.) and the biorefinery approach. Proteins and soluble dietary fibers such as arabinoxylans are of particular interest due to their content in the cereal processing by-products and their easy extraction based on conventional technologies such as enzyme-assisted extraction and membrane filtration. Non-thermal technologies have also been suggested to improve sustainability recovery approaches. Finally, the article discusses the different applications for the recovered high-added value compounds that span across biotechnology, foods, and bakery products.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece;
- Department of Biology, College of Science, Taif University, Taif 26571, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|
13
|
R R, Thomas D, Philip E, Paul SA, Madhavan A, Sindhu R, Binod P, Pugazhendhi A, Sirohi R, Tarafdar A, Pandey A. Potential of nanocellulose for wastewater treatment. CHEMOSPHERE 2021; 281:130738. [PMID: 34004518 DOI: 10.1016/j.chemosphere.2021.130738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/26/2023]
Abstract
Wastewater management has significant interest worldwide to establish viable treatment techniques to ensure the availability of clean water. The specialities of nanocellulose for this particular application is due to their high aspect ratio and accessibility of plenty of -OH groups for binding with dyes, heavy metals and other pollutants. This review aggregates the application of nanocellulose for wastewater treatment particularly as adsorbents of dyes and heavy metals, and also as membranes for filtering various other contaminants including microbes. The membrane technologies are proven to be effective relating to their durability and separation effectiveness. The commercial scale application of nanocellulose based materials in water treatment processes depend on various factors like routes of synthesis, surface modifications, hydrophilic/hydrophobic, porosity, durability etc. The recent developments on production of novel adsorbents or membranes encourage the implementation of nanocellulose based cleaner technologies for wastewater treatment.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India.
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Sherely A Paul
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India
| |
Collapse
|
14
|
Waghmare PR, Waghmare PP, Gao L, Sun W, Qin Y, Liu G, Qu Y. Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation. J Microbiol Biotechnol 2021; 31:740-746. [PMID: 33746194 PMCID: PMC9705867 DOI: 10.4014/jmb.2101.01003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.
Collapse
Affiliation(s)
| | | | - Liwei Gao
- State Key Laboratory of Microbial Technology, Shandong University, Shandong 266237, P. R. China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Shandong 266101, P. R. China
| | - Wan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Shandong 266237, P. R. China
- National Glycoengineering Research Center, Shandong University, Shandong 266237, P. R. China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Shandong 266237, P. R. China
- National Glycoengineering Research Center, Shandong University, Shandong 266237, P. R. China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Shandong 266237, P. R. China
- National Glycoengineering Research Center, Shandong University, Shandong 266237, P. R. China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Shandong 266237, P. R. China
- National Glycoengineering Research Center, Shandong University, Shandong 266237, P. R. China
| |
Collapse
|
15
|
Pavarina GC, Lemos EGDM, Lima NSM, Pizauro JM. Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome. Sci Rep 2021; 11:10440. [PMID: 34001974 PMCID: PMC8128909 DOI: 10.1038/s41598-021-89916-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Metagenomic data mining of the Nellore cattle rumen microbiota identified a new bifunctional enzyme, endo-1,4-β-xylanase/esterase, which was subsequently overexpressed in E. coli BL21 (DE3). This enzyme was stable at pH intervals of 5 to 6.5 and temperatures between 30 and 45 °C, and under the test conditions, it had a Vmax of 30.959 ± 2.334 µmol/min/mg, Km of 3.6 ± 0.6 mM and kcat of 2.323 ± 175 s-1. Additionally, the results showed that the enzyme is tolerant to NaCl and organic solvents and therefore is suitable for industrial environments. Xylanases are widely applicable, and the synergistic activity of endo-1,4-β-xylanase/esterase in a single molecule will improve the degradation efficiency of heteroxylans via the creation of xylanase binding sites. Therefore, this new molecule has the potential for use in lignocellulosic biomass processing and as an animal feed food additive and could improve xylooligosaccharide production efficiency.
Collapse
Affiliation(s)
- Gabriella Cavazzini Pavarina
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Molecular Biology Laboratory, Bioenergy Research Institute (IPBEN), Jaboticabal, Sao Paulo, Brazil
| | - Natália Sarmanho Monteiro Lima
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - João Martins Pizauro
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.
| |
Collapse
|
16
|
Nelson K, Muge E, Wamalwa B. Cellulolytic Bacillus species isolated from the gut of the desert locust Schistocerca gregaria. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Coniglio RO, Díaz GV, Fonseca MI, Castrillo ML, Piccinni FE, Villalba LL, Campos E, Zapata PD. Enzymatic hydrolysis of barley straw for biofuel industry using a novel strain of Trametes villosa from Paranaense rainforest. Prep Biochem Biotechnol 2020; 50:753-762. [PMID: 32153244 DOI: 10.1080/10826068.2020.1734941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agricultural practices generate lignocellulosic waste that can be bioconverted by fungi to generate value-added products such as biofuels. In this context, fungal enzymes are presented as an alternative for their use in the hydrolysis of cellulose to sugars that can be fermented to ethanol. The aim of this work was to characterize LBM 033 strain and to analyze its efficiency in the hydrolysis of cellulosic substrates, including barley straw. LBM 033 strain was identified as Trametes villosa by molecular techniques, through the use of the ITS and rbp2 markers and the construction of phylogenetic trees. The cell-free supernatant of T. villosa LBM 033 showed high titers of hydrolytic enzymatic activities, necessary for the hydrolysis of the holocellulosic substrates, hydrolyzing pure cellulose to cellobiose and glucose and also degraded the polysaccharides contained in barley straw to short soluble oligosaccharides. These results indicate that macro fungi from tropical soil environments, such as T. villosa LBM 033 can be a valuable resource for in-house, cost effective production of enzymes that can be applied in the hydrolysis stage, which could reduce the total cost of bioethanol production.
Collapse
Affiliation(s)
- Romina O Coniglio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Gabriela V Díaz
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - María I Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - María L Castrillo
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Florencia E Piccinni
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA/CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Buenos Aires, Argentina
| | - Laura L Villalba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA/CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Buenos Aires, Argentina
| | - Pedro D Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| |
Collapse
|
18
|
Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. CHEMOSPHERE 2020; 242:125080. [PMID: 31675581 DOI: 10.1016/j.chemosphere.2019.125080] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.
Collapse
Affiliation(s)
- Manju Toor
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion - 7505101, Israel
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
F. A. T. FERMENTATION OF SUGARCANE BAGASSE HYDROLYSATES BY Mucor indicus. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Coniglio RO, Fonseca MI, Díaz GV, Ontañon O, Ghio S, Campos E, Zapata PD. Optimization of cellobiohydrolase production and secretome analysis of Trametes villosa LBM 033 suitable for lignocellulosic bioconversion. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1598107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Romina O. Coniglio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - María I. Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Gabriela V. Díaz
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Ornella Ontañon
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Silvina Ghio
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Eleonora Campos
- Laboratorio de Bioenergía, Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Pedro D. Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| |
Collapse
|
21
|
Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The evolution from petroleum-based products to the bio-based era by using renewable resources is one of the main research challenges in the coming years. Lignocellulosic biomass, consisting of inedible plant material, has emerged as a potential alternative for the production of biofuels, biochemicals, and nanocellulose-based advanced materials. The lignocellulosic biomass, which consists mainly of carbohydrate-based polysaccharides (hemicellulose and cellulose), is a green intermediate for the synthesis of bio-based products. In recent years, the re-engineering of biomass into a variety of commodity chemicals and liquid fuels by using Lewis acid catalysts has attracted much attention. Much research has been focused on developing new chemical strategies for the valorization of different biomass components. Homogeneous Lewis acid catalysts seem to be one of the most promising catalysts due to their astonishing features such as being less corrosive to equipment and being friendlier to the environment, as well as having the ability to disrupt the bonding system effectively and having high selectivity. Thus, these catalysts have emerged as important tools for the highly selective transformation of biomass components into valuable chemicals and fuels. This review provides an insightful overview of the most important recent developments in homogeneous Lewis acid catalysis toward the production and upgrading of biomass. The chemical valorization of the main components of lignocellulosic biomass (hemicellulose and cellulose), the reaction conditions, and process mechanisms are reviewed.
Collapse
|
22
|
Sorokina KN, Samoylova YV, Piligaev AV, Sivakumar U, Parmon VN. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 2: Biotechnological approaches to the conversion of polysaccharides and monosaccharides into the valuable industrial chemicals. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ezeilo UR, Zakaria II, Huyop F, Wahab RA. Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1330124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Lactic acid production from recycled paper sludge: Process intensification by running fed-batch into a membrane-recycle bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Han X, Song W, Liu G, Li Z, Yang P, Qu Y. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. BIORESOURCE TECHNOLOGY 2017; 227:155-163. [PMID: 28013132 DOI: 10.1016/j.biortech.2016.11.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture.
Collapse
Affiliation(s)
- Xiaolong Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Wenxia Song
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Zhonghai Li
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Piao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
26
|
Bi S, Peng L, Chen K, Zhu Z. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. BIORESOURCE TECHNOLOGY 2016; 214:692-699. [PMID: 27208740 DOI: 10.1016/j.biortech.2016.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
Sugarcane bagasse pretreated by combining O2 and NaOH with different variables was conducted to improve its enzymatic digestibility and sugar recovery, and the results were compared with sole NaOH pretreatment. Lignin removal for O2-NaOH pretreatment was around 10% higher than that for sole NaOH pretreatment under the same conditions, and O2-NaOH pretreatment resulted in higher glucan recovery in the solid remain. Subsequently, O2-NaOH pretreated sugarcane bagasse presented more efficient enzymatic digestibility than sole NaOH pretreatment. Under the moderate pretreatment conditions of combining 1% NaOH and 0.5MPa O2 at 80°C for 120min, a high glucan conversion of 95% was achieved after 48h enzymatic hydrolysis. Coupled with the operations of pretreatment and enzymatic hydrolysis, an admirable total sugar recovery of 89% (glucose recovery of 93% and xylose recovery of 84%) was obtained. The susceptibility of the substrates to enzymatic digestibility was explained by their physical and chemical characteristics.
Collapse
Affiliation(s)
- Shuaizhu Bi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zhengliang Zhu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
27
|
Kumar A, Dutt D, Gautam A. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. J Genet Eng Biotechnol 2016; 14:107-118. [PMID: 30647604 PMCID: PMC6299890 DOI: 10.1016/j.jgeb.2016.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/07/2016] [Accepted: 06/18/2016] [Indexed: 10/25/2022]
Abstract
The production of crop residues in India is estimated to be about 500-550 million tons annually. It is estimated that about 93 million tons of crop residues is burnt annually which is not only wastage of valuable biomass resources but pollution of the environment with the production of green house gases also. Among different low cost crop residues, black gram residue as the substrate produced maximal endoglucanase, FPase, and β-glucosidase activities from Aspergillus nidulans AKB-25 under solid-state fermentation. During optimisation of cultural parameters A. nidulans AKB-25 produced maximal endoglucanase (152.14 IU/gds), FPase (3.42 FPU/gds) and xylanase (2441.03 IU/gds) activities. The crude enzyme was found effective for the saccharification of pearl millet stover and bio-deinking of mixed office waste paper. The crude enzyme from A. nidulans AKB-25 produced maximum fermentable sugars of 546.91 mg/g from alkali-pretreated pearl millet stover by saccharification process at a dose of 15 FPU/g of substrate. Pulp brightness and deinking efficiency of mixed office waste paper improved by 4.6% and 25.01% respectively and mitigated dirt counts by 74.70% after bio-deinking. Physical strength properties like burst index, tensile index and double fold number were also improved during bio-deinking of mixed office waste paper.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | | | | |
Collapse
|