1
|
Vashisht A, Adamson G, Gacso Z, Slama J, Freund M, Vinod S, Sandoval N, Nachshon Z, Gubin S, Corso E, You ZB, Ranaldi R, Galaj E. Environmental enrichment attenuates reinstatement of heroin seeking and reverses heroin-induced upregulation of mesolimbic ghrelin receptors. Drug Alcohol Depend 2025; 270:112635. [PMID: 40022817 PMCID: PMC11908936 DOI: 10.1016/j.drugalcdep.2025.112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
We have shown that environmental enrichment (EE) can effectively reduce reinstatement and facilitate true abstinence in animal models of drug use. Here, we investigated whether EE is effective against reinstatement of heroin seeking in long access (LA) model, which has been argued to capture the compulsive features of human drug addiction. We also explored the neurobiology by which EE produces its anti-drug addiction effects. In particular, we focused here on the ghrelin system, which is known for its involvement in reward-motivated behaviors and upregulation following intravenous drug self-administration. Following LA to heroin, rats were housed in either non-EE or EE conditions. During extinction and cue-induced reinstatement test, EE rats showed a significant reduction in active lever responding compared to non-EE rats, suggesting that EE facilitates extinction of drug seeking and reduces the capacity of drug-associated stimuli to elicit and maintain drug seeking. Using Western Blotting, we found that rats with LA to heroin IVSA showed a significant increase in ghrelin receptor (GHS-R1a) expression in the ventral tegmental area and nucleus accumbens, the brain regions implicated in resumption of drug use . Exposure to EE attenuated heroin-induced upregulation of GHS-R1a receptor in these regions but produced no significant changes other brain regions. Our findings suggest that EE can be an effective behavioral approach to diminish drug seeking even following LA to heroin. Compulsive drug taking and seeking seem to be correlated with an upregulation of GHS-R1a expression in the limbic regions, and EE can reverse these neuroadaptations, potentially contributing to a reduction in drug seeking.
Collapse
Affiliation(s)
- Apoorva Vashisht
- Department of Biology, Graduate Center, City University of New York, NY, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - George Adamson
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Zuzu Gacso
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Joseph Slama
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Matthew Freund
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Sneha Vinod
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Natalie Sandoval
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Ziv Nachshon
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Sami Gubin
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Elizabeth Corso
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Robert Ranaldi
- Department of Biology, Graduate Center, City University of New York, NY, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Ewa Galaj
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
2
|
Merritt CR, Garcia EJ, Brehm VD, Fox RG, Moeller FG, Anastasio NC, Cunningham KA. Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone drug-seeking, but not self-administration, in male rats. Front Pharmacol 2023; 14:1268366. [PMID: 37795028 PMCID: PMC10545966 DOI: 10.3389/fphar.2023.1268366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The "hunger hormone" ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Erik J. Garcia
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria D. Brehm
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert G. Fox
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Engel JA, Pålsson E, Vallöf D, Jerlhag E. Ghrelin activates the mesolimbic dopamine system via nitric oxide associated mechanisms in the ventral tegmental area. Nitric Oxide 2023; 131:1-7. [PMID: 36513266 DOI: 10.1016/j.niox.2022.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Besides enhanced feeding, the orexigenic peptide ghrelin activates the mesolimbic dopamine system to cause reward as measured by locomotor stimulation, dopamine release in nucleus accumbens shell (NAcS), and conditioned place preference. Although the ventral tegmental area (VTA) appears to be a central brain region for this ghrelin-reward, the underlying mechanisms within this area are unknown. The findings that the gaseous neurotransmitter nitric oxide (NO) modulate the ghrelin enhanced feeding, led us to hypothesize that ghrelin increases NO levels in the VTA, and thereby stimulates reward-related behaviors. We initially demonstrated that inhibition of NO synthesis blocked the ghrelin-induced activation of the mesolimbic dopamine system. We then established that antagonism of downstream signaling of NO in the VTA, namely sGC, prevents the ability of ghrelin to stimulate the mesolimbic dopamine system. The association of ghrelin to NO was further strengthened by in vivo electrochemical recordings showing that ghrelin enhances the NO release in the VTA. Besides a GABAB -receptor agonist, known to reduce NO and cGMP, blocks the stimulatory properties of ghrelin. The present series of experiments reveal that ablated NO signaling, through pharmacologically inhibiting the production of NO and/or cGMP, prevents the ability of ghrelin to induced reward-related behaviors.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Jerlhag E. Animal studies reveal that the ghrelin pathway regulates alcohol-mediated responses. Front Psychiatry 2023; 14:1050973. [PMID: 36970276 PMCID: PMC10030715 DOI: 10.3389/fpsyt.2023.1050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Alcohol use disorder (AUD) is often described as repeated phases of binge drinking, compulsive alcohol-taking, craving for alcohol during withdrawal, and drinking with an aim to a reduce the negative consequences. Although multifaceted, alcohol-induced reward is one aspect influencing the former three of these. The neurobiological mechanisms regulating AUD processes are complex and one of these systems is the gut-brain peptide ghrelin. The vast physiological properties of ghrelin are mediated via growth hormone secretagogue receptor (GHSR, ghrelin receptor). Ghrelin is well known for its ability to control feeding, hunger, and metabolism. Moreover, ghrelin signaling appears central for alcohol-mediated responses; findings reviewed herein. In male rodents GHSR antagonism reduces alcohol consumption, prevents relapse drinking, and attenuates the motivation to consume alcohol. On the other hand, ghrelin increases the consumption of alcohol. This ghrelin-alcohol interaction is also verified to some extent in humans with high alcohol consumption. In addition, either pharmacological or genetic suppression of GHSR decreases several alcohol-related effects (behavioral or neurochemical). Indeed, this suppression blocks the alcohol-induced hyperlocomotion and dopamine release in nucleus accumbens as well as ablates the alcohol reward in the conditioned place preference model. Although not fully elucidated, this interaction appears to involve areas central for reward, such as the ventral tegmental area (VTA) and brain nodes targeted by VTA projections. As reviewed briefly, the ghrelin pathway does not only modulate alcohol-mediated effects, it regulates reward-related behaviors induced by addictive drugs. Although personality traits like impulsivity and risk-taking behaviors are common in patients with AUD, the role of the ghrelin pathway thereof is unknown and remains to be studied. In summary, the ghrelin pathway regulates addiction processes like AUD and therefore the possibility that GHSR antagonism reduces alcohol or drug-taking should be explored in randomized clinical trials.
Collapse
|
7
|
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors. Neuropsychopharmacology 2022; 47:1449-1460. [PMID: 34923576 PMCID: PMC9206024 DOI: 10.1038/s41386-021-01249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Collapse
|
8
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
9
|
Shevchouk OT, Tufvesson-Alm M, Jerlhag E. An Overview of Appetite-Regulatory Peptides in Addiction Processes; From Bench to Bed Side. Front Neurosci 2021; 15:774050. [PMID: 34955726 PMCID: PMC8695496 DOI: 10.3389/fnins.2021.774050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.
Collapse
Affiliation(s)
- Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Colvin KJ, Killen HS, Kanter MJ, Halperin MC, Engel L, Dickinson MB, Fimmel AI, Holland JG, Currie PJ. Differential effects of intra-ventral tegmental area ghrelin and glucagon-like peptide-1 on the stimulatory action of D-amphetamine and cocaine-induced ethanol intake in male Sprague Dawley rats. Behav Brain Res 2021; 421:113726. [PMID: 34954300 DOI: 10.1016/j.bbr.2021.113726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
In order to further elucidate the role of mesolimbic peptides in the expression of ethanol reward, the present study investigated the effects of ghrelin and glucagon-like peptide-1 (GLP-1) on ethanol intake, in addition to ethanol intake stimulated by systemic d-amphetamine or cocaine treatment. While a number of studies suggest that ghrelin plays an important role in mesolimbic reward, emerging data now indicate that GLP-1 receptor mechanisms inhibit reward signaling, possibly by directly or indirectly inhibiting ghrelinergic activity within the mesolimbic system. In the present study all rats were initially habituated to a 6% ethanol solution. We then demonstrated that intraperitoneal injections of d-amphetamine and cocaine increased ethanol intake compared to the vehicle condition. In subsequent testing we examined the effects of ventral tegmental area (VTA) ghrelin or vehicle paired with a fixed dose of d-amphetamine or vehicle. In separate rats we then investigated the impact of the GLP-1 agonist exendin-4 (Ex-4), injected into the VTA, on ethanol intake alone, or when Ex-4 was co-administered with d-amphetamine or cocaine. Our results indicated that VTA ghrelin significantly increased ethanol intake, and most importantly, potentiated the effect of d-amphetamine and cocaine on ethanol consumption. Conversely, VTA Ex-4 inhibited ethanol intake and antagonized the stimulatory effect of d-amphetamine and cocaine on ethanol consumption. In a final study we further demonstrated that VTA Ex-4 treatment significantly inhibited the combined stimulatory effects of ghrelin paired with d-amphetamine or ghrelin paired with cocaine. Overall our findings are consistent with a critical role for both ghrelin and GLP-1 receptor mechanisms in mesolimbic ethanol reward circuitry. Moreover, our results further suggest that ghrelin and GLP-1 modulate the stimulatory effect of psychostimulants on ethanol intake.
Collapse
Affiliation(s)
- Kayla J Colvin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Henry S Killen
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maxwell J Kanter
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maximilian C Halperin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Liv Engel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Matthew B Dickinson
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Anna I Fimmel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - James G Holland
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA.
| |
Collapse
|
11
|
Edvardsson CE, Vestlund J, Jerlhag E. A ghrelin receptor antagonist reduces the ability of ghrelin, alcohol or amphetamine to induce a dopamine release in the ventral tegmental area and in nucleus accumbens shell in rats. Eur J Pharmacol 2021; 899:174039. [PMID: 33737011 DOI: 10.1016/j.ejphar.2021.174039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The orexigenic peptide ghrelin increases the release of dopamine in the nucleus accumbens (NAc) shell via central ghrelin receptors, especially those located in the ventral tegmental area (VTA). The activity of the VTA dopamine neurons projecting to NAc shell, involves somatodendritic dopamine release within the VTA. However, the effects of ghrelin on the concomitant dopamine release in the VTA and NAc shell is unknown. It is further unknown whether addictive drugs, such as alcohol and amphetamine, enhance the dopamine levels in both these areas via ghrelin receptor dependent mechanisms. Thus, the effects of a ghrelin receptor antagonist, JMV2959, on the ability of i) central ghrelin ii) systemic alcohol or iii) systemic amphetamine to increase the dopamine release in the VTA and in the NAc shell in rats by using in vivo microdialysis was explored. We showed that systemic administration of JMV2959 blocks the ability of central ghrelin to increases dopamine release in the VTA and the NAc shell, and reduces the alcohol- and amphetamine-induced dopamine release in both these areas. Locomotor activity studies was then conducted in an attempt to correlate the ghrelin-induced dopamine release in the VTA to a behavioural outcome. These revealed that local infusion of a dopamine D1 receptor antagonist into the VTA blocks the ability of central ghrelin to cause a locomotor stimulation in mice. Collectively, this study adds to the growing body of evidence indicating that ghrelin signalling modulates the ability of ghrelin, and addictive drugs, to activate the mesoaccumbal dopamine pathway.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Yadegary A, Nazari-Serenjeh F, Darbandi N. Synergistic improvement effect of nicotine-ghrelin co-injection into the anterior ventral tegmental area on morphine-induced amnesia. Neuropeptides 2020; 80:102025. [PMID: 32029269 DOI: 10.1016/j.npep.2020.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/15/2022]
Abstract
In the present study the effect of ghrelin or ghrelin/nicotine injection into the anterior ventral tegmental area (aVTA) on morphine-induced amnesia in passive avoidance learning have been evaluated. Also, the role of the aVTA nicotinic receptors in possible ghrelin-induced effects has been investigated. All animals were bilaterally implanted with chronic cannulas in the aVTA. A step-through type passive avoidance task was used for measurement of memory. We found that post-training subcutaneous (s.c.) injection of morphine (0.5-7.5 mg/kg) dose-dependently reduced the step-through latency, indicating morphine-induced amnesia. Post-training bilateral infusion of ghrelin (0.3, 1.5 and 3 nmol/μl) in a dose-dependent manner reversed amnesia induced by morphine (7.5 mg/kg, s.c.). Furthermore, reversal effect of ghrelin (3 nmol/μl) was blocked by pre-treatment of intra-aVTA administration of mecamylamine (1-3 μg/rat), a nicotinic acetylcholine receptor antagonist. Intra-aVTA administration of the higher dose of mecamylamine (3 μg/rat) into the aVTA by itself decreased the step-through latency and induced amnesia. In addition, post-training intra-aVTA administration of nicotine (0.25, 0.5, 1 μg/rat) which alone cannot affect memory consolidation, decreased significantly the amnesia induced by morphine (7.5 mg/kg, s.c.). Co-treatment of an ineffective dose of ghrelin (0.3 nmol/μl) with an ineffective dose of nicotine (0.25 μg/rat) significantly increased step-through latency of morphine (7.5 mg/kg, s.c.) treated animals, indicating the synergistic effect of the drugs. Taken together, our results suggest that intra-aVTA administration of ghrelin reversed morphine-induced amnesia and that ghrelin interacts synergistically with nicotine to mitigate morphine-induced amnesia.
Collapse
Affiliation(s)
- Atena Yadegary
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
15
|
Schéle E, Pfabigan DM, Simrén J, Sailer U, Dickson SL. Ghrelin Induces Place Preference for Social Interaction in the Larger Peer of a Male Rat Pair. Neuroscience 2020; 447:148-154. [PMID: 32032669 DOI: 10.1016/j.neuroscience.2020.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023]
Abstract
Social interaction is important for survival in most social species including humans. To ensure social activities, individuals experience reward from social interaction, generating a powerfully reinforcing process. Here we hypothesized that reward from social interaction in a juvenile male rat pair may be enhanced by ghrelin, a circulating hormone that has been shown to enhance reward from other natural (e.g. food, sex) as well as artificial reinforcers (e.g. alcohol and other drugs of abuse). To this end, we assessed the impact of ghrelin and a ghrelin antagonist on preference for a chamber previously paired to the presence of a social partner in a conditioned place preference paradigm. We found that ghrelin increased and a ghrelin antagonist decreased preference for social interaction, but only in the heavier partner in a social pair. In addition, we found that administered ghrelin induced a positive association between preference for social interaction and body weight difference within socially interacting pairs, where larger ghrelin treated rats preferred social interaction, whereas smaller ghrelin treated rats avoided it, which raises the question if ghrelin could have a role in implementing social hierarchies in rats. In summary, we conclude that ghrelin signaling increases the reward from social interaction in a manner that reflects the degree of divergence in body weight between the social pair.
Collapse
Affiliation(s)
- Erik Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniela M Pfabigan
- Department of Behavioural Sciences in Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, Postboks 1111 Blindern, 0317 Oslo, Norway
| | - Joel Simrén
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Uta Sailer
- Department of Behavioural Sciences in Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, Postboks 1111 Blindern, 0317 Oslo, Norway
| | - Suzanne L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Dunn DP, Bastacky JM, Gray CC, Abtahi S, Currie PJ. Role of mesolimbic ghrelin in the acquisition of cocaine reward. Neurosci Lett 2019; 709:134367. [DOI: 10.1016/j.neulet.2019.134367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
|
17
|
Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT 2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. Int J Mol Sci 2019; 20:ijms20040889. [PMID: 30791361 PMCID: PMC6412472 DOI: 10.3390/ijms20040889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Current literature indicates that the orexigenic peptide ghrelin increases appetitive motivation via signaling in the mesolimbic reward system. Another gastric peptide, glucagon-like peptide-1 (GLP-1), and the neurotransmitter 5-hydroxytryptamine (5-HT), are both known to suppress operant responding for food by acting on key mesolimbic nuclei, including the ventral tegmental area (VTA). In order to investigate the interaction effects of ghrelin, GLP-1, and 5-HT within the VTA, we measured operant responding for sucrose pellets after the administration of ghrelin, the GLP-1 receptor agonist exendin-4 (Ex-4), and the 5-HT2c receptor agonist Ro60-0175 in male Sprague-Dawley rats. Following training on a progressive ratio 3 (PR3) schedule, animals were first injected with ghrelin into the VTA at doses of 3 to 300 pmol. In subsequent testing, separate rats were administered intraperitoneal (IP) Ex-4 (0.1–1.0 µg/kg) or VTA Ex-4 (0.01–0.1 µg) paired with 300 pmol ghrelin. In a final group of rats, the 5-HT2c agonist Ro60-0175 was injected IP (0.25–1.0 mg/kg) or into the VTA (1.5–3.0 µg), and under both conditions paired with 300 pmol ghrelin delivered into the VTA. Our results indicated that ghrelin administration increased operant responding for food reward and that this effect was attenuated by IP and VTA Ex-4 pretreatment as well as pre-administration of IP or VTA Ro60-0175. These data provide compelling evidence that mesolimbic GLP-1 and serotonergic circuitry interact with the ghrelinergic system to suppress ghrelin’s effects on the mediation of food reinforcement.
Collapse
|
18
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2018; 196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the limited efficacy of existing medications for addictive disorders including alcohol use disorder (AUD), the need for additional medications is substantial. Potential new medications for addiction can be identified through investigation of the neurochemical substrates mediating the ability of drugs of abuse such as alcohol to activate the mesolimbic dopamine system. Interestingly, recent studies implicate neuropeptides of the gut-brain axis as modulators of reward and addiction processes. The present review therefore summarizes the current studies investigating the ability of the gut-brain peptides ghrelin, glucagon-like peptide-1 (GLP-1), amylin and neuromedin U (NMU) to modulate alcohol- and drug-related behaviors in rodents and humans. Extensive literature demonstrates that ghrelin, the only known orexigenic neuropeptide to date, enhances reward as well as the intake of alcohol, and other drugs of abuse, while ghrelin receptor antagonism has the opposite effects. On the other hand, the anorexigenic peptides GLP-1, amylin and NMU independently inhibits reward from alcohol and drugs of abuse in rodents. Collectively, these rodent and human studies imply that central ghrelin, GLP-1, amylin and NMU signaling may contribute to addiction processes. Therefore, the need for randomized clinical trials investigating the effects of agents targeting these aforementioned systems on drug/alcohol use is substantial.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Havlickova T, Charalambous C, Lapka M, Puskina N, Jerabek P, Sustkova-Fiserova M. Ghrelin Receptor Antagonism of Methamphetamine-Induced Conditioned Place Preference and Intravenous Self-Administration in Rats. Int J Mol Sci 2018; 19:ijms19102925. [PMID: 30261633 PMCID: PMC6213741 DOI: 10.3390/ijms19102925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine abuse imposes a significant burden on individuals and society worldwide, and an effective therapy of methamphetamine addiction would provide distinguished social benefits. Ghrelin significantly participates in reinforcing neurobiological mechanisms of stimulants, including amphetamines; thus, ghrelin antagonism is proposed as a promising addiction treatment. The aim of our study was to elucidate whether the pretreatment with growth hormone secretagogue receptor (GHS-R1A) antagonist, substance JMV2959, could reduce the methamphetamine intravenous self-administration (IVSA) and the tendency to relapse, and whether JMV2959 could reduce or prevent methamphetamine-induced conditioned place preference (CPP) in rats. Following an adequate maintenance period, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 180 min sessions of methamphetamine IVSA under a fixed ratio FR1, which significantly reduced the number of active lever-pressings, the number of infusions, and the amount of the consumed methamphetamine dose. Pretreatment with JMV2959 also reduced or prevented relapse-like behavior tested in rats on the 12th day of the abstinence period. Pretreatment with JMV2959 significantly reduced the expression of methamphetamine-induced CPP. Simultaneous administration of JMV2959 with methamphetamine during the conditioning period significantly reduced the methamphetamine-CPP. Our results encourage further research of the ghrelin antagonism as a potential new pharmacological tool for methamphetamine addiction treatment.
Collapse
Affiliation(s)
- Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Nina Puskina
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 212800 Prague, Czech Republic.
| | - Pavel Jerabek
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| |
Collapse
|
21
|
Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13781. [PMID: 29797564 PMCID: PMC6252147 DOI: 10.1111/acer.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Since its discovery, the gut hormone, ghrelin, has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is, at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways, and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder.
Collapse
Affiliation(s)
- Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychology, University of Cambridge, UK
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
23
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
24
|
Cepko LC, Selva JA, Merfeld EB, Fimmel AI, Goldberg SA, Currie PJ. Ghrelin alters the stimulatory effect of cocaine on ethanol intake following mesolimbic or systemic administration. Neuropharmacology 2014; 85:224-31. [DOI: 10.1016/j.neuropharm.2014.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/29/2014] [Accepted: 05/18/2014] [Indexed: 01/16/2023]
|