1
|
Su C, Zou S, Li J, Wang L, Huang J. Supporting Nano Catalysts for the Selective Hydrogenation of Biomass-derived Compounds. CHEMSUSCHEM 2024; 17:e202400602. [PMID: 38760993 DOI: 10.1002/cssc.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The selective hydrogenation of biomass derivatives presents a promising pathway for the production of high-value chemicals and fuels, thereby reducing reliance on traditional petrochemical industries. Recent strides in catalyst nanostructure engineering, achieved through tailored support properties, have significantly enhanced the hydrogenation performance in biomass upgrading. A comprehensive understanding of biomass selective upgrading reactions and the current advancement in supported catalysts is crucial for guiding future processes in renewable biomass. This review aims to summarize the development of supported nanocatalysts for the selective hydrogenation of the US DOE's biomass platform compounds derivatives into valuable upgraded molecules. The discussion includes an exploration of the reaction mechanisms and conditions in catalytic transfer hydrogenation (CTH) and high-pressure hydrogenation. By thoroughly examining the tailoring of supports, such as metal oxide catalysts and porous materials, in nano-supported catalysts, we elucidate the promoting role of nanostructure engineering in biomass hydrogenation. This endeavor seeks to establish a robust theoretical foundation for the fabrication of highly efficient catalysts. Furthermore, the review proposes prospects in the field of biomass utilization and address application bottlenecks and industrial challenges associated with the large-scale utilization of biomass.
Collapse
Affiliation(s)
- Chunjing Su
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Sibei Zou
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Sydney, Australia
| | - Jiaquan Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| |
Collapse
|
2
|
Liu QY, Ma C, Chen Y, Wang ZY, Zhang FG, Tang JP, Yuan YJ. Solar-Driven Photothermal Catalytic Lignocellulosic Biomass-to-H 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50206-50215. [PMID: 37871167 DOI: 10.1021/acsami.3c11091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The conversion of lignocellulosic biomass to chemical fuel can achieve the sustainable use of lignocellulosic biomass, but it was limited by the lack of an effective conversion strategy. Here, we reported a unique approach of photothermal catalysis by using MoS2-reduced graphene oxide (MoS2/RGO) as the catalyst to convert lignocellulosic biomass into H2 fuel in alkaline solution. The RGO acting as a support for the growth of MoS2 results in the high exposed Mo edges, which act as efficient Lewis acidic sites for the oxygenolysis of lignocellulosic biomass dissolved in alkaline solution. The broad light absorption capacity and abundant Lewis acidic sites make MoS2/RGO to be efficient catalysts for photothermal catalytic H2 production from lignocellulosic biomass, and the H2 generation rate with respect to catalyst under 300 W Xe lamp irradiation in cellulose, rice straw, wheat straw, polar wood chip, bamboo, rice hull, and corncob aqueous solution achieve 223, 168, 230, 564, 390, 234, and 55 μmol·h-1·g-1, respectively. It is believed that this photothermal catalysis is a simple and "green" approach for the lignocellulosic biomass-to-H2 conversion, which would have great potential as a promising approach for solar energy-driven H2 production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Chi Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fu-Guang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
3
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Brazdausks P, Godina D, Puke M. Direct Furfural Production from Deciduous Wood Pentosans Using Different Phosphorus-Containing Catalysts in the Context of Biorefining. Molecules 2022; 27:7353. [PMID: 36364180 PMCID: PMC9658606 DOI: 10.3390/molecules27217353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2024] Open
Abstract
This study seeks to improve the effectiveness of the pretreatment stage when direct furfural production is integrated into the concept of a lignocellulosic biomass biorefinery. First of all, the catalytic effects of different phosphorus-containing salts (AlPO₄, Ca₃(PO₄)₂, FePO₄, H₃PO₄, NaH₂PO₄) were analysed in hydrolysis for their ability to convert birch wood C-5 carbohydrates into furfural. The hydrolysis process was performed with three different amounts of catalyst (2, 3 and 4 wt.%) at a constant temperature (175 °C) and treatment time (90 min). It was found that the highest amount of furfural (63-72%, calculated based on the theoretically possible yield (% t.p.y.)) was obtained when H₃PO₄ was used as a catalyst. The best furfural yield among the used phosphorus-containing salts was obtained with NaH₂PO₄: 40 ± 2%. The greatest impact on cellulose degradation during the hydrolysis process was observed using H₃PO₄ at 12-20% of the initial amount, while the lowest degradation was observed using NaH₂PO₄ as a catalyst. The yield of furfural was 60.5-62.7% t.p.y. when H₃PO₄ and NaH₂PO₄ were combined (1:2, 1:1, or 2:1 at a catalyst amount of 3 wt.%); however, the amount of cellulose that was degraded did not exceed 5.2-0.3% of the starting amount. Enzymatic hydrolysis showed that such pretreated biomass could be directly used as a substrate to produce glucose. The highest conversion ratio of cellulose into glucose (83.1%) was obtained at an enzyme load of 1000 and treatment time of 48 h.
Collapse
Affiliation(s)
- Prans Brazdausks
- Latvian State Institute of Wood Chemistry, Dzerbenes 27, LV-1006 Riga, Latvia
| | | | | |
Collapse
|
5
|
Enhanced Furfural Production in Deep Eutectic Solvents Comprising Alkali Metal Halides as Additives. Molecules 2021; 26:molecules26237374. [PMID: 34885956 PMCID: PMC8659074 DOI: 10.3390/molecules26237374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The addition of alkali metal halide salts to acidic deep eutectic solvents is here reported as an effective way of boosting xylan conversion into furfural. These salts promote an increase in xylose dehydration due to the cation and anion interactions with the solvent being a promising alternative to the use of harsh operational conditions. Several alkali metal halides were used as additives in the DES composed of cholinium chloride and malic acid ([Ch]Cl:Mal) in a molar ratio of 1:3, with 5 wt.% of water. These mixtures were then used as both solvent and catalyst to produce furfural directly from xylan through microwave-assisted reactions. Preliminary assays were carried out at 150 and 130 °C to gauge the effect of the different salts in furfural yields. A Response Surface Methodology was then applied to optimize the operational conditions. After an optimization of the different operating conditions, a maximum furfural yield of 89.46 ± 0.33% was achieved using 8.19% of lithium bromide in [Ch]Cl:Mal, 1:3; 5 wt.% water, at 157.3 °C and 1.74 min of reaction time. The used deep eutectic solvent and salt were recovered and reused three times, with 79.7% yield in the third cycle, and the furfural and solvent integrity confirmed.
Collapse
|
6
|
Sherif N, Gadalla M, Kamel D. Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Chen X, Luo Y, Bai X. Upcycling polyamide containing post-consumer Tetra Pak carton packaging to valuable chemicals and recyclable polymer. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:423-432. [PMID: 34252692 DOI: 10.1016/j.wasman.2021.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Billion tons of post-consumer Tetra Pak cartons are discarded annually as land and ocean wastes, creating significant environmental problems and resource losses. Recycling of the carton wastes is hindered by its multi-material compositions and low values of the recycled products. In this study, a novel upcycling of the cartons was investigated. A post-consumer carton consisting of paper, polyolefin, and polyamide was directly converted in 210-230 °C tetrahydrofuran containing 10-20 mM acid to produce up to 19.2% of levoglucosenone and 8.6% of furfural by selectively decomposing paper fraction. The remaining solids containing mostly intact polyethylene and polyamide but also a smaller fraction of paper-derived char were separated using a solvent-dissolution method. The xylene-soluble fraction was a recycled polymer similar to the original polyethylene, which was verified by its functional groups, the composition of the pyrolysis products, and the melt rheology results. The xylene-insoluble fraction was a mixture of polyamide and paper-derived char. Upon pyrolysis, caprolactam was produced as the only major vapor product. The remaining, thermally stable paper-derived char could be used as a high-quality solid fuel. Overall, the demonstrated recycling method could potentially maximize the values of the products recovered from carton wastes.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Yixin Luo
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Abstract
Abstract
In this work, we present a novel method for the synthesis of ester and amide derivatives containing furan rings (furfural derivatives) under mild synthetic conditions supported by microwave radiation. N-(Furan-2-ylmethyl)furan-2-carboxamide and furan-2-ylmethyl furan-2-carboxylate were produced using 2-furoic acid, furfurylamine, and furfuryl alcohol. The reactions were carried out in a microwave reactor in the presence of effective coupling reagents: DMT/NMM/TsO− or EDC. The reaction time, the solvent, and the amounts of the substrates were optimized. After crystallization or flash chromatography, the final compounds were isolated with good or very good yields. Our method allows for the synthesis of N-blocked amides using N-blocked amino acids (Boc, Cbz, Fmoc) and amine. As well as compounds with a monoamide and ester moiety, products with diamides and diester bonds (N,N-bis(furan-2-ylmethyl)furan-2,5-dicarboxamide, bis(furan-2-ylmethyl) furan-2,5-dicarboxylate, and furan-3,4-diylbis(methylene) bis(furan-2-carboxylate)) were synthesized with moderate yields in the presence of DMT/NMM/TsO– or EDC, using 2,5-furandicarboxylic acid and 3,4-bis(hydroxymethyl)furan as substrates.
Collapse
|
9
|
Zhang L, Tan J, Xing G, Dou X, Guo X. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. BIORESOUR BIOPROCESS 2021; 8:10. [PMID: 38650223 PMCID: PMC10992739 DOI: 10.1186/s40643-021-00364-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
Conversion of the abundant agricultural residual cotton stalk (CS) into useful chemicals or functional materials could alleviate the fossil fuels caused energy shortages and environmental crises. Although some advances have been achieved, less attention has been paid to the plant tissues effect. In this study, the plant tissue of CS was changed by part degradation of some components (hemicelluloses and lignin, for example) with the aid of acid/base (or both). The pretreated CS was transformed into hydrochar by hydrothermal carbonization (HTC) method. Morphological and chemical compositions of CS hydrochar were analyzed by various techniques, including elemental analysis, Fourier transform infrared (FTIR), BET analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Methylene blue (MB) removal of prepared CS hydrochar was used to evaluate CS hydrochar pollutions adsorption capacity. Results reveal acid/base (or both) pretreatment is beneficial for CS raw material to prepare high-quality CS hydrochar. The effects of some parameters, such as initial MB concentration, temperature, pH value and recyclability on the adsorption of MB onto both acid and base-pretreated CS hydrochar (CS-H2SO4 + NaOH-HTC) were studied. The present work exhibits the importance of agricultural waste biomass material plant tissues on its derived materials, which will have a positive effect on the direct utilization of waste biomass.
Collapse
Affiliation(s)
- Libo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China.
| | - Junyan Tan
- Shenzhen College of International Education, Shenzhen, 518048, People's Republic of China
| | - Gangying Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xintong Dou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xuqiang Guo
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China
| |
Collapse
|
10
|
Gabriel JB, Oliveira V, Souza TED, Padula I, Oliveira LCA, Gurgel LVA, Baêta BE, Silva AC. New Approach to Dehydration of Xylose to 2-Furfuraldehyde Using a Mesoporous Niobium-Based Catalyst. ACS OMEGA 2020; 5:21392-21400. [PMID: 32905303 PMCID: PMC7469122 DOI: 10.1021/acsomega.0c01547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/24/2020] [Indexed: 06/06/2023]
Abstract
Furfural chemistry is one of the most promising platforms directly derived from lignocellulose biomass. In this study, a niobium-based catalyst (mNb-bc) was synthesized by a new fast and simple method. This new method uses microemulsion to obtain a catalyst with a high specific surface area (340 m2 g-1), defined mesoporosity, and high acidity (65 μmol g-1). Scanning electron microscopy revealed that mNb-bc has a rough surface. The mNb-bc was used to catalyze the conversion reaction of xylose into 2-furfuraldehyde in a monophasic system using water as a green solvent. This reaction was investigated using a 23 experimental design by varying the temperature, time, and catalyst-to-xylose ratio (CXR). The responses evaluated were xylose conversion (X c), reaction yield (Y), and selectivity to 2-furfuraldehyde (S). The optimized reaction conditions were used to evaluate the reaction kinetics. At milder reaction conditions of 140 °C, 2 h, and a CXR of 10%, mNb-bc led to an X c value of 41.2%, an S value of 77.1%, and a Y value of 31.8%.
Collapse
Affiliation(s)
- José B. Gabriel
- Laboratory of Technological
and Environmental Chemistry, Department of Chemistry, Institute of
Exact and Biological Sciences (ICEB), Federal
University of Ouro Preto, Campus Universitário Morro do Cruzeiro,
Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil
- Department of Chemistry, Institute of Exact Sciences
(ICEX), Federal University of Minas Gerais
(UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas
Gerais, Brazil
| | - Victor Oliveira
- Laboratory of Technological
and Environmental Chemistry, Department of Chemistry, Institute of
Exact and Biological Sciences (ICEB), Federal
University of Ouro Preto, Campus Universitário Morro do Cruzeiro,
Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Talita Evelyn de Souza
- Department of Chemistry, Institute of Exact Sciences
(ICEX), Federal University of Minas Gerais
(UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas
Gerais, Brazil
| | - Izabela Padula
- Department of Chemistry, Institute of Exact Sciences
(ICEX), Federal University of Minas Gerais
(UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas
Gerais, Brazil
| | - Luiz C. A. Oliveira
- Department of Chemistry, Institute of Exact Sciences
(ICEX), Federal University of Minas Gerais
(UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas
Gerais, Brazil
| | - Leandro V. A. Gurgel
- Laboratory of Technological
and Environmental Chemistry, Department of Chemistry, Institute of
Exact and Biological Sciences (ICEB), Federal
University of Ouro Preto, Campus Universitário Morro do Cruzeiro,
Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Bruno Eduardo.
L. Baêta
- Laboratory of Technological
and Environmental Chemistry, Department of Chemistry, Institute of
Exact and Biological Sciences (ICEB), Federal
University of Ouro Preto, Campus Universitário Morro do Cruzeiro,
Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Adilson C. Silva
- Laboratory of Technological
and Environmental Chemistry, Department of Chemistry, Institute of
Exact and Biological Sciences (ICEB), Federal
University of Ouro Preto, Campus Universitário Morro do Cruzeiro,
Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
11
|
Padilla-Rascón C, Romero-García JM, Ruiz E, Castro E. Optimization with Response Surface Methodology of Microwave-Assisted Conversion of Xylose to Furfural. Molecules 2020; 25:E3574. [PMID: 32781612 PMCID: PMC7464547 DOI: 10.3390/molecules25163574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The production of furfural from renewable sources, such as lignocellulosic biomass, has gained great interest within the concept of biorefineries. In lignocellulosic materials, xylose is the most abundant pentose, which forms the hemicellulosic part. One of the key steps in the production of furfural from biomass is the dehydration reaction of the pentoses. The objective of this work was to assess the conditions under which the concentration of furfural is maximized from a synthetic, monophasic, and homogeneous xylose medium. The experiments were carried out in a microwave reactor. FeCl3 in different proportions and sulfuric acid were used as catalysts. A two-level, three-factor experimental design was developed for this purpose. The results were further analyzed through a second experimental design and optimization was performed by response surface methodology. The best operational conditions for the highest furfural yield (57%) turned out to be 210 °C, 0.5 min, and 0.05 M FeCl3.
Collapse
Affiliation(s)
- Carmen Padilla-Rascón
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (C.P.-R.); (J.M.R.-G.); (E.C.)
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Juan Miguel Romero-García
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (C.P.-R.); (J.M.R.-G.); (E.C.)
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (C.P.-R.); (J.M.R.-G.); (E.C.)
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (C.P.-R.); (J.M.R.-G.); (E.C.)
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
12
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
13
|
Pirmoradi M, Janulaitis N, Gulotty RJ, Kastner JR. Continuous Hydrogenation of Aqueous Furfural Using a Metal-Supported Activated Carbon Monolith. ACS OMEGA 2020; 5:7836-7849. [PMID: 32309693 PMCID: PMC7160850 DOI: 10.1021/acsomega.9b04010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Continuous hydrogenation of aqueous furfural (4.5%) was studied using a monolith form (ACM) of an activated carbon Pd catalyst (∼1.2% Pd). A sequential reaction pathway was observed, with ACM achieving high selectivity and space time yields (STYs) for furfuryl alcohol (∼25%, 60-70 g/L-cat/h, 7-15 1/h liquid hourly space velocity, LHSV), 2-methylfuran (∼25%, 45-50 g/L-cat/h, 7-15 1/h LHSV), and tetrahydrofurfuryl alcohol (∼20-60%, 10-50 g/L-cat/h, <7 1/h LHSV). ACM showed a low loss of activity and metal leaching over the course of the reactions and was not limited by H2 external mass transfer resistance. Acetic acid (1%) did not significantly affect furfural conversion and product yields using ACM, suggesting Pd/ACM's potential for conversion of crude furfural. Limited metal leaching combined with high metal dispersion and H2 mass transfer rates in the composite carbon catalyst (ACM) provides possible advantages over granular and powdered forms in continuous processing.
Collapse
Affiliation(s)
- Maryam Pirmoradi
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Nida Janulaitis
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Robert J. Gulotty
- Applied
Catalysts/Applied Ceramics Inc., 2 Technology Place, Laurens, South Carolina 29360, United States
| | - James R. Kastner
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Janczewski Ł, Walczak M, Frączyk J, Kamiński ZJ, Kolesińska B. Microwave-assisted Cannizzaro reaction—Optimisation of reaction conditions. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1657459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Łukasz Janczewski
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Małgorzata Walczak
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
15
|
Šivec R, Grilc M, Huš M, Likozar B. Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00898] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
16
|
Iroegbu AO, Hlangothi SP. Furfuryl Alcohol a Versatile, Eco-Sustainable Compound in Perspective. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-00036-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Iroegbu AO, Hlangothi SP. Effects of the Type of Catalyst on the Polymerisation Mechanism of Furfuryl Alcohol and its Resultant Properties. CHEMISTRY AFRICA 2018. [DOI: 10.1007/s42250-018-0017-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Apriceno A, Girelli AM, Scuto FR, Tarola AM. Determination of furanic compounds and acidity for Italian honey quality. FLAVOUR FRAG J 2018. [DOI: 10.1002/ffj.3468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Azzurra Apriceno
- Department of Chemistry; Sapienza University of Rome; Rome Italy
| | | | | | - Anna Maria Tarola
- Laboratory of Commodities Sciences, Department of Management; Sapienza University of Rome; Rome Italy
| |
Collapse
|
19
|
Naidu DS, Hlangothi SP, John MJ. Bio-based products from xylan: A review. Carbohydr Polym 2018; 179:28-41. [DOI: 10.1016/j.carbpol.2017.09.064] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
|
20
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
21
|
Li X, Jia P, Wang T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01838] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaodan Li
- Beijing Key Laboratory of
Green Reaction Engineering and Technology, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| | - Pei Jia
- Beijing Key Laboratory of
Green Reaction Engineering and Technology, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of
Green Reaction Engineering and Technology, Department of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|