1
|
Yang J, He Y, Nan S, Li J, Pi A, Yan L, Xu J, Hao Y. Therapeutic effect of propolis nanoparticles on wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
2
|
Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, Vargas JI, Betancourt L. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci 2022; 101:102159. [PMID: 36279608 PMCID: PMC9597123 DOI: 10.1016/j.psj.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nutritional additives such as propolis seek to improve intestinal health as an alternative to the global ban on in-feed antibiotics used as growth promoters (AGP). The objective of this study was to evaluate the effect of propolis supplementation in diet of broilers. Four hundred and fifty straight-run Ross 308 AP broilers were fed with a basal diet (BD) throughout the whole experimental period. Birds were randomly distributed into 5 groups at d 14: negative control without antibiotics nor propolis (AGP-), positive control 500 ppm of Zinc Bacitracin as growth promoter (AGP+), and 3 groups supplemented with 150, 300, and 450 ppm of propolis. Every group included 6 replicates of 15 birds each. Propolis concentration was increased from d 22 to 42, in experimental groups to 300, 600, and 900 ppm of propolis, and 10% of raw soybean was included as a challenge in all groups during the same period. Analysis of productive parameters, intestinal morphometry, and relative quantification of genes associated with epithelial integrity by qPCR were performed at 21 and 42 d. The groups with the greatest weights were those that consumed diets including 150 (21 d) and 900 ppm (42 d) of propolis compared with all treatments. The lowest score of ISI was found at 300 (21 d) and 600 ppm (42 d). A lower degree of injury in digestive system was seen with the inclusion of 300 ppm (21 d) and 900 ppm (42 d). Up-regulation of zonula occludens-1 (ZO-1) was observed in jejunum of broilers supplemented with 150 and 300 ppm at 21 d. Up-regulation of ZO-1 and TGF-β was also evidenced in ileum at all propolis inclusion levels at 42-day-old compared to AGP+ and AGP-. The beneficial effects were evidenced at inclusion levels of 150 ppm in the starter and 900 ppm in the finisher. According to the results, the Colombian propolis inclusion can improve productive performance, physiological parameters, and gene expression associated with intestinal integrity.
Collapse
Affiliation(s)
- Camila Daza-Leon
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Arlen P Gomez
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | - Diana Álvarez-Mira
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Loren Carvajal-Diaz
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia; Compañía Campo Colombia SAS, Bogotá, DC, Colombia
| | - Gloria Ramirez-Nieto
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | | | | | - Liliana Betancourt
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
3
|
Research Progress on Therapeutic Effect and Mechanism of Propolis on Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5798941. [PMID: 35911156 PMCID: PMC9334088 DOI: 10.1155/2022/5798941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Propolis is a kind of reduct collected by bees from various plant sources. Because propolis is a mixture, it has a variety of biological activities, excellent anti-inflammatory and bactericidal effects. Especially in the treatment of infectious wounds, acute wounds, burns, and scalds and promoting wound healing, more and more scientists began to apply it to the research field of wound healing. The standard preparation of propolis combined with other compound components has a safer and less toxic effect in the treatment of trauma. In order to more effectively use propolis products in wound treatment. This paper reviews the effect and treatment mechanism of propolis on different types of wound healing, as well as the synergistic effect of propolis and other compounds, in order to provide ideas for the further exploration of the biological activity and pharmacological function of propolis in the future, as well as its in-depth development in the field of wound healing. It will also provide a theoretical reference for the further development and utilization of propolis.
Collapse
|
4
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
5
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Dominguez-Verano P, Martinez-Galero E, Canales-Martinez MM, Rodriguez-Monroy MA. Evaluation of the gastroprotective effects of Chihuahua propolis on indomethacin- induced gastric ulcers in mouse. Biomed Pharmacother 2021; 137:111345. [PMID: 33556873 DOI: 10.1016/j.biopha.2021.111345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to evaluate the gastroprotective activity of a Mexican propolis on indomethacin-induced gastric ulcers in a mouse model. The following contents of the ethanolic extract of propolis of Chihuahua (EEPCh) were determined: antioxidant activity (SA50), total phenolic content (TPC), total flavonoid content (TFC), and chemical composition by HPLC-DAD and HPLC-MS, as well as acute toxicity by OECD Guideline 423. Gastric lesions were induced by intragastric indomethacin treatment in male ICR mice. As the positive control, omeprazole was administered, and three doses of EEPCh were evaluated (50, 150 and 300 mg/kg). Gastric mucosal injury, histological changes and mucosal content were evaluated by means of H&E and PAS staining. For homogenized gastric tissues, the following were evaluated: TBARS, MPO, and PGE2 levels; SOD and GPx antioxidant enzymatic activity; and the concentrations of the proinflammatory cytokines, TNF-α, IL-1β and IL-6. EEPCh had a significant SA50 of 41.55 µg/mL. The TPC of EEPCh was 860 mg GAE/g, and its TFC was 49.58 mg QE/g. Different phenolic compounds were identified in the extract and were not toxic. The EEPCh doses decreased mucosal damage and histological injuries, maintained the mucosal content and reduced the TBARS, MPO and concentrations of proinflammatory cytokines in gastric ulcer tissues. The 150 and 300 mg/kg doses increased the SOD activity and maintained the PGE2 content. Only the 300 mg/kg dose increased the GPx activity. The results of this study suggest that EEPCh displays gastroprotective effects by means of its antioxidant activity and anti-inflammatory effects and promotes ulcer protection through the maintenance of mucosal content and PGE2 levels.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México; Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Elizdath Martinez-Galero
- Laboratorio de Toxicología de la Reproducción-Teratogénesis, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| |
Collapse
|
6
|
Pahlavani N, Malekahmadi M, Firouzi S, Rostami D, Sedaghat A, Moghaddam AB, Ferns GA, Navashenaq JG, Reazvani R, Safarian M, Ghayour-Mobarhan M. Molecular and cellular mechanisms of the effects of Propolis in inflammation, oxidative stress and glycemic control in chronic diseases. Nutr Metab (Lond) 2020; 17:65. [PMID: 32817750 PMCID: PMC7425411 DOI: 10.1186/s12986-020-00485-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Propolis is a sticky, resinous material gather from plants and is blended with wax and other constituents. It is reported to have anti-inflammatory, anti-oxidative and blood glucose-lowering properties. This review aims to summarise evidences for the cellular and molecular mechanism of Propolis in inflammation, oxidative stress, and glycemic control. Propolis stimulate the production and secretion of anti-inflammatory cytokines and to inhibit the production of inflammatory cytokines and due to its various antioxidant and poly-phenolic compounds may has a role in control and treating some of the chronic diseases. Most studies have shown that Propolis may affect metabolic factors including plasma insulin levels, and it has proposed that it could be used in the prevention and treatment of T2D Mellitus. In general, to demonstrate the definite effects of Propolis on chronic diseases, more studies are required using larger sample sizes and various doses of Propolis, using better characterized and standardized agents.
Collapse
Affiliation(s)
- Naseh Pahlavani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Mahsa Malekahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Safieh Firouzi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Daryoush Rostami
- Department of Anesthesia, School of Paramedical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Sedaghat
- Cardiac Anesthesia Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Bagheri Moghaddam
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH UK
| | | | - Reza Reazvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Mohammad Safarian
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Sahlan M, Devina A, Pratami DK, Situmorang H, Farida S, Munim A, Kusumoputro B, Yohda M, Faried A, Gozan M, Ledyawati M. Anti-inflammatory activity of Tetragronula species from Indonesia. Saudi J Biol Sci 2018; 26:1531-1538. [PMID: 31762622 PMCID: PMC6864151 DOI: 10.1016/j.sjbs.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-inflammatory drugs inhibit inflammation, particularly those classified as nonsteroidal anti-inflammatory drugs (NSAIDs). Several studies have reported that propolis has both anti-ulcerogenic and anti-inflammatory effects. In this study, we investigated the bioactive compound and in vivo anti-inflammatory properties of both smooth and rough propolis from Tetragronula sp. To further identify anti-inflammatory markers in propolis, LC-MS/MS was used, and results were analyzed by Mass Lynx 4.1. Rough and smooth propolis of Tetragonula sp. were microcapsulated with maltodextrin and arabic gum. Propolis microcapsules at dose 25–200 mg/kg were applied for carrageenan-induced rat’s paw-inflammation model. Data were analyzed by one-way ANOVA and Kruskal–Wallis statistical tests. LC-MS/MS experiments identified seven anti-inflammatory compounds, including [6]-dehydrogingerdione, alpha-tocopherol succinate, adhyperforin, 6-epiangustifolin, deoxypodophyllotoxin, kurarinone, and xanthoxyletin. Our results indicated that smooth propolis at 50 mg/kg inhibited inflammation to the greatest extent, followed by rough propolis at a dose of 25 mg/kg. SPM and RPM with the dose of 25 mg/kg had inflammatory inhibition value of 62.24% and 58.12%, respectively, which is comparable with the value 70.26% of sodium diclofenac with the dose of 135 mg/kg. This study suggests that propolis has the potential candidate to develop as a non-steroid anti-inflammatory drug.
Collapse
Affiliation(s)
- Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia.,Research Centre for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia
| | - Andrea Devina
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia
| | - Diah Kartika Pratami
- Lab of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta 12640, Indonesia
| | - Herbert Situmorang
- Faculty of Medicine, Universitas Indonesia, Campus UI Salemba, Jakarta 10430, Indonesia
| | - Siti Farida
- Faculty of Medicine, Universitas Indonesia, Campus UI Salemba, Jakarta 10430, Indonesia
| | - Abdul Munim
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Benyamin Kusumoputro
- Research Centre for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia.,Department of Electro, Faculty of Engineering, Universitas Indonesia, Campus UI, Depok 16425, West Java, Indonesia
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ahmad Faried
- Department of Neurosurgery and Oncology & Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| | - Misri Gozan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia
| | - Mia Ledyawati
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Institute of Technology Bandung, West Java, Indonesia
| |
Collapse
|
8
|
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1259510. [PMID: 28814983 PMCID: PMC5549483 DOI: 10.1155/2017/1259510] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/09/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND There are several health benefits that honeybee products such as honey, propolis, and royal jelly claim toward various types of diseases in addition to being food. SCOPE AND APPROACH In this paper, the effects of honey, propolis, and royal jelly on different metabolic diseases, cancers, and other diseases have been reviewed. The modes of actions of these products have also been illustrated for purposes of better understanding. KEY FINDINGS AND CONCLUSIONS An overview of honey, propolis, and royal jelly and their biological potentials was highlighted. The potential health benefits of honey, such as microbial inhibition, wound healing, and its effects on other diseases, are described. Propolis has been reported to have various health benefits related to gastrointestinal disorders, allergies, and gynecological, oral, and dermatological problems. Royal jelly is well known for its protective effects on reproductive health, neurodegenerative disorders, wound healing, and aging. Nevertheless, the exact mechanisms of action of honey, propolis, and royal jelly on the abovementioned diseases and activities have not been not fully elucidated, and further research is warranted to explain their exact contributions.
Collapse
Affiliation(s)
- Visweswara Rao Pasupuleti
- Institute of Food Security and Sustainable Agriculture, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
| | - Lakhsmi Sammugam
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
| | - Nagesvari Ramesh
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
| | - Siew Hua Gan
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| |
Collapse
|
9
|
Waller SB, Peter CM, Hoffmann JF, Picoli T, Osório LDG, Chaves F, Zani JL, de Faria RO, de Mello JRB, Meireles MCA. Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis. Microb Pathog 2017; 105:117-121. [PMID: 28219829 DOI: 10.1016/j.micpath.2017.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/19/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
This study aimed to evaluate the chemical composition and cytotoxic activity of brown Brazilian propolis and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis from animal sporotrichosis. Propolis was acquired commercially and prepared as a hydroalcoholic extract. Chemical analysis was evaluated by liquid chromatography coupled to mass spectrometry of ultra-efficiency. The cell viability was evaluated by MTT test in MDBK cells of 50 to 0.09 μg/mL. For antifungal tests, twenty isolates of Sporothrix brasiliensis from dogs (n = 11) and cats (n = 9) with sporotrichosis were tested to itraconazole (16-0.0313 μg/mL) and to propolis (3.125-0.09 mg/mL) by broth microdilution technique (CLSI M38-A2), adapted to natural products. The results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Itraconazole showed activity between MIC values of 0.25 to greater than 16 μg/mL, and 88.9% (08/09) and 72.7% (08/11) of S. brasiliensis from cats and dogs, respectively, were considered itraconazole-resistant. All Sporothrix brasiliensis were sensitive to brown propolis between MIC values of 0.19-1.56 mg/mL, including the itraconazole-resistant isolates, whereas the MFC values of propolis were from 0.78 to greater than 3.125 mg/mL. Propolis maintained a medium to high cell viability between concentration of 0.78 to 0.09 μg/mL, and p-coumaric acid was the major compound. Brown Brazilian propolis is a promising antifungal candidate against sporotrichosis and more studies need to be undertaken to evaluate its safe use to understand its efficacy.
Collapse
Affiliation(s)
- Stefanie B Waller
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Cristina M Peter
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Jéssica F Hoffmann
- Laboratório Cromatografia e Espectrometria de Massas, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tony Picoli
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luiza da G Osório
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fábio Chaves
- Laboratório Cromatografia e Espectrometria de Massas, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - João L Zani
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Renata O de Faria
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - João R B de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mário C A Meireles
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|