1
|
Song W, Zhao D, Guo F, Wang J, Wang Y, Wang X, Han Z, Fan W, Liu Y, Xu Z, Chen L. Additive manufacturing of degradable metallic scaffolds for material-structure-driven diabetic maxillofacial bone regeneration. Bioact Mater 2024; 36:413-426. [PMID: 39040493 PMCID: PMC11261217 DOI: 10.1016/j.bioactmat.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The regeneration of maxillofacial bone defects associated with diabetes mellitus remains challenging due to the occlusal loading and hyperglycemia microenvironment. Herein, we propose a material-structure-driven strategy through the additive manufacturing of degradable Zn-Mg-Cu gradient scaffolds. The in situ alloying of Mg and Cu endows Zn alloy with admirable compressive strength for mechanical support and uniform degradation mode for preventing localized rupture. The scaffolds manifest favorable antibacterial, angiogenic, and osteogenic modulation capacity in mimicked hyperglycemic microenvironment, and Mg and Cu promote osteogenic differentiation in the early and late stages, respectively. In addition, the scaffolds expedite diabetic maxillofacial bone ingrowth and regeneration by combining the metabolic regulation effect of divalent metal cations and the hyperboloid and suitable permeability of the gradient structure. RNA sequencing further reveals that RAC1 might be involved in bone formation by regulating the transport and uptake of glucose related to GLUT1 in osteoblasts, contributing to cell function recovery. Inspired by bone healing and structural cues, this study offers an essential understanding of the designation and underlying mechanisms of the material-structure-driven strategy for diabetic maxillofacial bone regeneration.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Danlei Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhengshuo Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yijun Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Markandeywar TS, Singh D, Singh G, Kurmi BD, Narang RK. Endothelial Progenitor Cell (EPC) is a Prime Target in Diabetic Wound Healing: Mechanisms and Target Therapies. Curr Mol Med 2024; 24:1073-1076. [PMID: 37694783 DOI: 10.2174/1566524023666230911141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Tanmay Sudhakar Markandeywar
- IK Gujral Punjab Technical University, Kapurthala, 144603, Jalandhar Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali, 140413, India
| | - Gurmeet Singh
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| |
Collapse
|
3
|
Yuan J, Wang Y, Wang D, Yan H, Wang N. Loxenatide attenuates ROS-mediated vascular endothelial progenitor cell damage and mitochondrial dysfunction via SIRT3/Foxo3 signaling pathway. J Biochem Mol Toxicol 2023; 37:e23452. [PMID: 37417536 DOI: 10.1002/jbt.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Diabetes mellitus (DM), becomes a main public health issue worldwide due to the rapid increase in DM patient numbers. The dysfunction of endothelial progenitor cells (EPCs) in DM patients plays a critical role in endothelial repair and the progression of DM-related vascular complications. Loxenatide is an a glucagon-like peptide 1 receptor agonist, which is used to control glycemic in type 2 diabetes patients. However, the role of Loxenatide in EPCs remains to be investigated. EPCs were isolated, characterized, and treated with Loxenatide, high-glucose, or 3-TYP. quantitative real-time polymerase chain reaction, flow cytometry, western blot, and cell counting kit-8 assay were employed to validate the expression of gene and protein expressions and cell viability, respectively. Application of Seahorse XFp to measure oxygen consumption and mitochondrial membrane potential (MMP) were measured by Seahorse XFp and MMP assay. Loxenatide attenuated high-glucose-induced reactive oxygen species (ROS) production and mitochondrial-dependent apoptosis of EPCs in a concentration-dependent manner. The EPC mitochondrial respiration dysfunction induced by high glucose was also repressed by the loxenatide treatment. The protection effect of Loxenatide on EPCs against high-glucose was applied by activating the sirtuin 3 (SIRT3)/Foxo3 signaling pathway. We demonstrated the regulatory role of Loxenatide in mitochondrial dysfunction and apoptosis of EPCs. We elucidated that Loxenatide protects EPC from high-glucose-induced apoptosis via ROS-mediated mitochondrial pathway through the SIRT3/Foxo3 signing pathway. This may provide a new therapeutical target for the treatment of DM-related vascular complications.
Collapse
Affiliation(s)
- Junfang Yuan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, People's Republic of China
| | - Yuzhong Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, People's Republic of China
| | - Defeng Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, People's Republic of China
| | - Han Yan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, People's Republic of China
| | - Ning Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, People's Republic of China
| |
Collapse
|
4
|
Gonçalves TAF, Lima VS, de Almeida AJPO, de Arruda AV, Veras ACMF, Lima TT, Soares EMC, Santos ACD, Vasconcelos MECD, de Almeida Feitosa MS, Veras RC, de Medeiros IA. Carvacrol Improves Vascular Function in Hypertensive Animals by Modulating Endothelial Progenitor Cells. Nutrients 2023; 15:3032. [PMID: 37447358 DOI: 10.3390/nu15133032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Carvacrol, a phenolic monoterpene, has diverse biological activities, highlighting its antioxidant and antihypertensive capacity. However, there is little evidence demonstrating its influence on vascular regeneration. Therefore, we evaluated the modulation of carvacrol on endothelial repair induced by endothelial progenitor cells (EPC) in hypertension. Twelve-week-old spontaneously hypertensive rats (SHR) were treated with a vehicle, carvacrol (50 or 100 mg/kg/day), or resveratrol (10 mg/kg/day) orally for four weeks. Wistar Kyoto (WKY) rats were used as the normotensive controls. Their systolic blood pressure (SBP) was measured weekly through the tail cuff. The EPCs were isolated from the bone marrow and peripherical circulation and were quantified by flow cytometry. The functionality of the EPC was evaluated after cultivation through the quantification of colony-forming units (CFU), evaluation of eNOS, intracellular detection of reactive oxygen species (ROS), and evaluation of senescence. The superior mesenteric artery was isolated to evaluate the quantification of ROS, CD34, and CD31. Treatment with carvacrol induced EPC migration, increased CFU formation and eNOS expression and activity, and reduced ROS and senescence. In addition, carvacrol reduced vascular ROS and increased CD31 and CD34 expression. This study showed that treatment with carvacrol improved the functionality of EPC, contributing to the reduction of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Viviane Silva Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Alinne Villar de Arruda
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Thaís Trajano Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | | | | | | | - Robson Cavalcante Veras
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| |
Collapse
|
5
|
Grubić Kezele T, Ćurko-Cofek B. Neuroprotective Panel of Olive Polyphenols: Mechanisms of Action, Anti-Demyelination, and Anti-Stroke Properties. Nutrients 2022; 14:4533. [PMID: 36364796 PMCID: PMC9654510 DOI: 10.3390/nu14214533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Neurological diseases such as stroke and multiple sclerosis are associated with high morbidity and mortality, long-term disability, and social and economic burden. Therefore, they represent a major challenge for medical treatment. Numerous evidences support the beneficial effects of polyphenols from olive trees, which can alleviate or even prevent demyelination, neurodegeneration, cerebrovascular diseases, and stroke. Polyphenols from olive oils, especially extra virgin olive oil, olive leaves, olive leaf extract, and from other olive tree derivatives, alleviate inflammation and oxidative stress, two major factors in demyelination. In addition, they reduce the risk of stroke due to their multiple anti-stroke effects, such as anti-atherosclerotic, antihypertensive, antioxidant, anti-inflammatory, hypocholesterolemic, hypoglycemic, and anti-thrombotic effects. In addition, olive polyphenols have beneficial effects on the plasma lipid profiles and insulin sensitivity in obese individuals. This review provides an updated version of the beneficial properties and mechanisms of action of olive polyphenols against demyelination in the prevention/mitigation of multiple sclerosis, the most common non-traumatic neurological cause of impairment in younger adults, and against cerebral insult with increasing incidence, that has already reached epidemic proportions.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Effects of air pollution on human health - Mechanistic evidence suggested by in vitro and in vivo modelling. ENVIRONMENTAL RESEARCH 2022; 212:113378. [PMID: 35525290 DOI: 10.1016/j.envres.2022.113378] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 μm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
7
|
Munteanu C, Rotariu M, Turnea MA, Anghelescu A, Albadi I, Dogaru G, Silișteanu SC, Ionescu EV, Firan FC, Ionescu AM, Oprea C, Onose G. Topical Reappraisal of Molecular Pharmacological Approaches to Endothelial Dysfunction in Diabetes Mellitus Angiopathy. Curr Issues Mol Biol 2022; 44:3378-3397. [PMID: 36005129 PMCID: PMC9406839 DOI: 10.3390/cimb44080233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a frequent medical problem, affecting more than 4% of the population in most countries. In the context of diabetes, the vascular endothelium can play a crucial pathophysiological role. If a healthy endothelium-which is a dynamic endocrine organ with autocrine and paracrine activity-regulates vascular tone and permeability and assures a proper balance between coagulation and fibrinolysis, and vasodilation and vasoconstriction, then, in contrast, a dysfunctional endothelium has received increasing attention as a potential contributor to the pathogenesis of vascular disease in diabetes. Hyperglycemia is indicated to be the major causative factor in the development of endothelial dysfunction. Furthermore, many shreds of evidence suggest that the progression of insulin resistance in type 2 diabetes is parallel to the advancement of endothelial dysfunction in atherosclerosis. To present the state-of-the-art data regarding endothelial dysfunction in diabetic micro- and macroangiopathy, we constructed this literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We interrogated five medical databases: Elsevier, PubMed, PMC, PEDro, and ISI Web of Science.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania; (M.R.); (M.-A.T.)
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania; (M.R.); (M.-A.T.)
| | - Marius-Alexandru Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania; (M.R.); (M.-A.T.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Irina Albadi
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (I.A.); (E.V.I.); (C.O.)
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania
| | - Gabriela Dogaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Rehabilitation Hospital, 400437 Cluj-Napoca, Romania
| | - Sînziana Calina Silișteanu
- Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (I.A.); (E.V.I.); (C.O.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | | | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (I.A.); (E.V.I.); (C.O.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
| |
Collapse
|
8
|
Ma Q, Zhang N, You Y, Zhu J, Yu Z, Chen H, Xie X, Yu H. CXCR4 blockade in macrophage promotes angiogenesis in ischemic hindlimb by modulating autophagy. J Mol Cell Cardiol 2022; 169:57-70. [PMID: 35597127 DOI: 10.1016/j.yjmcc.2022.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Chemokine receptor CXCR4 plays a crucial role in leukocyte recruitment and inflammation regulation to influence tissue repair in ischemic diseases. Here we assessed the effect of CXCR4 expression in macrophages on angiogenesis in the ischemic hindlimb of a mouse. Inflammatory cells were increased in the ischemic muscles of hindlimb, and CXCR4 was highly expressed in the infiltrated macrophages but not in neutrophils. Myeloid-specific CXCR4 knockout attenuated macrophage infiltration and subsequent reduced inflammatory response in the ischemic hindlimb, accompanied with better blood reperfusion and higher capillary density as compared with that in LysM Cre+/- (Cre) mice. Similar outcomes were also observed in CRE mice whose bone marrow cells were replaced with those from CXCR4-deficient mice. Gene ontology cluster analysis reviewed that Decorin, a negative regulator of angiogenesis, was reduced in CXCR4-deficient macrophages. CXCR4-deficient macrophages were less inducible into M1 phase by lipopolysaccharide and more favorable for M2 polarization under oxygen/glucose deprivation condition. Enhanced autophagy was detected in CXCR4-deficient macrophages, which was associated with less expression of both Decorin and the inflammatory cytokines. In summary, myeloid-specific CXCR4 deficiency reduced monocyte infiltration and the secretion of inflammatory cytokines and Decorin from macrophages, thus blunting inflammation response and promoting angiogenesis in the ischemic hindlimb.
Collapse
Affiliation(s)
- Qunchao Ma
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Yayu You
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Zhaosheng Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Haibo Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| |
Collapse
|
9
|
Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke. Neurol Sci 2021; 42:3585-3593. [PMID: 34216308 DOI: 10.1007/s10072-021-05428-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/19/2021] [Indexed: 12/26/2022]
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) capable of proliferating and differentiating into mature ECs. These progenitor cells migrate from bone marrow (BM) after vascular injury to ischemic areas, where they participate in the repair of injured endothelium and new blood vessel formation. EPCs also secrete a series of protective cytokines and growth factors that support cell survival and tissue regeneration. Thus, EPCs provide novel and promising potential therapies to treat vascular disease, including ischemic stroke. However, EPCs are tightly regulated during the process of vascular repair and regeneration by numerous endogenous cytokines that are associated closely with the therapeutic efficacy of the progenitor cells. The regenerative capacity of EPCs also is affected by a range of exogenous factors and drugs as well as vascular risk factors. Understanding the functional properties of EPCs and the factors related to their regenerative capacity will facilitate better use of these progenitor cells in treating vascular disease. Here, we review the current knowledge of EPCs in cerebral neovascularization and tissue regeneration after cerebral ischemia and the factors associated with their regenerative function to better understand the underlying mechanisms and provide more effective strategies for the use of EPCs in treating ischemic stroke.
Collapse
|
10
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
11
|
Zheng J, Chen M, Ye C, Sun X, Jiang N, Zou X, Yang H, Liu H. BuZangTongLuo decoction improved hindlimb ischemia by activating angiogenesis and regulating gut microbiota in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112330. [PMID: 31654796 DOI: 10.1016/j.jep.2019.112330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seven traditional medicinal plants (including Astragalus membranaceus, Dioscorea hemsleyi, Salvia miltiorrhiza, Scrophularia ningpoensis, Ophiopogon japonicus, Panax ginseng and Fritillariae cirrhosae) and one insect leech (Whitmania pigra Whitman) were combined into BuZangTongLuo formula (BZTLF) under the guidance of traditional Chinese medicine. BZTLF is potentially effective against diabetic vascular complications. AIM OF THE STUDY Previous studies failed to clarify the molecular mechanism through which BZTLF suppressed diabetic ischemia. In this study, we aimed to explore whether BZTLF treatment could prevent the occurrence of type 2 diabetic (T2D) hindlimb ischemia in mice. Further, we investigated the regulatory effect of BZTLF on angiogenesis-related VEGF signaling pathway and gut microbiota dysfunction in diabetic ischemia mice. MATERIALS AND METHODS C57BL/6J mice fed with high-fat diet (HFD) received STZ injection and femoral artery ligation to build T2D diabetic hindlimb ischemia model. Mice were gavaged with BZTLF (5 g [raw materials]/kg/d) or with metformin plus atorvastatin for three weeks. Laser doppler imaging system was utilized for the visualization of blood flow. Histochemistry analysis was performed for microvascular vessel staining. Western blot was applied to detect the protein changes of signaling molecules responsible for VEGF pathway. Finally, 16S rDNA gene sequencing was conducted for analysis of gut microbiota structure. RESULTS BZTLF treatment remarkably restored blood flow and capillary density of diabetic hindlimb ischemia. And the protein changes of VEGF signaling molecules were reversed in BZTLF-treated diabetic ischemia mice, including the decreased VEGF and HIF-1α, and the increased NO, eNOS and p-ERK1/2. The gut microbiota analysis suggests that BZTLF treatment increased the abundances of several beneficial bacteria (Akkermansia, Bifidobacterium and Bacteroides), while decreased the populations of some harmful bacteria(Blautia, Weissella, Escherichia Shigella and Kurthia). By using Spearman's correlation analysis, these changed gut flora were positively/negatively correlated with VEGF signaling pathway or glycometabolic parameters. CONCLUSION BZTLF displayed beneficial effects on diabetic hindlimb ischemia by reshaping the gut microbiota structure and stunning the VEGF/HIF-1α pathway.
Collapse
MESH Headings
- Animals
- Blood Flow Velocity
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/drug therapy
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/microbiology
- Diabetic Angiopathies/physiopathology
- Drugs, Chinese Herbal/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gastrointestinal Microbiome/drug effects
- Hindlimb/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ischemia/drug therapy
- Ischemia/metabolism
- Ischemia/microbiology
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Neovascularization, Physiologic/drug effects
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Regional Blood Flow
- Signal Transduction
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Junping Zheng
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; College of Life Sciences, Wuchang University of Technology, Wuhan, 430223, China
| | - Man Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan, 430050, China
| | - Xiongjie Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaojuan Zou
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huabing Yang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Hongtao Liu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; College of Life Sciences, Wuchang University of Technology, Wuhan, 430223, China.
| |
Collapse
|
12
|
Shao Y, Chen J, Freeman W, Dong LJ, Zhang ZH, Xu M, Qiu F, Du Y, Liu J, Li XR, Ma JX. Canonical Wnt Signaling Promotes Neovascularization Through Determination of Endothelial Progenitor Cell Fate via Metabolic Profile Regulation. Stem Cells 2019; 37:1331-1343. [PMID: 31233254 PMCID: PMC6851557 DOI: 10.1002/stem.3049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/27/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to blood vessel formation. Canonical Wnt signaling plays an important role in physiological and pathological angiogenesis and EPC fate regulation. However, the mechanism for Wnt signaling to regulate EPC fate in neovascularization (NV) has not been clearly defined. Here, we showed that very low-density lipoprotein receptor knockout (Vldlr -/- ) mice, a model of ocular NV induced by Wnt signaling overactivation, have increased EPC numbers in the bone marrow, blood, and retina, as well as an elevated mitochondrial membrane potential indicating higher mitochondrial function of EPCs in the circulation. Isolated EPCs from Vldlr -/- mice showed overactivated Wnt signaling, correlating with increased mitochondrial function, mass, and DNA copy numbers, compared with WT EPCs. Our results also demonstrated that Wnt signaling upregulated mitochondrial biogenesis and function, while inhibiting glycolysis in EPCs, which further decreased EPC stemness and promoted EPCs to a more active state toward differentiation, which may contribute to pathologic vascular formation. Fenofibric acid, an active metabolite of fenofibrate, inhibited Wnt signaling and mitochondrial function in EPCs and decreased EPC numbers in Vldlr -/- mice. It also decreased mitochondrial biogenesis and reactive oxygen species production in Vldlr -/- EPCs, which may be responsible for its therapeutic effect on diabetic retinopathy. These findings demonstrated that Wnt signaling regulates EPC fate through metabolism, suggesting potential application of the EPC metabolic profile as predictor and therapeutic target for neovascular diseases. Stem Cells 2019;37:1331-1343.
Collapse
Affiliation(s)
- Yan Shao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjing Medical University Eye Hospital, Tianjin, China
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Willard Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Li-Jie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhi-Hui Zhang
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Manhong Xu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Juping Liu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao-Rong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjing Medical University Eye Hospital, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Effects of Hydroalcoholic Flower Extract of Marigold (Calendula officinalis) on the Biochemical and Histological Parameters in STZ-Induced Diabetic Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.55456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Liu T, Wang Z, Chen X, You H, Xue J, Cai D, Zheng Y, Xu Y, Luo D. Low molecular-weight fucoidan protects against hindlimb ischemic injury in type 2 diabetic mice through enhancing endothelial nitric oxide synthase phosphorylation. J Diabetes 2018; 10:820-834. [PMID: 29633569 DOI: 10.1111/1753-0407.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) complications are associated with ischemic injury. Angiogenesis is a therapeutic strategy for diabetic foot. The aim of this study was to investigate the possible angiogenic effect of low molecular weight fucoidan (LMWF) in diabetic peripheral arterial disease (PAD). METHODS Diabetic db/db mice and age-matched C57BL/6 mice underwent femoral artery ligation followed by LMWF (30, 60, 80 mg/kg per day, p.o.) or cilostazol (30 mg/kg/day, p.o.) treatment for 6 weeks. Endothelium-dependent vasodilation and blood flow of the hindlimb were measured. Histological and western blot analyses of CD34, vascular endothelial growth factor (VEGF), eNOS, and inflammatory factors in the gastrocnemius were performed. The effects of LMWF were confirmed in human umbilical vein endothelial cells (HUVEC). RESULTS Diabetic mice with ligation exhibited hindlimb ulceration, hydrosarca, and necrosis, increased expression of inflammatory factors, and decreased levels of VEGF and eNOS phosphorylation. Treatment with LMWF markedly ameliorated foot lesions, suppressed expression of inflammatory factors, and improved plantar perfusion by promoting endothelium-dependent vasodilation and revascularization in diabetic PAD mice. In high-glucose treated HUVEC, LMWF (40 μg/mL) reversed blunted endothelial cell proliferation, migration, and tube formation, and promoted eNOS phosphorylation and VEGF expression, whereas HUVEC pretreatment with 100 μmol/L NG -nitro-l-arginine methyl ester, an eNOS antagonist, markedly inhibited the effects of LMWF. CONCLUSION This study demonstrates that LMWF alleviates hindlimb ischemic damage, at least in part by promoting eNOS phosphorylation, nitric oxide production, and VEGF expression, resulting in enhanced angiogenesis in the ischemic region.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Zhiqiang Wang
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Xiaoping Chen
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Jingyi Xue
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Yang Xu
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wang RY, Liu LH, Liu H, Wu KF, An J, Wang Q, Liu Y, Bai LJ, Qi BM, Qi BL, Zhang L. Nrf2 protects against diabetic dysfunction of endothelial progenitor cells via regulating cell senescence. Int J Mol Med 2018; 42:1327-1340. [PMID: 29901179 PMCID: PMC6089760 DOI: 10.3892/ijmm.2018.3727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes is associated with an increased risk of cardio-vascular disease. A decrease in the number and functionality of endothelial progenitor cells (EPCs) leads to reduced endothelial repair and the development of cardiovascular disease. The aim of the present study was to explore the effect and underlying mechanisms of nuclear factor erythroid 2-related factor 2 (Nrf2) on EPC dysfunction caused by diabetic mellitus. The biological functions of EPCs in streptozotocin-induced diabetic mice were evaluated, including migration, proliferation, angiogenesis and the secretion of vascular endothelial growth factor (VEGF), stromal-derived growth factor (SDF) and nitric oxide (NO). Oxidative stress levels in diabetic EPCs were also assessed by detecting intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). EPC senescence was evaluated by measuring p16 and b-gal expression and observing the senescence-associated secretory phenotype. In addition, the function of EPCs and level of oxidative stress were assessed following Nrf2 silencing or activation. Nrf2 silencing resulted in a decrease of EPC biological functions, accelerated cell senescence and increased oxidative stress, as indicated by ROS and MDA upregulation accompanied with decreased SOD activity. Furthermore, Nrf2 silencing inhibited migration, proliferation and secretion in EPCs, while it increased oxidative stress and cell senescence. Nrf2 activation protected diabetic EPCs against the effects of oxidative stress and cell senescence, ameliorating the biological dysfunction of EPCs derived from mice with diabetes. In conclusion, Nrf2 overexpression protected against oxidative stress-induced functional damage in EPCs derived from diabetic mice by regulating cell senescence.
Collapse
Affiliation(s)
- Rui-Yun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li-Hua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongxia Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ke-Fei Wu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing An
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qian Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li-Juan Bai
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ben-Ming Qi
- Department of Otorhinolaryngology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650000, P.R. China
| | - Ben-Ling Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
16
|
Dai X, Zeng J, Yan X, Lin Q, Wang K, Chen J, Shen F, Gu X, Wang Y, Chen J, Pan K, Cai L, Wintergerst KA, Tan Y. Sitagliptin-mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes. J Cell Mol Med 2018; 22:89-100. [PMID: 28799229 PMCID: PMC5742710 DOI: 10.1111/jcmm.13296] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/27/2017] [Indexed: 01/13/2023] Open
Abstract
Recently, the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin, a major anti-hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose-induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP-activated protein kinase/unc-51-like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin-induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin-induced prevention of EPC apoptosis via augmenting autophagy.
Collapse
Affiliation(s)
- Xiaozhen Dai
- Chinese‐American Research Institute for Diabetic ComplicationsSchool of Pharmaceutical SciencesSchool of Nursing at the Wenzhou Medical UniversityWenzhouChina
- School of BiomedicineChengdu Medical CollegeChengduChina
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
| | - Jun Zeng
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
- Department of Medical Genetics and Cell BiologySchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqing Yan
- Chinese‐American Research Institute for Diabetic ComplicationsSchool of Pharmaceutical SciencesSchool of Nursing at the Wenzhou Medical UniversityWenzhouChina
| | - Qian Lin
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleUSA
| | - Kai Wang
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
- Departments of Pediatrics, Endocrinology and Metabolismthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Chen
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
| | - Feixia Shen
- Departments of Pediatrics, Endocrinology and Metabolismthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xuemei Gu
- Departments of Pediatrics, Endocrinology and Metabolismthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuehui Wang
- Departments of Geriatricsthe First Hospital of Jilin UniversityChangchunChina
| | - Jun Chen
- Chinese‐American Research Institute for Diabetic ComplicationsSchool of Pharmaceutical SciencesSchool of Nursing at the Wenzhou Medical UniversityWenzhouChina
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
| | - Kejian Pan
- School of BiomedicineChengdu Medical CollegeChengduChina
| | - Lu Cai
- Chinese‐American Research Institute for Diabetic ComplicationsSchool of Pharmaceutical SciencesSchool of Nursing at the Wenzhou Medical UniversityWenzhouChina
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleUSA
| | - Kupper A. Wintergerst
- Department of PediatricsDivision of EndocrinologyWendy L. Novak Diabetes Care CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Yi Tan
- Chinese‐American Research Institute for Diabetic ComplicationsSchool of Pharmaceutical SciencesSchool of Nursing at the Wenzhou Medical UniversityWenzhouChina
- Pediatric Research InstituteDepartment of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleUSA
| |
Collapse
|
17
|
Baban B, Golubnitschaja O. The potential relationship between Flammer and Sjögren syndromes: the chime of dysfunction. EPMA J 2017; 8:333-338. [PMID: 29209436 PMCID: PMC5700012 DOI: 10.1007/s13167-017-0107-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Flammer syndrome (FS) is a term to blanket a cluster of vascular and nonvascular signs and symptoms linked to primary vascular dysregulation (PVD), increased sensitivity to various stimuli (stress, drugs, etc.) and altered sense regulation such as pain, smell and thirst perception. On one hand, disruption of blood barrier and homeostasis of the body are the main targets of vascular irregularity. Inflammation and immune disorders including autoimmunity are considered as a consequence of the abnormal vascular regulation processes. On the other hand, decreased thirst feeling typical for FS-affected individuals may lead to extensive body dehydration resulting in dry eye appearance and breast cancer (BC) risk, amongst others. To this end, recent research demonstrated FS as linked to BC development and progression into the metastatic disease. On the other side, Sjögren syndrome (SS) is an autoimmune disease characterised by a progressive sicca syndrome associated with the dry eye symptoms, specific immunologic complex and/or significant infiltrate at minor salivary gland biopsy. SS is relatively frequent, with a clinical diagnosis predominantly amongst women. Its physiopathology is a complex battery of both environmental and genetic factors. If left untreated, SS may be associated with and/or resulted in severe arthritis and the development of B cell lymphoma. In this mini-review, we summarise the facts and hypotheses connecting FS and SS symptoms together and mechanisms potentially overlapping in both syndromes. Unraveling the common denominators between these two syndromes not only providing more evidence for interaction between altered sense regulation, vascular dysregulation, immune system dysfunction but also focusing on the individual outcomes in terms of severity grade and potential complications exploring novel diagnostic, prognostic and treatment modalities. Multi-professional considerations presented here are an example how to effectively enter the new era of preventive, predictive and personalised medicine benefiting the patients and healthcare system as the whole.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, 1120, 15th St, CL 2140, GA 30912 Augusta, USA
- Department of Surgery/Section of Plastic Surgery, Augusta University, 1120, 15th St, CL 2140, GA 30912 Augusta, USA
- Department of Neurology, Medical College of Georgia, Augusta University, 1120, 15th St, CL 2140, GA 30912 Augusta, USA
| | - Olga Golubnitschaja
- Radiological clinic, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, D-53105 Bonn, Germany
- Breast Cancer Research Centre, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Centre for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Cao W, Cui J, Li S, Zhang D, Guo Y, Li Q, Luan Y, Liu X. Crocetin restores diabetic endothelial progenitor cell dysfunction by enhancing NO bioavailability via regulation of PI3K/AKT-eNOS and ROS pathways. Life Sci 2017; 181:9-16. [PMID: 28528862 DOI: 10.1016/j.lfs.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
AIMS Endothelial progenitor cell (EPC) dysfunction underlies a critical risk factor in diabetic vascular complications due to function defect in restoring endothelium injury. Crocetin has attracted increasing attention in several vascular-related diseases. In present study, we aimed to explore the role of crocetin in diabetic EPC dysfunction. MAIN METHODS EPCs were isolated from bone marrow in diabetic mice and identified using the fluorescence staining and flow cytometry. After exposure to various doses of crocetin, cell viability was detected by MTT assy. Then, colony formation, lactate dehydrogenase (LDH) release, cell apoptosis and caspase-3 activity were assessed. The underlying mechanism was also investigated by western blotting. KEY FINDINGS EPCs from diabetic mice exhibited dysfunction under hyperglycemia condition. Interestingly, crocetin treatment alleviated the impairment in diabetic EPC proliferation and colony formation. Simultaneously, the increases in LDH release, cell apoptosis and caspase-3 activity were also restrained following crocetin stimulation. Additionally, EPC migration response to SDF-1 was also impaired under diabetic condition, which was partly restored by crocetin. Mechanism analysis manifested that administration with crocetin repaired the damage in the activation of PI3K/AKT-eNOS pathway and NO production, but attenuated ROS elevation in diabetic EPCs. Importantly, preconditioning with antagonist of LY294002 (for PI3K/AKT) or NG-monomethyl-l-arginine (for eNOS) antagonized the beneficial effect of crocetin on diabetic EPC dysfunction. SIGNIFICANCE These data corroborated that crocetin could restore the dysfunction of diabetic EPCs by enhancing NO bioavailability via regulation of PI3K/AKT-eNOS and ROS pathways. Therefore, this research supports a potential promising therapeutic aspect for diabetic patients.
Collapse
Affiliation(s)
- Wei Cao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Jinjin Cui
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Shufeng Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Donghui Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Yibo Guo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Qiannan Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Ying Luan
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Xian Liu
- Department of Cardiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
19
|
Varberg KM, Winfree S, Chu C, Tu W, Blue EK, Gohn CR, Dunn KW, Haneline LS. Kinetic analyses of vasculogenesis inform mechanistic studies. Am J Physiol Cell Physiol 2017; 312:C446-C458. [PMID: 28100488 PMCID: PMC5407022 DOI: 10.1152/ajpcell.00367.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis.
Collapse
Affiliation(s)
- Kaela M Varberg
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Seth Winfree
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chenghao Chu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emily K Blue
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cassandra R Gohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Kenneth W Dunn
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura S Haneline
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana;
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; and
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, Kim SC, Ko HC, Ryu Y, Kang H, Ha CM, Lee SC, Kim JH. N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells. Sci Rep 2017; 7:43057. [PMID: 28230162 PMCID: PMC5322356 DOI: 10.1038/srep43057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine-Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs.
Collapse
Affiliation(s)
- Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hyun-Chang Ko
- Department of Dermatology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Youngjae Ryu
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Hyeona Kang
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Chang Man Ha
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
21
|
Dai X, Yan X, Zeng J, Chen J, Wang Y, Chen J, Li Y, Barati MT, Wintergerst KA, Pan K, Nystoriak MA, Conklin DJ, Rokosh G, Epstein PN, Li X, Tan Y. Elevating CXCR7 Improves Angiogenic Function of EPCs via Akt/GSK-3β/Fyn-Mediated Nrf2 Activation in Diabetic Limb Ischemia. Circ Res 2017; 120:e7-e23. [PMID: 28137917 DOI: 10.1161/circresaha.117.310619] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3β phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3β/Fyn pathway via increased activity of Nrf2.
Collapse
Affiliation(s)
- Xiaozhen Dai
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Xiaoqing Yan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jun Zeng
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jing Chen
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yuehui Wang
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Jun Chen
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yan Li
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Michelle T Barati
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Kupper A Wintergerst
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Kejian Pan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Matthew A Nystoriak
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Daniel J Conklin
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Gregg Rokosh
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Paul N Epstein
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Xiaokun Li
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.)
| | - Yi Tan
- From the Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & School of Nursing at the Wenzhou Medical University, Wenzhou, China (X.D., X.Y., Jun Chen, X.L., Y.T.); School of Biomedicine, Chengdu Medical College, China (X.D., K.P.); Department of Pediatrics, Children's Hospital Research Institute, School of Medicine (X.D., J.Z., Jing Chen, Jun Chen, P.N.E., Y.T.), Department of Surgery (Y.L.), Department of Medicine (M.T.B., M.A.N., D.J.C.), Division of Endocrinology, Department of Pediatrics, Wendy L. Novak Diabetes Care Center (K.A.W.), and Diabetes and Obesity Center (D.J.C.), University of Louisville, KY; Departments of Geriatrics, the First Hospital of Jilin University, Changchun, China (Y.W.); and Division of Cardiovascular Disease, University of Alabama at Birmingham (G.R.).
| |
Collapse
|
22
|
Micheu MM, Rosca AM, Deleanu OC. Stem/progenitor cells and obstructive sleep apnea syndrome - new insights for clinical applications. World J Stem Cells 2016; 8:332-341. [PMID: 27822340 PMCID: PMC5080640 DOI: 10.4252/wjsc.v8.i10.332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/25/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell - based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Rosca
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Oana-Claudia Deleanu
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
23
|
Weijers RNM. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J Diabetes Metab Disord 2016; 15:13. [PMID: 27123439 PMCID: PMC4847252 DOI: 10.1186/s40200-016-0235-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Abstract
Free fatty acids released from human adipose tissue contain a limited amount of non-esterified poly-cis-unsaturated fatty acids. In cases of elevated plasma free fatty acids, this condition ultimately leads to a shift from unsaturated to saturated fatty-acyl chains in membrane phospholipids. Because this shift promotes the physical attractive van der Waals interactions between phospholipid acyl chains, it increases stiffness of both erythrocyte and endothelial membranes, which causes a reduction in both insulin-independent and insulin-dependent Class 1 glucose transporters, a reduction in cell membrane functionality, and a decreased microcirculatory blood flow which results in tissue hypoxia. Against the background of these processes, we review recently published experimental phospholipid data obtained from Drosophila melanogaster and from human erythrocytes of controls and patients with type 2 diabetes, with and without retinopathy, along the way free fatty acids interfere with eye and kidney function in patients with type 2 diabetes and give rise to endoplasmic reticulum stress, reduced insulin sensitivity, and ischemia.
Collapse
Affiliation(s)
- Rob N M Weijers
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Trinh HM, Joseph M, Cholkar K, Pal D, Mitra AK. Novel strategies for the treatment of diabetic macular edema. World J Pharmacol 2016; 5:1-14. [DOI: 10.5497/wjp.v5.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Macular edema such as diabetic macular edema (DME) and diabetic retinopathy are devastating back-of-the-eye retinal diseases leading to loss of vision. This area is receiving considerable medical attention. Posterior ocular diseases are challenging to treat due to complex ocular physiology and barrier properties. Major ocular barriers are static (corneal epithelium, corneal stroma, and blood-aqueous barrier) and dynamic barriers (blood-retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). Moreover, metabolic barriers impede posterior ocular drug delivery and treatment. To overcome such barriers and treat back-of-the-eye diseases, several strategies have been recently developed which include vitreal drainage, laser photocoagulation and treatment with biologics and/or small molecule drugs. In this article, we have provided an overview of several emerging novel strategies including nanotechnology based drug delivery approach for posterior ocular drug delivery and treatment with an emphasis on DME.
Collapse
|
25
|
Tsai HY, Lin CP, Huang PH, Li SY, Chen JS, Lin FY, Chen JW, Lin SJ. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways. J Diabetes Res 2016; 2016:6384759. [PMID: 26682233 PMCID: PMC4670652 DOI: 10.1155/2016/6384759] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) environment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Pei Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- *Po-Hsun Huang: and
| | - Szu-Yuan Li
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- *Shing-Jong Lin:
| |
Collapse
|
26
|
Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 2015; 410:267-79. [PMID: 26359087 DOI: 10.1007/s11010-015-2560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia while down regulation of Caspase-3 gene. Eight weeks after type 1 diabetes induction, DZ preconditioned, and non-preconditioned DM-EPCs were transplanted into left ventricle of diabetic rats (at a dose of 2 × 10(6) DM-EPCs/70 μl serum free medium). After 4 weeks, DZ preconditioned DM-EPCs transplantation improved cardiac function as assessed by Millar's apparatus. There was decrease in collagen content estimated by Masson's trichrome and sirius red staining. Furthermore, reduced cell injury was observed as evidenced by decreased expression of Caspase-3 and increased expression of prosurvival genes Bcl2, VEGF, and bFGF by semi-quantitative real-time PCR. In conclusion, the present study demonstrated that DZ preconditioning enhanced EPCs survival under oxidative and hyperglycemic stress and their ability to treat DCM.
Collapse
Affiliation(s)
- Muhammad Ali
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | | | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan. .,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
27
|
Bhatt S, Gupta MK, Khamaisi M, Martinez R, Gritsenko MA, Wagner BK, Guye P, Busskamp V, Shirakawa J, Wu G, Liew CW, Clauss TR, Valdez I, El Ouaamari A, Dirice E, Takatani T, Keenan HA, Smith RD, Church G, Weiss R, Wagers AJ, Qian WJ, King GL, Kulkarni RN. Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metab 2015; 22:239-52. [PMID: 26244933 PMCID: PMC4589213 DOI: 10.1016/j.cmet.2015.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
The mechanisms underlying the development of complications in type 1 diabetes (T1D) are poorly understood. Disease modeling of induced pluripotent stem cells (iPSCs) from patients with longstanding T1D (disease duration ≥ 50 years) with severe (Medalist +C) or absent to mild complications (Medalist -C) revealed impaired growth, reprogramming, and differentiation in Medalist +C. Genomics and proteomics analyses suggested differential regulation of DNA damage checkpoint proteins favoring protection from cellular apoptosis in Medalist -C. In silico analyses showed altered expression patterns of DNA damage checkpoint factors among the Medalist groups to be targets of miR200, whose expression was significantly elevated in Medalist +C serum. Notably, neurons differentiated from Medalist +C iPSCs exhibited enhanced susceptibility to genotoxic stress that worsened upon miR200 overexpression. Furthermore, knockdown of miR200 in Medalist +C fibroblasts and iPSCs rescued checkpoint protein expression and reduced DNA damage. We propose miR200-regulated DNA damage checkpoint pathway as a potential therapeutic target for treating complications of diabetes.
Collapse
Affiliation(s)
- Shweta Bhatt
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Mogher Khamaisi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachael Martinez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bridget K Wagner
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Patrick Guye
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Volker Busskamp
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Shirakawa
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Gongxiong Wu
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chong Wee Liew
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Therese R Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ivan Valdez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Abdelfattah El Ouaamari
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Tomozumi Takatani
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Hillary A Keenan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy J Wagers
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - George L King
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Yan X, Chen J, Zhang C, Zhou S, Zhang Z, Chen J, Feng W, Li X, Tan Y. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med 2015; 19:1557-68. [PMID: 25823710 PMCID: PMC4511354 DOI: 10.1111/jcmm.12530] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21’s effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP-activated protein kinase and the expression of hexokinase II and peroxisome proliferator-activated receptor gamma co-activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion-aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2-driven CD36 up-regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Jun Chen
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Scool of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China
| | - Shanshan Zhou
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Cardiovascular Disorders of the First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Cardiovascular Disorders of the First Hospital of Jilin University, Changchun, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
29
|
Constantinescu A, Andrei E, Iordache F, Constantinescu E, Maniu H. Recellularization potential assessment of Wharton's Jelly-derived endothelial progenitor cells using a human fetal vascular tissue model. In Vitro Cell Dev Biol Anim 2014; 50:937-44. [PMID: 25124869 DOI: 10.1007/s11626-014-9797-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells isolated from Wharton's Jelly have demonstrated an excellent differentiation potential into the endothelial lineage. We hypothesize that endothelial progenitor cells differentiated from Wharton's Jelly-derived mesenchymal stem cells have the potential to repopulate a decellularized vascular bed employed as a biological scaffold. For this purpose, we aimed at investigating the behavior of the endothelial progenitor cells in the decellularized matrix and their potential to repopulate decellularized human vascular tissue. Our main objectives were to differentiate Wharton's Jelly-derived mesenchymal stem cells into endothelial progenitor cells and to obtain a human vascular tissue slice experimental model using the umbilical cord arteries. We employed a decellularization method using enzymatic treatment of the umbilical cord arteries and a recellularization method with the endothelial progenitor cells differentiated from Wharton's Jelly mesenchymal cells in a co-culture system, in order to investigate our hypothesis. The cellular integration within the biological scaffold was determined by using flow cytometry analysis and confirmed by visualization of histological staining as well as fluorescence microscopy. The morphological observations of the recellularized scaffolds revealed the presence of endothelial progenitor cells within the decellularized tissue slices, displaying no degradation of the scaffold's extracellular matrix. The flow cytometry analysis revealed the presence of Wharton's Jelly-derived endothelial progenitor cells population in the decellularized fetal blood vessel scaffold after recellularization. In conclusion, our results have shown that an in vitro human vascular tissue slice experimental model using decellularized human fetal arteries is able to sustain an adequate scaffold for cellular implants.
Collapse
Affiliation(s)
- Andrei Constantinescu
- Institute of Cellular Biology and Pathology "Nicole Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | | | | | | | | |
Collapse
|
30
|
Lai P, Liu Y. Echinocystic acid, isolated from Gleditsia sinensis fruit, protects endothelial progenitor cells from damage caused by oxLDL via the Akt/eNOS pathway. Life Sci 2014; 114:62-9. [PMID: 25086379 DOI: 10.1016/j.lfs.2014.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/29/2014] [Accepted: 07/18/2014] [Indexed: 02/05/2023]
Abstract
AIMS Our previous studies revealed that echinocystic acid (EA) showed obvious attenuation of atherosclerosis in rabbits fed a high-fat diet. However, the underlying mechanisms remain to be elucidated. Considering the importance of endothelial progenitor cells (EPCs) in atherosclerosis, we hypothesise that EPCs may be one of the targets for the anti-atherosclerotic potential of EA. MAIN METHODS After in vitro cultivation, EPCs were exposed to 100 μg/mL of oxidised low-density lipoprotein (oxLDL) and incubated with or without EA (5 and 20 μM) for 48 h. An additional two groups of EPCs (oxLDL+20 μM EA) were pre-treated with either wortmannin, an inhibitor of the phosphoinositide 3-kinase (PI3K) pathway, or nitro-l-arginine methyl ester (l-NAME), an endothelial nitric oxide synthase (eNOS)-specific inhibitor. Assessment of EPC apoptosis, adhesion, migration, and nitric oxide (NO) release was performed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) staining, cell counting, caspase-3 activity assay, transwell chamber assay, and Griess reagent, respectively. The protein expression of protein kinase B (Akt) and eNOS was detected using Western blot. KEY FINDINGS Treatment of EPCs with oxLDL induced significant apoptosis and impaired adhesion, migration, and NO production. The deleterious effects of oxLDL on EPCs were attenuated by EA. However, when EPCs were pre-treated with wortmannin or l-NAME, the effects of EA were abrogated. Additionally, oxLDL significantly down-regulated eNOS protein expression as well as repression of eNOS and Akt phosphorylation. SIGNIFICANCE The inhibitory effect of oxLDL on Akt/eNOS phosphorylation was attenuated by EA. Taken together, the results indicate that EA protects EPCs from damage caused by oxLDL via the Akt/eNOS pathway.
Collapse
Affiliation(s)
- Peng Lai
- School of Bioengineering, Xihua University, Chengdu, China.
| | - Yixin Liu
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Blue EK, DiGiuseppe R, Derr-Yellin E, Acosta JC, Pay SL, Hanenberg H, Schellinger MM, Quinney SK, Mund JA, Case J, Haneline LS. Gestational diabetes induces alterations in the function of neonatal endothelial colony-forming cells. Pediatr Res 2014; 75:266-72. [PMID: 24232636 PMCID: PMC3944713 DOI: 10.1038/pr.2013.224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/30/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Children born to mothers with gestational diabetes mellitus (GDM) experience increased risk of developing hypertension, type 2 diabetes mellitus, and obesity. Disrupted function of endothelial colony-forming cells (ECFCs) may contribute to this enhanced risk. The goal of this study was to determine whether cord blood ECFCs from GDM pregnancies exhibit altered functionality. METHODS ECFCs isolated from the cord blood of control and GDM pregnancies were assessed for proliferation, senescence, and Matrigel network formation. The requirement for p38MAPK in hyperglycemia-induced senescence was determined using inhibition and overexpression studies. RESULTS GDM-exposed ECFCs were more proliferative than control ECFCs. However, GDM-exposed ECFCs exhibited decreased network-forming ability in Matrigel. Aging of ECFCs by serial passaging led to increased senescence and reduced proliferation of GDM-exposed ECFCs. ECFCs from GDM pregnancies were resistant to hyperglycemia-induced senescence compared with those from controls. In response to hyperglycemia, control ECFCs activated p38MAPK, which was required for hyperglycemia-induced senescence. In contrast, GDM-exposed ECFCs showed no change in p38MAPK activation under equivalent conditions. CONCLUSION Intrauterine exposure of ECFCs to GDM induces unique phenotypic alterations. The resistance of GDM-exposed ECFCs to hyperglycemia-induced senescence and decreased p38MAPK activation suggest that these progenitor cells have undergone changes that induce tolerance to a hyperglycemic environment.
Collapse
Affiliation(s)
- Emily K. Blue
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Robert DiGiuseppe
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Ethel Derr-Yellin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Juan Carlos Acosta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - S. Louise Pay
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Helmut Hanenberg
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Megan M. Schellinger
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Sara K. Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Julie A. Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jamie Case
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S. Haneline
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN,Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN,Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
32
|
Wang QQ, Cheng N, Yi WB, Peng SM, Zou XQ. Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 2014; 22:1515-21. [PMID: 24508143 DOI: 10.1016/j.bmc.2014.01.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
α-Glucosidase (AG) play crucial roles in the digestion of carbohydrates. Inhibitors of α-glucosidase (AGIs) are promising candidates for the development of anti-diabetic drugs. Here, five series of apigenin and chrysin nitric oxide (NO)-donating derivatives were synthesised and evaluated for their AG inhibitory activity and NO releasing capacity in vitro. Except for 9a-c, twelve compounds showed remarkable inhibitory activity against α-glucosidase, with potency being better than that of acarbose and 1-deoxynojirimycin. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure activity relationship studies indicated that 5-OH, hydrophobic coupling chain, and carbonyl groups of the coupling chain could enhance the inhibitory activity. Apigenin and chrysin derivatives therefore represents a new class of promising compounds that can inhibit α-glucosidase activity and supply moderate NO for preventing the development of diabetic complications.
Collapse
Affiliation(s)
- Qi-Qin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Ning Cheng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wen-Bing Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Sheng-Ming Peng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Postdoctoral Programme of Chemical Engineering & Technology, Xiangtan University, Xiangtan 411105, China.
| | - Xiao-Qing Zou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
33
|
Tirassa P, Maccarone M, Florenzano F, Cartolano S, De Nicolò S. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy. CNS Neurosci Ther 2013; 19:307-18. [PMID: 23528019 DOI: 10.1111/cns.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/18/2013] [Accepted: 02/02/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. METHODS Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. RESULTS oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. CONCLUSIONS Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Cellular Biology and Neurobiology, National Research Council (CNR), Rome, Italy.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The vascular endothelium has been identified as an important component in diabetes-associated complications, which include many cardiovascular disorders such as atherosclerosis, hypertension and peripheral neuropathy. Additionally, insulin's actions on the endothelium are now seen as a major factor in the metabolic effects of the hormone by increasing access to insulin sensitive tissues. Endothelial function is impaired in diabetes, obesity, and the metabolic syndrome, which could reduce insulin access to the tissue, and thus reduce insulin sensitivity independently of direct effects at the muscle cell. As such, the endothelium is a valid target for treatment of both the impaired glucose metabolism in diabetes, as well as the vascular based complications of diabetes. Here we review the basics of the endothelium in insulin action, with a focus on the skeletal muscle as insulin's major metabolic organ, and how this is affected by diabetes. We will focus on the most recent developments in the field, including current treatment possibilities.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
35
|
Alexandru N, Popov D, Dragan E, Andrei E, Georgescu A. Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS One 2013; 8:e52058. [PMID: 23372649 PMCID: PMC3556069 DOI: 10.1371/journal.pone.0052058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Aim The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs) and platelet microparticles (PMPs) on blood platelet function in experimental hypertension associated with hypercholesterolemia. Methods Golden Syrian hamsters were divided in six groups: (i) control, C; (ii) hypertensive-hypercholesterolemic, HH; (iii) ‘prevention’, HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv) ‘regression’, HHfin-EPCs, HH treated with EPCs after HH feeding; (v) HH treated with PMPs, HH-PMPs, and (vi) HH treated with EPCs and PMPs, HH-EPCs-PMPs. Results Compared to HH group, the platelets from HHin-EPCs and HHfin-EPCs groups showed a reduction of: (i) activation, reflected by decreased integrin 3β, FAK, PI3K, src protein expression; (ii) secreted molecules as: SDF-1, MCP-1, RANTES, VEGF, PF4, PDGF and (iii) expression of pro-inflammatory molecules as: SDF-1, MCP-1, RANTES, IL-6, IL-1β; TFPI secretion was increased. Compared to HH group, platelets of HH-PMPs group showed increased activation, molecules release and proteins expression. Compared to HH-PMPs group the combination EPCs with PMPs treatment induced a decrease of all investigated platelet molecules, however not comparable with that recorded when EPC individual treatment was applied. Conclusion EPCs have the ability to reduce platelet activation and to modulate their pro-inflammatory and anti-thrombogenic properties in hypertension associated with hypercholesterolemia. Although, PMPs have several beneficial effects in combination with EPCs, these did not improve the EPC effects. These findings reveal a new biological role of circulating EPCs in platelet function regulation, and may contribute to understand their cross talk, and the mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Petru Poni’ Institute of Macromolecular Chemistry, Iasi, Romania
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
- * E-mail: (NA); adriana.georgescu@ icbp.ro (AG)
| | - Doina Popov
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Eugen Andrei
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Petru Poni’ Institute of Macromolecular Chemistry, Iasi, Romania
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
- * E-mail: (NA); adriana.georgescu@ icbp.ro (AG)
| |
Collapse
|
36
|
Wang L, Guo L, Zhang L, Zhou Y, He Q, Zhang Z, Wang M. Effects of glucose load and nateglinide intervention on endothelial function and oxidative stress. J Diabetes Res 2013; 2013:849295. [PMID: 23691521 PMCID: PMC3647564 DOI: 10.1155/2013/849295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
We analysed endothelial function and oxidative stress in patients with abnormal glucose metabolism, the effect of glucose load, and the impact of nateglinide. 109 participants were grouped into newly diagnosed diabetes, prediabetes, and control. Fasting plasma glucose (FPG), postprandial plasma glucose (PPG), glycosylated haemoglobin (HbA1c), and glycated albumin (GA) varied significantly among the study groups (P < 0.01). Nitric oxide (NO) and insulin resistance index (HOMA-IRI) levels were markedly different between the newly diagnosed diabetes and the control (P < 0.01). Glucose loading lowered flow-mediated endothelium-dependent dilation (FMEDD), NO, and superoxide dismutase (SOD) (P < 0.01). Fasting and glucose loading FMEDD, FPG, PPG, HbA1c, and GA were negatively correlated (r = -0.4573, -0.4602, -0.3895, -0.3897, and r = -0.4594, -0.4803, -0.4494, -0.3885; P < 0.01), whereas NO, SOD, and HOMA- β were positively correlated (r = 0.2983, 0.3211, 0.311, and r = 0.1954, 0.361, 0.2569; P < 0.05). After the treatment with nateglinide, significant decreases in FPG, PPG, GA, HbA1C, endothelin-1(ET-1), malondialdehyde (MDA), and HOMA-IRI were observed, whereas FMEDD, NO, and SOD increased (P < 0.01). Thus, the study demonstrated the adverse effect of glucose load on endothelial function and oxidative stress. Nateglinide lowers blood glucose, reduces insulin resistance and oxidative stress, and improves endothelial function in newly diagnosed diabetes.
Collapse
Affiliation(s)
- Leilei Wang
- VIP Department, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| | - Lixin Guo
- Endocrinology and Metabolism Department, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
- *Lixin Guo:
| | - Lina Zhang
- Endocrinology and Metabolism Department, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| | - Yan Zhou
- Endocrinology and Metabolism Department, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| | - Qinghua He
- Endocrinology and Metabolism Department, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| | - Zheng Zhang
- Ultrasound Division, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| | - Meng Wang
- Laboratory Division, Beijing Hospital of the Ministry of Health, Dongdan Dahua, Road Number One, Beijing 100730, China
| |
Collapse
|
37
|
Weijers RNM. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 2012; 8:390-400. [PMID: 22698081 PMCID: PMC3474953 DOI: 10.2174/157339912802083531] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/10/2023]
Abstract
Identifying the causative relationship between the fatty acid composition of cell membranes and type 2 diabetes mellitus fundamentally contributes to the understanding of the basic pathophysiological mechanisms of the disease. Important outcomes of the reviewed studies appear to support the hypotheses that the flexibility of a membrane determined by the ratio of (poly)unsaturated to saturated fatty acyl chains of its phospholipids influences the effectiveness of glucose transport by insulin-independent glucose transporters (GLUTs) and the insulin-dependent GLUT4, and from the prediabetic stage on a shift from unsaturated towards saturated fatty acyl chains of membrane phospholipids directly induces a decrease in glucose effectiveness and insulin sensitivity. In addition, it has become evident that a concomitant increase in stiffness of both plasma and erythrocyte membranes may decrease the microcirculatory flow, leading ultimately to tissue hypoxia, insufficient tissue nutrition, and diabetes-specific microvascular pathology. As to the etiology of type 2 diabetes mellitus, a revised hypothesis that attempts to accommodate the reviewed findings is presented.
Collapse
Affiliation(s)
- Rob N M Weijers
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Oosterparkstraat 9, PO Box 95500, 1090 HM Amsterdam, The Netherlands.
| |
Collapse
|
38
|
CHENG YONGXIA, GUO SUFEN, LIU GUIBO, FENG YUKUAN, YAN BIN, YU JIANBO, FENG KEJIAN, LI ZHIQIANG. Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 2012; 30:870-6. [DOI: 10.3892/ijmm.2012.1083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 12/17/2022] Open
|
39
|
Yin Z, Fan L, Huang G, Wang H, Wang Z. The possible role of ribosomal protein S6 kinase 4 in the senescence of endothelial progenitor cells in diabetes mellitus. Cardiovasc Diabetol 2012; 11:12. [PMID: 22297070 PMCID: PMC3295662 DOI: 10.1186/1475-2840-11-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/02/2012] [Indexed: 12/04/2022] Open
Abstract
Background The decrease and dysfunction of endothelial progenitor cells (EPCs) has been assumed as an important cause/consequence of diabetes mellitus (DM) and its complications, in which the senescence of EPCs induced by hyperglycemia may play an immensurable role. However, the mechanisms of EPCs senescence has not been fully investigated. Recently, ribosomal protein S6 kinase 4 (RSK4), a member of serine/threomine (Ser/Thr) kinase family and p53-related gene, is reported to regulate the replicative and stress-induced senescence of different cells. Presentation of the hypothesis These above lead to consideration of an evidence-based hypothesis that RSK4 may serve as a mediator of EPCs senescence in DM. Testing the hypothesis EPCs of healthy subjects and DM patients are isolated from peripheral blood and incubated with high glucose (HG). Then, the EPCs senescence would be detected by senescence associated β-galactosides (SA-β-gal) staining. Meanwhile, the RSK4 expression is assessed by RT-PCR and western blot. Moreover, overexpressing or RNA interfering of RSK4 in EPCs to investigate the relationship between RSK4 expression and the senescence of EPCs are necessary to substantiate this hypothesis. Also, studies on possible upstream and downstream factors of RSK4 would be explored to reveal the RSK4-mediated senescence pathway in EPCs. Implications of the hypothesis If proved, this hypothesis will provide another mediator of EPCs senescence, and may establish a novel pathogenesis for DM and further benefit to the management of DM.
Collapse
Affiliation(s)
- Zhiyong Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | |
Collapse
|