1
|
Lou Y, Chen H, Fei S, Chen X, Guo L, Pan Q. Role of denosumab in lipid metabolism disorders: clinical significance and potential mechanisms. Arch Osteoporos 2025; 20:68. [PMID: 40418391 DOI: 10.1007/s11657-025-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE Lipid metabolism disorders, characterized by abnormal blood lipid levels, are central to the pathogenesis of obesity, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. These conditions increase the risk of type 2 diabetes, cardiovascular diseases (CVD), and stroke, highlighting the need for novel therapeutic approaches. Emerging evidence suggests a complex interplay between bone and lipid metabolism, with RANKL playing a key role. This review explores the potential of denosumab, a RANKL-targeting monoclonal antibody, in modulating lipid metabolism and its broader metabolic implications. METHODS We conducted a comprehensive literature review to analyze the molecular mechanisms by which denosumab influences lipid metabolism, with a focus on the OPG/RANKL/RANK signaling pathway. Additionally, we examined the roles of immune modulation, bone marrow adipose tissue, and gut microbiota in metabolic diseases. RESULTS Denosumab, primarily known for its anti-resorptive effects in osteoporosis, may also exert beneficial effects on lipid metabolism. Preclinical and clinical studies suggest its potential in ameliorating obesity, NAFLD, and atherosclerosis. The OPG/RANKL/RANK axis appears to mediate crosstalk between bone and metabolic pathways, while immune regulation and gut microbiota may further contribute to these effects. CONCLUSION Denosumab shows promise as a therapeutic agent for lipid metabolism disorders, though long-term metabolic effects remain unclear. Further research is needed to validate its efficacy and elucidate underlying mechanisms, which could pave the way for novel treatments targeting metabolic diseases.
Collapse
Affiliation(s)
- Yuan Lou
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China
| | - Huan Chen
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China
| | - Sijia Fei
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
| | - Xinda Chen
- Department of Endocrinology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100000, China
| | - Lixin Guo
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China.
| | - Qi Pan
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
2
|
Okutan B, Schwarze UY, Habisch H, Iskhakova K, Ćwieka H, Ribeiro-Machado C, Moosmann JP, Blanchet C, Brcic I, Santos SG, Madl T, Zeller-Plumhoff B, Weinberg AM, Wieland DCF, Sommer NG. Biodegradable ultrahigh-purity magnesium and its alloy ZX00 promote osteogenesis in the medullary cavity and glycogenolysis in the liver. Acta Biomater 2025; 195:599-613. [PMID: 39921183 DOI: 10.1016/j.actbio.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Magnesium (Mg)-based implants have become an attractive alternative to conventional permanent implants in the orthopedic field. While biocompatibility, degradation kinetics, and osseointegration of Mg-based implants have been mostly investigated, the impact of degradation products on bone remodeling and potential systemic effects remains unclear. The aim of this study was to evaluate the early and mid-term local and systemic tissue responses of degrading ultrahigh-purity ZX00 (Mg-Zn-Ca alloy) and ultrahigh-purity Mg (XHP-Mg) pins in a juvenile healthy rat model. The potential differences between implant types (degradable vs. permanent), implantation, and age-related changes were investigated using titanium (Ti), sham-operated, and control groups (non-intervention), respectively. Degradation products of ZX00 and XHP-Mg pins promote osteogenesis in the medullary cavity by upregulating the expression levels of Bmp2 and Opg within 14 days post-surgery. The higher degradation rate of XHP-Mg resulted in the accumulation of degradation products starting from day 3 and upregulation of different genes, particularly Ccl2 and Cepbp. Besides good osseointegration and new bone tissue formation, we found a more parallel hydroxyapatite/collagen orientation along Mg-based pins in the perimeter region compared to Ti pins. In the liver, reduced glycogen levels in Mg-based pins indicated that degradation products promote glycogenolysis, while only the ZX00 group showed a higher serum glucagon level on day 14. Results suggest that degrading ZX00 and XHP-Mg pins stimulate osteogenesis mainly via Bmp2 and Opg and promote glycogenolysis in the liver, while the higher degradation rate of XHP-Mg pins resulted in upregulation of different genes and metabolites. STATEMENT OF SIGNIFICANCE: Bioresorbable magnesium (Mg)-based implants are promising alternative candidates for orthopedic interventions. Until now, a few in vivo studies explored how Mg-based implants promote osteogenesis in the medullary cavity and modulate systemic tissue responses. Herein, results demonstrate i) the degradation rate of the Mg-based implants has a crucial effect on osteogenesis via regulating Bmp2 and Opg expression in the medullary cavity, ii) a parallel HAp/collagen matrix pattern in ZX00 and XHP-Mg groups compared to the Ti group, iii) both Mg pins promote glycogenolysis in the liver. Our findings highlight the dual role of Mg-based implants in bone remodeling and systemic metabolic modulation. Nevertheless, this is the first study to report the interaction between Mg-based implants and liver metabolism.
Collapse
Affiliation(s)
- Begüm Okutan
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Uwe Y Schwarze
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Research Unit Integrative Structural Biology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Julian P Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Susana G Santos
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Research Unit Integrative Structural Biology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | | | - Annelie M Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - D C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Nicole G Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| |
Collapse
|
3
|
Costa SN, Chlebek C, Rosen CJ. Isolation and Characterization of Primary Bone Marrow Adipocytes in Rodent Models. Methods Mol Biol 2025; 2885:87-98. [PMID: 40448757 DOI: 10.1007/978-1-0716-4306-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
This chapter will present innovative methods for the isolation and characterization of mature, primary bone marrow adipocytes from rodents. The key advantage of this protocol is that it allows for ex vivo analyses of mature bone marrow adipocytes, which is a more direct approach than traditional in vitro studies. While the difficulty in isolating mature adipocytes from the heterogenous bone marrow population has precluded their characterization in many preclinical studies, we have optimized our methods to maximize the collection of alive, mature bone marrow adipocytes and minimize contamination of other bone marrow and immune cells.
Collapse
Affiliation(s)
- Samantha N Costa
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Carolyn Chlebek
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
- Center for Translational Research, MaineHealth Institute for Research, Scarborough, ME, USA.
| |
Collapse
|
4
|
Gruneisen E, Kremer R, Duque G. Fat as a Friend or Foe of the Bone. Curr Osteoporos Rep 2024; 22:245-256. [PMID: 38416274 DOI: 10.1007/s11914-024-00864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW The objective of this review is to summarize the literature on the prevalence and diagnosis of obesity and its metabolic profile, including bone metabolism, focusing on the main inflammatory and turnover bone mediators that better characterize metabolically healthy obesity phenotype, and to summarize the therapeutic interventions for obesity with their effects on bone health. RECENT FINDINGS Osteoporosis and fracture risk not only increase with age and menopause but also with metabolic diseases, such as diabetes mellitus. Thus, patients with high BMI may have a higher bone fragility and fracture risk. However, some obese individuals with healthy metabolic profiles seem to be less at risk of bone fracture. Obesity has become an alarming disease with growing prevalence and multiple metabolic comorbidities, resulting in a significant burden on healthcare and increased mortality. The imbalance between increased food ingestion and decreased energy expenditure leads to pathological adipose tissue distribution and function, with increased secretion of proinflammatory markers and harmful consequences for body tissues, including bone tissue. However, some obese individuals seem to have a healthy metabolic profile and may not develop cardiometabolic disease during their lives. This healthy metabolic profile also benefits bone turnover and is associated with lower fracture risk.
Collapse
Affiliation(s)
- Elodie Gruneisen
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Richard Kremer
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Lu W, Qi G, Yang X, Li D, Chen W, Zeng Q, Jiang Z. Farrerol suppresses osteoclast differentiation and postmenopausal osteoporosis by inhibiting the nuclear factor kappa B signaling pathway. J Pharmacol Sci 2024; 154:113-126. [PMID: 38246725 DOI: 10.1016/j.jphs.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Orthopedic Surgery, SHANGHAI TCM-INTEGRATED Hospital Shanghai University of TCM, Shanghai, PR China
| | - Guobin Qi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China
| | - Xiuying Yang
- Department of Radiology, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Defang Li
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Weibin Chen
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China.
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China.
| |
Collapse
|
7
|
Guo Q, Chen N, Patel K, Wan M, Zheng J, Cao X. Unloading-Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305042. [PMID: 37880864 PMCID: PMC10724445 DOI: 10.1002/advs.202305042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Ningrong Chen
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Kalp Patel
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Junying Zheng
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
8
|
Deriggi-Pisani GF, Stotzer US, Marqueti RC, Rodrigues MFC, Biffe BG, Silva KA, Fabricio V, Rosen CJ, Selistre-de-Araujo HS. Role of resistance training in bone macro and micro damages in an estrogen absence animal model. Life Sci 2023; 317:121417. [PMID: 36690246 DOI: 10.1016/j.lfs.2023.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS We evaluated the effects of resistance training (RT) on bone properties, morphology, and bone extracellular matrix (ECM) remodeling markers in an ovariectomy (OVX) rat model. MAIN METHODS Thirty-six female rats were divided into four groups: sham sedentary, OVX sedentary, sham RT, and OVX RT. Rats performed RT for ten weeks, during which they climbed a ladder with progressive loads attached to the tail. Tibias were stored for dual-energy X-ray densitometry (DXA), micro-computed tomography (micro-CT), and biomechanical, biophysical, and biochemical analysis. Femurs were stored for morphological, gene expression, and gelatin zymography analysis. KEY FINDINGS OVX decreased bone mineral density, stiffness, maximal load, and calcium content, which was reversed by RT. The trabecular number, connectivity, and MMP-13 gene expression decreased in OVX groups. Furthermore, OVX increased run-related transcription factor-2 (RUNX-2) and osteoprotegerin (OPG) gene expression, and increased the number of adipocytes in bone marrow and MMP-2 activity. SIGNIFICANCE RT was efficient in preventing or reversing changes in bone biomechanical properties in OVX groups, improving fracture load and resilience, which is relevant to prevent fractures. On the other hand, RT did not decrease the number of bone adipocytes in the OVX-RT group. However, RT was efficient for increasing trabecular thickness and cortical bone volume, which improved bone resistance. Our findings provide further insights into the mechanisms involved in the role of RT in OVX damage protection.
Collapse
Affiliation(s)
- Graziéle F Deriggi-Pisani
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| | - Uliana S Stotzer
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rita C Marqueti
- Laboratório de Análises Moleculares - LAM, Faculdade de Ceilândia, Universidade de Brasília (UnB), Distrito Federal, Brazil
| | - Maria F C Rodrigues
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Bruna G Biffe
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Karina A Silva
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Victor Fabricio
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Heloisa Sobreiro Selistre-de-Araujo
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Lei WS, Rodrick EB, Belcher SL, Kelly A, Kindler JM. Bone resorption and incretin hormones following glucose ingestion in healthy emerging adults. J Clin Transl Endocrinol 2023; 31:100314. [PMID: 36845829 PMCID: PMC9950953 DOI: 10.1016/j.jcte.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Background Studies in adults indicate that macronutrient ingestion yields an acute anti-resorptive effect on bone, reflected by decreases in C-terminal telopeptide (CTX), a biomarker of bone resorption, and that gut-derived incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), facilitate this response. There remain knowledge gaps relating to other biomarkers of bone turnover, and whether gut-bone cross-talk is operative during the years surrounding peak bone strength attainment. This study first, describes changes in bone resorption during oral glucose tolerance testing (OGTT), and second, tests relationships between changes in incretins and bone biomarkers during OGTT and bone micro-structure. Methods We conducted a cross-sectional study in 10 healthy emerging adults ages 18-25 years. During a multi-sample 2-hour 75 g OGTT, glucose, insulin, GIP, GLP-1, CTX, bone-specific alkaline phosphatase (BSAP), osteocalcin, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), sclerostin, and parathyroid hormone (PTH) were assayed at mins 0, 30, 60, and 120. Incremental areas under the curve (iAUC) were computed from mins 0-30 and mins 0-120. Tibia bone micro-structure was assessed using second generation high resolution peripheral quantitative computed tomography. Results During OGTT, glucose, insulin, GIP, and GLP-1 increased significantly. CTX at min 30, 60, and 120 was significantly lower than min 0, with a maximum decrease of about 53 % by min 120. Glucose-iAUC0-30 inversely correlated with CTX-iAUC0-120 (rho = -0.91, P < 0.001), and GLP-1-iAUC0-30 positively correlated with BSAP-iAUC0-120 (rho = 0.83, P = 0.005), RANKL-iAUC0-120 (rho = 0.86, P = 0.007), and cortical volumetric bone mineral density (rho = 0.93, P < 0.001). Conclusions Glucose ingestion yields an anti-resorptive effect on bone metabolism during the years surrounding peak bone strength. Cross-talk between the gut and bone during this pivotal life stage requires further attention.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Eugene B. Rodrick
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Staci L. Belcher
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M. Kindler
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA,Corresponding author.
| |
Collapse
|
10
|
Tompkins YH, Choi J, Teng PY, Yamada M, Sugiyama T, Kim WK. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci Rep 2023; 13:616. [PMID: 36635321 PMCID: PMC9837181 DOI: 10.1038/s41598-023-27585-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Coccidiosis is an economically significant disease in the global poultry industry, but little is known about the mechanisms of bone defects caused by coccidiosis; thus, the study focused on effects of coccidiosis on the bone homeostasis of young broiler chickens. A total of 480 male Cobb500 broilers were randomly allocated into four treatment groups, including an uninfected control consuming diet ad libitum, two infected groups were orally gavaged with two different concentrations of sporulated Eimeria oocysts, and an uninfected pair-fed group fed the same amount of feed as the high Eimeria-infected group consumed. Growth performance and feed intake were recorded, and samples were collected on 6 days post infection. Results indicated that coccidiosis increased systemic oxidative status and elevated immune response in bone marrow, suppressing bone growth rate (P < 0.05) and increasing bone resorption (P < 0.05) which led to lower bone mineral density (P < 0.05) and mineral content (P < 0.05) under Eimeria infection. With the same amount of feed intake, the uninfected pair-fed group showed a distinguished bone formation rate and bone resorption level compared with the Eimeria infected groups. In conclusion, inflammatory immune response and oxidative stress in broilers after Eimeria infection were closely associated with altered bone homeostasis, highlighting the role of inflammation and oxidative stress in broiler bone homeostasis during coccidiosis.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Janghan Choi
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Po-Yun Teng
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Masayoshi Yamada
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshie Sugiyama
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Vadivalagan C, Krishnan A, Chen SJ, Hseu YC, Muthu S, Dhar R, Aljabali AAA, Tambuwala MM. The Warburg effect in osteoporosis: Cellular signaling and epigenetic regulation of energy metabolic events to targeting the osteocalcin for phenotypic alteration. Cell Signal 2022; 100:110488. [PMID: 36208706 DOI: 10.1016/j.cellsig.2022.110488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a silent disease of skeletal morphology that induces fragility and fracture risk in aged persons irrespective of gender. Juvenile secondary osteoporosis is rare and is influenced by familial genetic abnormalities. Despite the currently available therapeutic options, more-acute treatments are in need. Women suffer from osteoporosis after menopause, which is characterized by a decline in the secretion of sex hormones in the later phase of life. Several studies in the past two decades emphasized hormone-related pathways to combat osteoporosis. Some studies partially examined energy-related pathways, but achieving a more vivid picture of metabolism and bone remodeling in terms of the Warburg phenomenon is still warranted. Each cell requires sufficient energy for cellular propagation and growth; in particular, osteoporosis is an energy-dependent mechanism affected by a decreased cellular mass of the bone morphology. Energy utilization is the actual propagation of such diseases, and narrowing down these criteria will hopefully provide clues to formulate better therapeutic strategies. Oxidative glycolysis is a particular type of energy metabolic pathway in cancer cells that influences cellular proliferation. Therefore, the prospect of utilizing collective glucose metabolism by inducing the Warburg effect may improve cell propagation. The benefits of utilizing the energy from the Warburg effect may be a difficult task. However, it seems to improve their effectiveness in the osteoblast phenotype by connecting the selected pathways such as WNT, Notch, AKT, and Insulin signaling by targeting osteocalcin resulting in phenotypic alteration. Osteocalcin directs ATP utilization through the sclerostin SOST gene in the bone microenvironment. Thus, selective activation of ATP production involved in osteoblast maturation remains a prime strategy to fight osteoporosis.
Collapse
Affiliation(s)
- Chithravel Vadivalagan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul-624003, Tamil Nadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, -603203, Tamilnadu, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
12
|
Gremminger VL, Omosule CL, Crawford TK, Cunningham R, Rector RS, Phillips CL. Skeletal muscle mitochondrial function and whole-body metabolic energetics in the +/G610C mouse model of osteogenesis imperfecta. Mol Genet Metab 2022; 136:315-323. [PMID: 35725939 PMCID: PMC11587666 DOI: 10.1016/j.ymgme.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) is rare heritable connective tissue disorder that most often arises from mutations in the type I collagen genes, COL1A1 and COL1A2, displaying a range of symptoms including skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Recent investigations into the intrinsic muscle weakness have demonstrated reduced contractile generating force in some murine models consistent with patient population studies, as well as alterations in whole body bioenergetics. Muscle weakness is found in approximately 80% of patients and has been equivocal in OI mouse models. Understanding the mechanism responsible for OI muscle weakness is crucial in building our knowledge of muscle bone cross-talk via mechanotransduction and biochemical signaling, and for potential novel therapeutic approaches. In this study we evaluated skeletal muscle mitochondrial function and whole-body bioenergetics in the heterozygous +/G610C (Amish) mouse modeling mild/moderate human type I/VI OI and minimal skeletal muscle weakness. Our analyses revealed several changes in the +/G610C mouse relative to their wildtype littermates including reduced state 3 mitochondrial respiration, increased mitochondrial citrate synthase activity, increased Parkin and p62 protein content, and an increased respiratory quotient. These changes may represent the ability of the +/G610C mouse to compensate for mitochondrial and metabolic changes that may arise due to type I collagen mutations and may also account for the lack of muscle weakness observed in the +/G610C model relative to the more severe OI models.
Collapse
Affiliation(s)
- Victoria L Gremminger
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Tara K Crawford
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Rory Cunningham
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri, Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States of America
| | - R Scott Rector
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri, Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States of America
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; Department of Child Health, University of Missouri, Columbia, MO 65212, United States of America.
| |
Collapse
|
13
|
Maeda SS, Peters BSE, Martini LA, Antunes HKM, Gonzalez MC, Arantes HP, Prado CM, Pinto CL, de Araújo IM, de Paula FJA, Borges JLC, Albergaria BH, Ushida M, de Souza GC, de Mendonça LMC, do Prado M, de Medeiros Pinheiro M. Official position of the Brazilian Association of Bone Assessment and Metabolism (ABRASSO) on the evaluation of body composition by densitometry: part I (technical aspects)—general concepts, indications, acquisition, and analysis. Adv Rheumatol 2022; 62:7. [DOI: 10.1186/s42358-022-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To review the technical aspects of body composition assessment by dual-energy X-ray absorptiometry (DXA) and other methods based on the most recent scientific evidence.
Materials and methods
This Official Position is a result of efforts by the Scientific Committee of the Brazilian Association of Bone Assessment and Metabolism (Associação Brasileira de Avaliação Óssea e Osteometabolismo, ABRASSO) and health care professionals with expertise in body composition assessment who were invited to contribute to the preparation of this document. The authors searched current databases for relevant publications. In this first part of the Official Position, the authors discuss the different methods and parameters used for body composition assessment, general principles of DXA, and aspects of the acquisition and analysis of DXA scans.
Conclusion
Considering aspects of accuracy, precision, cost, duration, and ability to evaluate all three compartments, DXA is considered the gold-standard method for body composition assessment, particularly for the evaluation of fat mass. In order to ensure reliable, adequate, and reproducible DXA reports, great attention is required regarding quality control procedures, preparation, removal of external artifacts, imaging acquisition, and data analysis and interpretation.
Collapse
|
14
|
Zhang F, Li Q, Wu J, Ruan H, Sun C, Zhu J, Song Q, Wei X, Shi Y, Zhu L. Total Flavonoids of Drynariae Rhizoma Improve Glucocorticoid-Induced Osteoporosis of Rats: UHPLC-MS-Based Qualitative Analysis, Network Pharmacology Strategy and Pharmacodynamic Validation. Front Endocrinol (Lausanne) 2022; 13:920931. [PMID: 35846330 PMCID: PMC9279576 DOI: 10.3389/fendo.2022.920931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is a common form of secondary osteoporosis caused by the protracted or a large dosage of glucocorticoids (GCs). Total flavonoids of Drynariae rhizoma (TFDR) have been widely used in treating postmenopausal osteoporosis (POP). However, their therapeutic effects and potential mechanism against GIOP have not been fully elucidated. METHODS Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESIQ-TOF-MS) experiments were performed for qualitative analysis. We performed hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis to detect the changes in bone microstructure. The changes in biochemical parameters in the serum samples were determined by performing an enzyme-linked immunosorbent assay (ELISA). The prediction results of network pharmacology were verified via quantitative real-time polymerase chain reaction (qRT-PCR) to elucidate the potential mechanism of TFDR against GIOP. RESULTS A total of 191 ingredients were identified in vitro and 48 ingredients in vivo. In the in-vivo experiment, the levels of the serum total cholesterol (TC), the serum triglyceride (TG), Leptin (LEP), osteocalcin (OC), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2), propeptide of type I procollagen (PINP), tartrate-resistant acid phosphatase (TRACP) and type-I collagen carboxy-terminal peptide (CTX-1) in the TFDR group significantly changed compared with those in the GIOP group. Moreover, the TFDR group showed an improvement in bone mineral density and bone microstructure. Based on the results of network pharmacology analysis, 67 core targets were selected to construct the network and perform PPI analysis as well as biological enrichment analysis. Five of the targets with high "degree value" had differential gene expression between groups using qRT-PCR. CONCLUSION TFDR, which may play a crucial role between adipose metabolism and bone metabolism, may be a novel remedy for the prevention and clinical treatment of GIOP.
Collapse
Affiliation(s)
- Fangqing Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyue Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haonan Ruan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghui Song
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| |
Collapse
|
15
|
Samvelyan HJ, Mathers JC, Skerry TM. Feeding intervention potentiates the effect of mechanical loading to induce new bone formation in mice. FASEB J 2021; 35:e21792. [PMID: 34516688 DOI: 10.1096/fj.202100334rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
The benefits of increased human lifespan depend upon duration of healthy, independent living; the healthspan. Bone-wasting disorders contribute significantly to loss of independence, frailty, and morbidity in older people. Therefore, there is an unmet need globally for lifestyle interventions to reduce the likelihood of bone fractures with age. Although many mechanisms are involved in disorders of bone loss, there is no single regulatory pathway and, therefore, there is no single treatment available to prevent their occurrence. Our aim in these studies was to determine whether fasting/feeding interventions alter the effect of mechanical loading on bone anabolic activities and increase bone mass. In young 17-week-old mice, 16-hour fasting period followed by reintroduction of food for 2 hours increased markedly the potency of mechanical loading, that mimics the effect of exercise, to induce new cortical bone formation. Consistent with this finding, fasting and re-feeding increased the response of bone to a loading stimulus that, alone, does not stimulate new bone formation in ad-lib fed mice. Older mice (20 months) experienced no potentiation of loading-induced bone formation with the same timing of feeding interventions. Interestingly, the pre-, prandial, and postprandial endocrine responses in older mice were different from those in young animals. The hormones that change in response to timing of feeding have osteogenic effects that interact with loading-mediated effects. Our findings indicate associations between timing of food ingestion and bone adaptation to loading. If translated to humans, such non-pharmacological lifestyle interventions may benefit skeletal health of humans throughout life-course and in older age.
Collapse
Affiliation(s)
- Hasmik Jasmine Samvelyan
- CIMA, MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, The University of Sheffield, Sheffield, UK.,Department of Oncology and Metabolism, The Medical School, Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, UK
| | - John Cummings Mathers
- CIMA, MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, The University of Sheffield, Sheffield, UK.,Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Timothy Michael Skerry
- CIMA, MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, The University of Sheffield, Sheffield, UK.,Department of Oncology and Metabolism, The Medical School, Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
De Martinis M, Allegra A, Sirufo MM, Tonacci A, Pioggia G, Raggiunti M, Ginaldi L, Gangemi S. Vitamin D Deficiency, Osteoporosis and Effect on Autoimmune Diseases and Hematopoiesis: A Review. Int J Mol Sci 2021; 22:ijms22168855. [PMID: 34445560 PMCID: PMC8396272 DOI: 10.3390/ijms22168855] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin D (VD) is essential for bone homeostasis, but it is also involved in pleiotropic effects on various organs and tissues. In adults, VD deficiency can cause or exacerbate osteoporosis and induce osteomalacia. However, every tissue and cell in the body has a VD receptor, including the brain, heart, stomach, pancreas, skin, gonads, and immune cells, and a deficiency may modify the function of these organs. Thus, the wide-ranging actions of VD help to explain why a reduction in VD amount has been correlated with numerous chronic diseases. In fact, VD deficiency increases the risk of osteoporosis and several other diseases and complications characterized by impaired bone metabolisms, such as autoimmune diseases, inflammatory bowel diseases, allergy, endocrinological diseases, hematological malignancies, and bone marrow transplantation. This review aims to investigate the link between VD deficiency, osteoporosis, and its concomitant diseases. Further epidemiological and mechanistic studies are necessary in order to ascertain the real role of hypovitaminosis in causing the reported diseases; however, adequate vitamin supplementation and restoration of metabolic normality could be useful for better management of these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.D.M.); (M.M.S.); (M.R.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-0902-212-364
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.D.M.); (M.M.S.); (M.R.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Martina Raggiunti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.D.M.); (M.M.S.); (M.R.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.D.M.); (M.M.S.); (M.R.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
17
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
18
|
Nováková S, Danchenko M, Okajčeková T, Baranovičová E, Kováč A, Grendár M, Beke G, Pálešová J, Strnádel J, Janíčková M, Halašová E, Škovierová H. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. Int J Mol Sci 2021; 22:ijms22157908. [PMID: 34360674 PMCID: PMC8347416 DOI: 10.3390/ijms22157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging has been a global trend for the last decades, which increases the pressure to develop new cell-based or drug-based therapies, including those that may cure bone diseases. To understand molecular processes that underlie bone development and turnover, we followed osteogenic differentiation of human dental pulp stem cells (DPSCs) using a specific induction medium. The differentiation process imitating in vivo osteogenesis is triggered by various signaling pathways and is associated with massive proteome and metabolome changes. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility-enhanced mass spectrometry. From 2667 reproducibly quantified and identified proteins, 432 were differentially abundant by strict statistic criteria. Metabolome profiling was carried out by nuclear magnetic resonance. From 27 detected metabolites, 8 were differentially accumulated. KEGG and MetaboAnalyst hinted metabolic pathways that may be involved in the osteogenic process. Enrichment analysis of differentially abundant proteins highlighted PPAR, FoxO, JAK-STAT, IL-17 signaling pathways, biosynthesis of thyroid hormones and steroids, mineral absorption, and fatty acid metabolism as processes with prominent impact on osteoinduction. In parallel, metabolomic data showed that aminoacyl-tRNA biosynthesis, as well as specific amino acids, likely promote osteodifferentiation. Targeted immunoassays validated and complemented omic results. Our data underlined the complexity of the osteogenic mechanism. Finally, we proposed promising targets for future validation in patient samples, a step toward the treatment of bone defects.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| | - Maksym Danchenko
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia;
| | - Terézia Okajčeková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Eva Baranovičová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia;
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia;
| | - Janka Pálešová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Mária Janíčková
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| |
Collapse
|
19
|
Mukherjee S, Yun JW. Novel regulatory roles of UCP1 in osteoblasts. Life Sci 2021; 276:119427. [PMID: 33785331 DOI: 10.1016/j.lfs.2021.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS The bone-adipose axis requires complex homeostasis in energy and global metabolism. The bioenergetics of bone establishes the necessary energy balance to coordinate endocrine functions that are affected by various factors and is not limited to matrix proteins only. UCP1 is an uncoupling protein of adipocytes, commonly known for its unique feature of promoting thermogenesis, mainly in brown fat; however, the effects of UCP1 in other cell types remain unreported. MAIN METHODS In the current study, we determined the roles of UCP1 in osteoblasts by silencing the Ucp1 gene in MC-3T3-E1 cells, as well as C3H10T1/2 mesenchymal stem cells, and explored its functional activities. KEY FINDINGS Our results demonstrate for the first time the presence of UCP1 in osteoblast cells. We identified that UCP1 regulates ATP and oxidative phosphorylation in MC-3T3-E1 cells. In addition, our data reveal that the lack of Ucp1 results in reduced expressions of regulatory proteins involved in scavenging of ROS by enhancing an autophagic event to balance osteogenic differentiation. SIGNIFICANCE In conclusion, this study highlights a novel perspective on the importance of UCP1 in bone cells.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
20
|
Maestroni L, Read P, Bishop C, Papadopoulos K, Suchomel TJ, Comfort P, Turner A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med 2021; 50:1431-1450. [PMID: 32564299 DOI: 10.1007/s40279-020-01309-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy. .,StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy. .,London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Konstantinos Papadopoulos
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA.,Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK
| | - Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.,Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
21
|
Kim MY, Lee K, Shin HI, Lee KJ, Jeong D. Metabolic activities affect femur and lumbar vertebrae remodeling, and anti-resorptive risedronate disturbs femoral cortical bone remodeling. Exp Mol Med 2021; 53:103-114. [PMID: 33436949 PMCID: PMC8080628 DOI: 10.1038/s12276-020-00548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/29/2023] Open
Abstract
Metabolic activities are closely correlated with bone remodeling and long-term anti-resorptive bisphosphonate treatment frequently causes atypical femoral fractures through unclear mechanisms. To explore whether metabolic alterations affect bone remodeling in femurs and lumbar vertebrae and whether anti-osteoporotic bisphosphonates perturb their reconstruction, we studied three mouse strains with different fat and lean body masses (BALB/c, C57BL6, and C3H mice). These mice displayed variable physical activity, food and drink intake, energy expenditure, and respiratory quotients. Following intraperitoneal calcein injection, double calcein labeling of the femoral diaphysis, as well as serum levels of the bone-formation marker procollagen type-I N-terminal propeptide and the bone-resorption marker C-terminal telopeptide of type-I collagen, revealed increased bone turnover in mice in the following order: C3H > BALB/c ≥ C57BL6 mice. In addition, bone reconstitution in femurs was distinct from that in lumbar vertebrae in both healthy control and estrogen-deficient osteoporotic mice with metabolic perturbation, particularly in terms of femoral trabecular and cortical bone remodeling in CH3 mice. Interestingly, subcutaneous administration of bisphosphonate risedronate to C3H mice with normal femoral bone density led to enlarged femoral cortical bones with a low bone mineral density, resulting in bone fragility; however, this phenomenon was not observed in mice with ovariectomy-induced femoral cortical bone loss. Together, these results suggest that diverse metabolic activities support various forms of bone remodeling and that femur remodeling differs from lumbar vertebra remodeling. Moreover, our findings imply that the adverse effect of bisphosphonate agents on femoral cortical bone remodeling should be considered when prescribing them to osteoporotic patients.
Collapse
Affiliation(s)
- Mi Yeong Kim
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| | - Kyunghee Lee
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| | - Hong-In Shin
- grid.258803.40000 0001 0661 1556IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, 41940 Korea
| | - Kyung-Jae Lee
- grid.412091.f0000 0001 0669 3109Department of Orthopaedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, 42601 Korea
| | - Daewon Jeong
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| |
Collapse
|
22
|
Wang D, Su K, Ding Z, Zhang Z, Wang C. Association of Vitamin D Receptor Gene Polymorphisms with Metabolic Syndrome in Chinese Children. Int J Gen Med 2021; 14:57-66. [PMID: 33469344 PMCID: PMC7812523 DOI: 10.2147/ijgm.s287205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To investigate the association between vitamin D receptor (VDR) gene polymorphisms and vitamin D deficiency, overweightness/obesity, and metabolic syndrome (MetS) in a cohort of Han children residing in Hangzhou, China. Patients and Methods This study assessed 106 overweight/obese and 86 healthy (control) children. Five single-nucleotide polymorphisms (SNPs) in the VDR gene, namely, TaqI (rs731236 T > C), ApaI (rs7975232 C > A), BsmI (rs1544410 G > A), FokI (rs2228570 G >A), and Cdx2 (rs11568820 G > A), were genotyped by sequencing the total polymerase chain reaction products. The distributions of different genotypes and alleles were compared among different groups. Results The serum 25-hydroxyvitamin D (25(OH)D) concentration was significantly lower in overweight/obese children, while the AA genotype of ApaI SNP exhibited higher frequencies in the overweight/obese group than in the control. Furthermore, children with the ApaI AA genotype showed higher levels of Glu-60min, Glu-90min, Glu-120min and triglyceride. The AA genotype of FokI SNP was significantly associated with MetS. However, no association was observed between the five VDR SNPs and the risk of vitamin D deficiency. Conclusion VDR ApaI polymorphisms appear to be correlated with overweightness/obesity and glucose intolerance. FokI polymorphisms may be linked to a higher susceptibility toward MetS in Chinese children.
Collapse
Affiliation(s)
- Di Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiqun Zhang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Alfieri F, Nyakatura JA, Amson E. Evolution of bone cortical compactness in slow arboreal mammals. Evolution 2020; 75:542-554. [PMID: 33314086 DOI: 10.1111/evo.14137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023]
Abstract
Convergent evolution is a major topic in evolutionary biology. Low bone cortical compactness (CC, a measure of porosity of cortical bone) in the extant genera of "tree sloths," has been linked to their convergent slow arboreal ecology. This proposed relationship of low CC with a slow arboreal lifestyle suggests potential convergent evolution of this trait in other slow arboreal mammals. Femoral and humeral CC were analyzed in "tree sloths," lorisids, koala, and extinct palaeopropithecids and Megaladapis, in comparison to closely related but ecologically distinct taxa, in a phylogenetic framework. Low CC in "tree sloths" is unparalleled by any analyzed clade and the high CC in extinct sloths suggests the recent convergence of low CC in "tree sloths." A tendency for low CC was found in Palaeopropithecus and Megaladapis. However, lorisids and the koala yielded unexpected CC patterns, preventing the recognition of a straightforward convergence of low CC in slow arboreal mammals. This study uncovers a complex relationship between CC and convergent evolution of slow arboreality, highlighting the multifactorial specificity of bone microstructure.
Collapse
Affiliation(s)
- Fabio Alfieri
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - John A Nyakatura
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eli Amson
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
24
|
Viggers R, Al-Mashhadi Z, Fuglsang-Nielsen R, Gregersen S, Starup-Linde J. The Impact of Exercise on Bone Health in Type 2 Diabetes Mellitus-a Systematic Review. Curr Osteoporos Rep 2020; 18:357-370. [PMID: 32529455 DOI: 10.1007/s11914-020-00597-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Weight loss in T2DM management may result in lowering of bone mass. In this systematic literature review, we aimed to investigate how exercise affects bone health in people with T2DM. Furthermore, we examined the types of exercise with the potential to prevent and treat bone fragility in people with T2DM. RECENT FINDINGS Exercise differs in type, mechanical load, and intensity, as does the osteogenic response to exercise. Aerobic exercise improves metabolic health in people with T2DM. However, the weight-bearing component of exercise is essential to bone health. Weight loss interventions in T2DM induce a loss of bone mass that may be attenuated if accompanied by resistance or weight-bearing exercise. Combination of weight-bearing aerobic and resistance exercise seems to be preventive against excessive bone loss in people with T2DM. However, evidence is sparse and clinical trials investigating the effects of exercise on bone health in people with T2DM are warranted.
Collapse
Affiliation(s)
- R Viggers
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Z Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - R Fuglsang-Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Internal Medicine, Regional Hospital Randers, Randers, Denmark
| | - S Gregersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - J Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
25
|
Takakura N, Matsuda M, Khan M, Hiura F, Aoki K, Hirohashi Y, Mori K, Yasuda H, Hirata M, Kitamura C, Jimi E. A novel inhibitor of NF-κB-inducing kinase prevents bone loss by inhibiting osteoclastic bone resorption in ovariectomized mice. Bone 2020; 135:115316. [PMID: 32169603 DOI: 10.1016/j.bone.2020.115316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.
Collapse
Affiliation(s)
- Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yuna Hirohashi
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kayo Mori
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50 Kano-cho, Nagahama, Shiga 526-0804, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
26
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
- all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
27
|
Assadi MH, Segev Y, Tarasiuk A. Upper Airway Obstruction Elicited Energy Imbalance Leads to Growth Retardation that Persists after the Obstruction Removal. Sci Rep 2020; 10:3206. [PMID: 32081973 PMCID: PMC7035324 DOI: 10.1038/s41598-020-60226-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022] Open
Abstract
Upper airway obstruction can lead to growth retardation by unclear mechanisms. We explored the effect of upper airway obstruction in juvenile rats on whole-body energy balance, growth plate metabolism, and growth. We show that after seven weeks, obstructed animals’ ventilation during room air breathing increased, and animals grew less due to abnormal growth plate metabolism. Increased caloric intake in upper airway-obstructed animals did not meet increased energy expenditure associated with increased work of breathing. Decreased whole-body energy balance induced hindrance of bone elongation following obstruction removal, and array pathways regulating growth plate development and marrow adiposity. This is the first study to show that rapidly growing animals cannot consume enough calories to maintain their energy homeostasis, leading to an impediment in growth in the effort to save energy.
Collapse
Affiliation(s)
- Mohammad H Assadi
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel.,Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel. .,Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel.
| |
Collapse
|
28
|
Parreiras-E-Silva LT, de Araújo IM, Elias J, Nogueira-Barbosa MH, Suen VMM, Marchini JS, Salmon CEG, de Paula FJA. Osteoporosis and Hepatic Steatosis: 2 Closely Related Complications in Short-Bowel Syndrome. JPEN J Parenter Enteral Nutr 2020; 44:1271-1279. [PMID: 32048748 DOI: 10.1002/jpen.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Osteoporosis has scarcely been prospectively investigated in short-bowel syndrome (SBS). This prospective study was designed to evaluate incretins, adipokines, bone mass, and lipid deposits from marrow adipose tissue (MAT), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and liver (IHLs). METHODS The study comprised 2 groups matched by gender, height, and age: the control group (CG) (9 males, 9 females) and the SBS group (SBSG) (6 males, 5 females). The SBSG was evaluated twice in an interval of 1 year (SBSG0 and SBSG1 ). The biochemical evaluation included incretins, leptin, and adiponectin. Dual-energy x-ray absorptiometry and magnetic resonance were, respectively, used to measure BMD and lipid deposits. RESULTS Bone mineral density (BMD) was lower in the SBSG than in the CG, but there was no difference between SBSG0 and SBSG1 . There was no difference in MAT, SAT, and VAT, but IHL was lower in CG than in SBSG0 and SBSG1 . A negative correlation between MAT and third lumbar vertebrae BMD was found in the CG but not in SBSG0 or SBSG1 . There was a negative association between IHL and bone mass considering all participants (CG and SBSG0 ) (R2 = 0.38; P < .05). CONCLUSION Appropriate nutrition assistance recovers body composition, reverts the relationship of bone mass and MAT, and mitigates bone loss in SBS. In spite of this, osteoporosis seems to be an early and persistent complication in SBS. Curiously, SBS seems to be a highly vulnerable condition for the development of hepatic steatosis and shows an association between bone mass and IHL.
Collapse
Affiliation(s)
- Luciana T Parreiras-E-Silva
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Iana M de Araújo
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jorge Elias
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Vivian M M Suen
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Julio S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Arts of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
29
|
Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"? Cells 2019; 8:cells8121636. [PMID: 31847314 PMCID: PMC6952937 DOI: 10.3390/cells8121636] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the "classical pathway", and cytokines involved in lymph node formation, such as CD40L, activate the "alternative pathway". NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to "killing two birds with one stone": it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
- Correspondence: ; Tel.: 81-92-642-6332
| | - Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Ichiro Nakamura
- Faculty of Health and Medical Science, Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima, Tokyo 170-8445, Japan;
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
30
|
Abstract
The skeleton harbors an array of lineage cells that have an essential role in whole body homeostasis. Adipocytes start the colonization of marrow space early in postnatal life, expanding progressively and influencing other components of the bone marrow through paracrine signaling. In this unique, closed, and hypoxic environment close to the endosteal surface and adjacent to the microvascular space the marrow adipocyte can store or provide energy, secrete adipokines, and target neighboring bone cells. Adipocyte progenitors can also migrate from the bone marrow to populate white adipose tissue, a process that accelerates during weight gain. The marrow adipocyte also has an endocrine role in whole body homeostasis through its varied secretome that targets distant adipose depots, skeletal muscle, and the nervous system. Further insights into the biology of this unique and versatile cell will undoubtedly lead to novel therapeutic approaches to metabolic and age-related disorders such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil;
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA;
| |
Collapse
|
31
|
Batista SL, de Araújo IM, Carvalho AL, Alencar MAVSD, Nahas AK, Elias J, Nogueira-Barbosa MH, Salmon CEG, Elias PCL, Moreira AC, Castro M, de Paula FJA. Beyond the metabolic syndrome: Visceral and marrow adipose tissues impair bone quantity and quality in Cushing's disease. PLoS One 2019; 14:e0223432. [PMID: 31613908 PMCID: PMC6793883 DOI: 10.1371/journal.pone.0223432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to evaluate the relationship between bone traits [bone mineral density (BMD) and trabecular bone score (TBS)] and the accumulation of fat in adipose tissues [abdominal subcutaneous (SAT), visceral (VAT), marrow (MAT) and intrahepatic lipids (IHL)], as well as insulin resistance, in subjects with Cushing’s disease (CD). The study included control (C = 27), paired (P = 16) and Cushing’s disease (CD = 10) groups, which underwent biochemical assessment, dual X-ray absorptiometry, TBS, and magnetic resonance imaging to determine fat deposits. The CD group showed higher serum levels of glucose and insulin, as well as HOMA-IR values, but lower circulatory levels of osteocalcin, in comparison to C and P. The CD group exhibited lower L1-L4 BMD than P (P = 1.059 ± 0.141 vs CD = 0.935 ± 0.093 g/cm2, p < 0.05) (Fig 1A). The lumbar spine BMD from the C group was similar to the other groups. TBS was lower in CD than in P and C (C = 1.512±0.077 vs P = 1.405±0.150 vs CD = 1.135±0.136; p<0.05); there was also significant difference between C and P (p<0.05). MAT, VAT, and IHL were higher in CD than in C and P (p<0.05). Considering all subjects, there was a positive association between TBS with both lumbar spine BMD (R2 = 0.45; p<0.0001) and osteocalcin (R2 = 0.44; p = 0.05). TBS was negatively associated with MAT (R2 = 0.49; p = 0.01), VAT (R2 = 0.55; p<0.05), and HOMA-IR (R2 = 0.44; p<0.01). MAT was positively related with VAT (R2 = 0.44; p<0.01) and IHL (R2 = 0.41; p<0.05). In CD, insulin resistance and adipose tissue dysfunction, including high MAT, are active players in bone deterioration, as confirmed by lower lumbar spine BMD and lower TBS. Thus, our findings point to an additional component of the already well-known complex mechanisms of osteoporosis associated with hypercortisolism.
Collapse
Affiliation(s)
- Sérgio Luchini Batista
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | - Adriana Lelis Carvalho
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | | | - Jorge Elias
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | - Carlos E. G. Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Paula C. L. Elias
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Ayrton C. Moreira
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Margaret Castro
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Francisco J. A. de Paula
- Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
32
|
Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res 2019; 7:28. [PMID: 31666998 PMCID: PMC6804951 DOI: 10.1038/s41413-019-0058-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved intracellular process, in which domestic cellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Both genetic and functional studies have demonstrated that multiple proteins involved in autophagic activities are critical to the survival, differentiation, and functioning of bone cells, including osteoblasts, osteocytes, and osteoclasts. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. This review aims to introduce the topic of autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role in the onset of osteoporosis and therapeutic potential.
Collapse
|
33
|
Xiang B, Liu Y, Zhao W, Zhao H, Yu H. Extracellular calcium regulates the adhesion and migration of osteoclasts via integrin α v β 3 /Rho A/Cytoskeleton signaling. Cell Biol Int 2019; 43:1125-1136. [PMID: 30022569 DOI: 10.1002/cbin.11033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Integrin αv β3 is a transmembrane integrin, which can initiate osteoclasts' attachment on bones, leading to downward signaling pathways and subsequent bone resorption. Different calcium concentrations have been reported to have an influence on the activation of integrin αv β3 . To elucidate the regulatory mechanism of extracellular calcium concentrations on osteoclasts, a controlled micro flow plate (M04S) was utilized in the ONIX flow control system to observe the osteoclasts' adhesion and migration in different calcium concentration media. Fluorescent staining is conducted to show the distribution of integrin αv β3 and cytoskeleton reorganization. In addition, western blots were performed to detect the expression of integrin αv β3 and its downstream signaling pathways related to bone resorption. Also, real-time reverse-transcription polymerase chain reaction data of transcription co-activator (YAP/TAZ) and hydrolytic enzymes (the matrix metalloproteinase 9 and cathepsin K) are evaluated. Our findings suggest that osteoclasts' migration and adhesion is better promoted at 0.5 mM than 1.2 mM, which can be partly explained by the induced cytoskeleton organization via integrin αv β3 /Rho GTPase. But the activation and nuclear localization of YAP/TAZ, and the secretion of hydrolytic enzymes were upregulated when the calcium concentration is at a higher level (1.2 mM). According to our study, there is a high possibility that the migration and attachment of osteoclasts and subsequent osteoclastic bone resorption are regulated over a specific range of extracellular calcium concentration.
Collapse
Affiliation(s)
- Bilu Xiang
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Yang Liu
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Wei Zhao
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Hanchi Zhao
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Haiyang Yu
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| |
Collapse
|
34
|
Carvalho AL, Massaro B, Silva LTPE, Salmon CEG, Fukada SY, Nogueira-Barbosa MH, Elias J, Freitas MCF, Couri CEB, Oliveira MC, Simões BP, Rosen CJ, de Paula FJA. Emerging Aspects of the Body Composition, Bone Marrow Adipose Tissue and Skeletal Phenotypes in Type 1 Diabetes Mellitus. J Clin Densitom 2019; 22:420-428. [PMID: 30100221 DOI: 10.1016/j.jocd.2018.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Anthropomorphic measures among type 1 diabetic patients are changing as the obesity epidemic continues. Excess fat mass may impact bone density and ultimately fracture risk. We studied the interaction between bone and adipose tissue in type 1 diabetes subjects submitted to two different clinical managements: (I) conventional insulin therapy or (II) autologous nonmyeloablative hematopoietic stem-cell transplantation (AHST). The study comprised 3 groups matched by age, gender, height and weight: control (C = 24), type 1 diabetes (T1D = 23) and type 1 diabetes treated with AHST (T1D-AHST = 9). Bone mineral density (BMD) and trabecular bone score (TBS) were assessed by dual X-ray absorptiometry (DXA). 1H Magnetic resonance spectroscopy was used to assess bone marrow adipose tissue (BMAT) in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids (IHL), visceral (VAT) and subcutaneous adipose tissue (SAT). Individuals conventionally treated for T1D were more likely to be overweight (C = 23.8 ± 3.7; T1D = 25.3 ± 3.4; T1D-AHST = 22.5 ± 2.2 Kg/m2; p > 0.05), but there was no excessive lipid accumulation in VAT or liver. Areal BMD of the three groups were similar at all sites; lumbar spine TBS (L3) was lower in type 1 diabetes (p < 0.05). Neither SAT nor VAT had any association with bone parameters. Bone marrow adipose tissue (BMAT) lipid profiles were similar among groups. BMAT saturated lipids were associated with cholesterol, whereas unsaturated lipids had an association with IGF1. Overweight and normal weight subjects with type 1 diabetes have normal areal bone density, but lower trabecular bone scores. Adipose distribution is normal and BMAT volume is similar to controls, irrespective of clinical treatment.
Collapse
Affiliation(s)
- Adriana L Carvalho
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Bianca Massaro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Luciana T P E Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Arts of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Jorge Elias
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Maria C F Freitas
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Belinda P Simões
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil.
| |
Collapse
|
35
|
Freese M, Rizzo LY, Pohlmann JD, Marohn L, Witten PE, Gremse F, Rütten S, Güvener N, Michael S, Wysujack K, Lammers T, Kiessling F, Hollert H, Hanel R, Brinkmann M. Bone resorption and body reorganization during maturation induce maternal transfer of toxic metals in anguillid eels. Proc Natl Acad Sci U S A 2019; 116:11339-11344. [PMID: 31085642 PMCID: PMC6561237 DOI: 10.1073/pnas.1817738116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During their once-in-a-lifetime transoceanic spawning migration, anguillid eels do not feed, instead rely on energy stores to fuel the demands of locomotion and reproduction while they reorganize their bodies by depleting body reserves and building up gonadal tissue. Here we show how the European eel (Anguilla anguilla) breaks down its skeleton to redistribute phosphorus and calcium from hard to soft tissues during its sexual development. Using multiple analytical and imaging techniques, we characterize the spatial and temporal degradation of the skeletal framework from initial to final gonadal maturation and use elemental mass ratios in bone, muscle, liver, and gonadal tissue to determine the fluxes and fates of selected minerals and metals in the eels' bodies. We find that bone loss is more pronounced in females than in males and eventually may reach a point at which the mechanical stability of the skeleton is challenged. P and Ca are released and translocated from skeletal tissues to muscle and gonads, leaving both elements in constant proportion in remaining bone structures. The depletion of internal stores from hard and soft tissues during maturation-induced body reorganization is accompanied by the recirculation, translocation, and maternal transfer of potentially toxic metals from bone and muscle to the ovaries in gravid females, which may have direct deleterious effects on health and hinder the reproductive success of individuals of this critically endangered species.
Collapse
Affiliation(s)
- Marko Freese
- Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572 Bremerhaven, Germany;
| | - Larissa Yokota Rizzo
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52056 Aachen, Germany
| | - Jan-Dag Pohlmann
- Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572 Bremerhaven, Germany
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572 Bremerhaven, Germany
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, 900 Ghent, Belgium
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52056 Aachen, Germany
| | - Stephan Rütten
- Institute for Pathology, RWTH Aachen University, 52074 Aachen, Germany
- Electron Microscopy Facility, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52056 Aachen, Germany
| | - Sabrina Michael
- Institute of Hygiene and Environmental Medicine, RWTH University, 52074 Aachen, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572 Bremerhaven, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52056 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52056 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572 Bremerhaven, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3
| |
Collapse
|
36
|
Montañez‐Rivera I, Nyakatura JA, Amson E. Bone cortical compactness in 'tree sloths' reflects convergent evolution. J Anat 2018; 233:580-591. [PMID: 30117161 PMCID: PMC6183012 DOI: 10.1111/joa.12873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 01/15/2023] Open
Abstract
Bone remodeling, one of the main processes that regulate bone microstructure, consists of bone resorption followed by the deposition of secondary bone at the same location. Remodeling intensity varies among taxa, but a characteristically compact cortex is ubiquitous in the long bones of mature terrestrial mammals. A previous analysis found that cortical bone in a few 'tree sloth' (Bradypus and Choloepus) specimens is heavily remodeled and characterized by numerous immature secondary osteons, suggesting that these animals were remodeling their bones at high rate until late in their ontogeny. This study aims at testing if this remodeling is generally present in 'tree sloths', using a quantitative analysis of the humeral cortical compactness (CC) among xenarthrans. The results of the investigation of humeral diaphyseal cross-sections of 26 specimens belonging to 10 xenarthran species including specimens from both extinct and extant species indicate that in 'tree sloths' the CC is significantly lower than in the other sampled xenarthrans. No significant difference was found between the CC of the two genera of 'tree sloths'. Our results are consistent with the hypothesis that the cortical bone of 'tree sloths' in general undergoes intense and balanced remodeling that is maintained until late (possibly throughout) in their ontogeny. In the light of xenarthran phylogeny, low CC represents another convergence between the long-separated 'tree sloth' lineages. Although the exact structural and/or functional demands that are associated with this trait are hitherto unknown, several hypotheses are suggested here, including a relationship to their relatively low metabolism and to the mechanical demands imposed upon the bones by the suspensory posture and locomotion, which was independently acquired by the two genera of 'tree sloths'.
Collapse
Affiliation(s)
- Irene Montañez‐Rivera
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
| | - John A. Nyakatura
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
- Bild Wissen Gestaltung. Ein interdisziplinäres LaborHumboldt UniversitätBerlinGermany
| | - Eli Amson
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
- Bild Wissen Gestaltung. Ein interdisziplinäres LaborHumboldt UniversitätBerlinGermany
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| |
Collapse
|
37
|
Li B, Yu F, Wu F, Wang K, Lou F, Zhang D, Liao X, Yin B, Wang C, Ye L. Visual Osteoclast Fusion via A Fluorescence Method. Sci Rep 2018; 8:10184. [PMID: 29977065 PMCID: PMC6033910 DOI: 10.1038/s41598-018-28205-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoclasts are multinucleated giant cells. Fusion is an essential element in the formation of osteoclasts. However, the exact cellular events and mechanisms remain largely unknown because of limited and insufficient methods for observing fusion process. In this work, a fluorescence reporter strategy was established to monitor osteoclast fusion. After fusing with cells expressing Cre recombinase, those cells with double fluorescence switch its expression from red to green fluorescent protein. The effect of RANKL and PTH on osteoclast fusion were both quantitatively and visually detected utilizing this strategy. Furthermore, a combination of this strategy with a technique of fluorescence-activated cell sorting revealed two different populations of fused osteoclasts, tdTomato+ GFP+ cells (TG cells) and GFP+ cells (G cells). The results argue for the potential of combining this technique with other bio-technologies to gain more information about osteoclast fusion. Overall, these data demonstrated that this visual fluorescence switch strategy is useful for further analysis of osteoclast fusion mechanisms.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, 75246, TX, USA
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
38
|
Ferraz-de-Souza B. The elusive clinical significance of osteocalcin actions in energy metabolism in humans. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:271-272. [PMID: 29972433 PMCID: PMC10118791 DOI: 10.20945/2359-3997000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022]
|
39
|
Parreiras-E-Silva LT, de Araújo IM, Elias J, Nogueira-Barbosa MH, Suen VMM, Marchini JS, Bonella J, Nahas AK, Salmon CEG, de Paula FJA. Short bowel syndrome: influence of nutritional therapy and incretin GLP1 on bone marrow adipose tissue. Ann N Y Acad Sci 2018; 1415:47-56. [PMID: 29509291 DOI: 10.1111/nyas.13657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Energy deprivation leads to a decrease in white adipose tissue and bone mineral density (BMD), while simultaneously inducing the expansion of marrow adipose tissue (MAT). In short bowel syndrome (SBS), parenteral nutrition mitigates the deterioration of nutritional status, including decreases in MAT. Osteoporosis is, however, a frequent complication of SBS. The objective of our study here was to evaluate the association of fat deposit sites (subcutaneous and visceral adipose tissues: intrahepatic lipid (IHL) and MAT) and the incretin glucagon-like peptide 1 (GLP1) with BMD in individuals with SBS. MAT was negatively correlated with lumbar spine BMD in normal individuals, but not in those in the SBS group, who otherwise showed a positive correlation between MAT and GLP1. In addition, in individuals with SBS, IHL was negatively associated with lumbar spine BMD and positively associated with C-terminal telopeptide of type 1 collagen (a serum biomarker of bone turnover). Caloric maintenance in individuals with SBS, therefore, seems to positively affect the relationship between MAT and BMD, which may be modulated, at least in part, by GLP1.
Collapse
Affiliation(s)
- Luciana T Parreiras-E-Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Iana M de Araújo
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jorge Elias
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Vivian M M Suen
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Julio S Marchini
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Bonella
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Andressa K Nahas
- Department of Epidemiology, Faculty of Public Health, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Arts of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
40
|
Bilotta FL, Arcidiacono B, Messineo S, Greco M, Chiefari E, Britti D, Nakanishi T, Foti DP, Brunetti A. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine 2018; 59:622-632. [PMID: 28866834 PMCID: PMC5847166 DOI: 10.1007/s12020-017-1396-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE In the last few years, bone has been recognized as an endocrine organ that modulates glucose metabolism by secretion of osteocalcin, an osteoblast-specific hormone, that influences fat deposition and blood sugar levels. To date, however, very few in vitro models have been developed to investigate, at the molecular levels, the relationship between glucose, insulin and osteocalcin. This study aims at covering this gap. METHODS We studied osteogenic differentiation, osteocalcin gene expression, and osteblast-mediated insulin secretion, using cultured MG-63 human osteoblast-like cells that underwent glucotoxicity and insulin resistance. In addition, we investigated whether a correlation existed between hyperglycemia and/or insulin resistance and total osteocalcin serum concentrations in patients. RESULTS While insulin and low glucose increased osteocalcin gene expression, disruption of insulin signaling in MG-63 osteoblasts and high glucose concentration in cell culture medium decreased osteocalcin gene transcription and reduced osteogenic differentiation. Concomitantly, insulin secretion was significantly impaired in rat INS-1 β-cells treated with conditioned medium from insulin resistant MG-63 cells or cells exposed to high glucose concentrations. Also, chronic hyperglycemia, but not insulin resistance, inversely correlated with circulating osteocalcin levels in patients. CONCLUSION Our results further support the existence of an endocrine axis between bone, where osteocalcin is produced, and pancreatic β-cells, and add new insights into the molecular details of this relationship. These findings may contribute to the understanding of osteocalcin regulation and its role in metabolism.
Collapse
Affiliation(s)
- Francesco L Bilotta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Sebastiano Messineo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Tomoko Nakanishi
- Laboratory of Molecular Genetics, The Institute of Medical Science, University of Tokyo, 108-8639, Tokyo, Japan
| | - Daniela P Foti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy.
| |
Collapse
|
41
|
|
42
|
Otsuki Y, Ii M, Moriwaki K, Okada M, Ueda K, Asahi M. W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 2017; 495:904-910. [PMID: 29154826 DOI: 10.1016/j.bbrc.2017.11.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/05/2023]
Abstract
W9 is a peptide that abrogates osteoclast differentiation via blockade of nuclear factor-κB ligand (RANKL)-RANK signaling, which activates bone formation. However, W9 stimulated osteogenesis in osteoblasts and mesenchymal stem cells. The present study demonstrated that the W9 peptide promoted osteogenic differentiation of human adipose-derived stem cells (hAdSCs) even under non-osteogenic differentiation culture conditions. W9-treated hAdSCs exhibited several osteocalcin-expressing cells and great mineralization compared to the BMP2-treated hAdSCs, which suggests that the W9 peptide had potent osteogenic potential in hAdSCs. W9 treatment also markedly enhanced the phosphorylation of p38, JNK, Erk1/2, and Akt, and BMP2 treatment only enhanced the phosphorylation of p38 and Erk1/2 in hAdSCs. hAdSCs did not express the RANKL gene, but W9 treatment upregulated Runx2, Collagen type 1A1 and TGF receptor genes and increased Akt phosphorylation. These results suggest that the W9-induced potent osteogenic induction was attributed to activation of TGF and the PI3 kinase/Akt signaling pathway in hAdSCs.
Collapse
Affiliation(s)
- Yuki Otsuki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Ii
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan; Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, Osaka, Japan.
| | - Kazumasa Moriwaki
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masashi Okada
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Koichi Ueda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
43
|
Greene-Finestone LS, Garriguet D, Brooks S, Langlois K, Whiting SJ. Overweight and obesity are associated with lower vitamin D status in Canadian children and adolescents. Paediatr Child Health 2017; 22:438-444. [PMID: 29479261 PMCID: PMC5804960 DOI: 10.1093/pch/pxx116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION There is evidence that 25-hydroxyvitamin D levels are lower in overweight and obese youth. This study examined the relationship between weight status and 25-hydroxyvitamin D, while controlling for confounders, in Canadian youth. METHODS Plasma 25-hydroxyvitamin D from subjects aged 6 to 17 years from the Canadian Health Measures Survey cycles 1 (2007 to 2009) and 2 (2009 to 2011) was used. Sex-specific multiple linear regression and logistic regressions examined the relationship of overweight and obesity (body mass index ≥ 85th percentile) with 25-hydroxyvitamin D levels and the odds of 25-hydroxyvitamin D <40 nmol/L and <50 nmol/L. RESULTS The prevalence of risk of vitamin D deficiency (25-hydroxyvitamin D < 30 nmol/L) was 6% (95% confidence interval [CI] 3.26% to 10.12%). Vitamin D inadequacy, estimated by levels <40 nmol/L, was 15% (95% CI 10.34% to 20.39%; 19% [95% CI 13.1 to 25.6] for teenagers). Seventy per cent (95% CI 63.59 to 75.17) had levels >50 nmol/L, consistent with achieving the Recommended Dietary Allowance. In adjusted analyses, overweight/obesity (1/3 of subjects) was independently associated with lower 25-hydroxyvitamin D for both sexes after adjustment for age, race, income, season, vitamin D supplementation and daily milk consumption. For 25-hydroxyvitamin D <40 nmol/L, the overweight/obese odds ratio for males was 2.63 (95% CI 1.34 to 5.18). For 25-hydroxyvitamin D <50 nmol/L, overweight/obese odds ratios were 2.19 (95% CI 1.46 to 3.28) for males and 1.39 (95% CI 1.05 to 1.84) for females. CONCLUSIONS This study confirms the inverse association between adiposity and serum concentrations of 25-hydroxyvitamin D in Canadian youth and the independent association of overweight/obesity to 25-hydroxyvitamin D level and vitamin D status after adjustment for other factors.
Collapse
Affiliation(s)
| | | | - Stephen Brooks
- Bureau of Nutritional Sciences, Health Canada, Banting Research Centre, Ottawa, Ontario
| | - Kellie Langlois
- Health Analysis Division, Statistics Canada, Ottawa, Ontario
| | - Susan J Whiting
- Collegeof Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
44
|
Bastos CM, Araújo IM, Nogueira-Barbosa MH, Salmon CEG, de Paula FJA, Troncon LEA. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission. Osteoporos Int 2017; 28:2167-2176. [PMID: 28405731 DOI: 10.1007/s00198-017-4014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Bone marrow adipose tissue has not been studied in patients with inactive inflammatory bowel disease. We found that these patients have preserved marrow adiposity even with low bone mass. Factors involved in bone loss in active disease may have long-lasting effects but do not seem to affect bone marrow adiposity. INTRODUCTION Reduced bone mass is known to occur at varying prevalence in patients with inflammatory bowel diseases (IBD) because of inflammation, malnutrition, and steroid therapy. Osteoporosis may develop in these patients as the result of an imbalanced relationship between osteoblasts and adipocytes in bone marrow. This study aimed to evaluate for the first time bone mass and bone marrow adipose tissue (BMAT) in a particular subgroup of IBD patients characterized by long-term, steroid-free remission. METHODS Patients with Crohn's disease (CD; N = 21) and ulcerative colitis (UC; N = 15) and controls (C; N = 65) underwent dual X-ray energy absorptiometry and nuclear magnetic resonance spectroscopy of the L3 lumbar vertebra for BMAT assessment. RESULTS Both the CD and UC subgroups showed significantly higher proportions of patients than controls with Z-score ≤-2.0 at L1-L4 (C 1.54%; CD 19.05%; UC 20%; p = 0.02), but not at other sites. The proportions of CD patients with a T-score ˂-1.0 at the femoral neck (C 18.46%; CD 47.62%; p = 0.02) and total hip (C 16.92%; CD 42.86%; p = 0.03) were significantly higher than among controls. There were no statistically significant differences between IBD patients and controls regarding BMAT at L3 (C 28.62 ± 8.15%; CD 29.81 ± 6.90%; UC 27.35 ± 9.80%; p = 0.67). CONCLUSIONS IBD patients in long-term, steroid-free remission may have a low bone mass in spite of preserved BMAT. These findings confirm the heterogeneity of bone disorders in IBD and may indicate that factors involved in bone loss in active disease may have long-lasting effects on these patients.
Collapse
Affiliation(s)
- C M Bastos
- Gastroenterology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - I M Araújo
- Endocrinology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M H Nogueira-Barbosa
- Radiology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C E G Salmon
- Department of Physics, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | - F J A de Paula
- Endocrinology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L E A Troncon
- Gastroenterology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
45
|
Maciel JG, de Araújo IM, Carvalho AL, Simão MN, Bastos CM, Troncon LEA, Salmon CEG, de Paula FJA, Nogueira-Barbosa MH. Marrow Fat Quality Differences by Sex in Healthy Adults. J Clin Densitom 2017; 20:106-113. [PMID: 27637728 DOI: 10.1016/j.jocd.2016.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 01/19/2023]
Abstract
Several studies have demonstrated the relationship between bone marrow adiposity (BMAT) and bone mass. 1H magnetic resonance spectroscopy is a noninvasive technique able to assess both BMAT quantity and quality. The aim of our study was to perform quantitative and qualitative analyses of BMAT and to investigate its association with bone mineral density (BMD) in healthy nonobese volunteers. Fifty-one healthy volunteers, 21 men and 30 women, underwent 1.5 T 1H magnetic resonance spectroscopy of the lumbar spine. BMD was determined by dual-energy X-ray absorptiometry of the lumbar spine. Correlation analysis was performed to evaluate association among lipids fractions, BMD, and age. The female and male volunteers had similar body mass index and BMD (p > 0.05). Our data demonstrated an inverse correlation of BMD and BMAT with age, with a stronger correlation of saturated lipids (r = 0.701; p < 0.0001) compared with unsaturated lipids (UL) (r = 0.278; p = 0.004). Importantly, female subjects had the highest amount of UL (confidence interval: 0.685%-1.722%; p < 0.001). Our study reports that men and women with similar BMD and body mass index have striking differences in bone marrow lipids composition, namely women have higher UL than men. In addition, we believe that our study brings new insights to the complex network involving BMAT and other factors that influence bone integrity.
Collapse
Affiliation(s)
- Jamilly G Maciel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil.
| | - Iana M de Araújo
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Adriana L Carvalho
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Marcelo N Simão
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Clara M Bastos
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Luiz E A Troncon
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Arts of Ribeirao Preto, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
46
|
Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:824259. [PMID: 26783411 PMCID: PMC4691484 DOI: 10.1155/2015/824259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed.
Collapse
|
47
|
Hui T, A P, Zhao Y, Wang C, Gao B, Zhang P, Wang J, Zhou X, Ye L. EZH2, a potential regulator of dental pulp inflammation and regeneration. J Endod 2014; 40:1132-8. [PMID: 25069920 DOI: 10.1016/j.joen.2014.01.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/22/2013] [Accepted: 01/21/2014] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Dental pulp has limited capability to regenerate, which happens in the early stage of pulpitis. An ambiguous relationship exists; inflammation may impair or support pulp regeneration. Epigenetics, which is involved in cell proliferation and inflammation, could regulate human dental pulp cell (HDPCs) regeneration. The aim of this study was to determine the role of the epigenetic mark, enhancer of zeste homolog 2 (EZH2), in the inflammation, proliferation, and regeneration of dental pulp. We used trimethylated histone H3 lysine 27(H3K27me3) and its lysine demethylase 6B (KDM6B) to monitor functional effects of altered EZH2 levels. METHODS We detected epigenetic marks (EZH2, H3K27me3, and KDM6B) in pulp tissue by immunohistochemistry and immunofluorescence. EZH2 levels in HDPCs in inflammatory responses or differentiation were analyzed by quantitative polymerase chain reaction and Western blot. Quantitative polymerase chain reaction was used to assess the effects of EZH2 inhibition on interleukins in HDPCs upon tumor necrosis factor alpha stimulation. Cell proliferation was tested by cell counting kit-8, cell cycle, and apoptosis analysis. HDPC differentiation was investigated by quantitative polymerase chain reaction, alkaline phosphatase activity, and oil red O staining. RESULTS EZH2 and H3K27me3 were decreased, whereas KDM6B was increased in infected pulp tissue and cells, which were similar to HDPC differentiation. EZH2 inhibition suppressed IL-1b, IL-6, and IL-8 messenger RNA (mRNA) in HDPCs upon inflammatory stimuli and impeded HDPC proliferation by decreasing cell number, arresting cell cycle, and increasing apoptosis. Suppressed EZH2 impaired adipogenesis, peroxisome proliferator-activated receptor r (PPAR-r), and CCAAT-enhancer binding protein a (CEBP/a) mRNA in adipogenic induction while enhancing alkaline phosphatase activity, Osx, and bone sialoprotein (BSP) mRNA in mineralization induction of HDPCs. CONCLUSIONS EZH2 inhibited HDPC osteogenic differentiation while enhancing inflammatory response and proliferation, suggesting its role in pulp inflammation, proliferation, and regeneration.
Collapse
Affiliation(s)
- Tianqian Hui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Peng A
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yuan Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.
| |
Collapse
|
48
|
A comparative study on root canal repair materials: a cytocompatibility assessment in L929 and MG63 cells. ScientificWorldJournal 2014; 2014:463826. [PMID: 24526893 PMCID: PMC3913516 DOI: 10.1155/2014/463826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/20/2013] [Indexed: 02/06/2023] Open
Abstract
Cytocompatibility of repair materials plays a significant role in the success of root canal repair. We conducted a comparative study on the cytocompatibility among iRoot BP Plus, iRoot FS, ProRoot MTA, and Super-EBA in L929 cells and MG63 cells. The results revealed that iRoot FS was able to completely solidify within 1 hour. iRoot BP Plus required 7-day incubation, which was much longer than expected (2 hours), to completely set. ProRoot MTA and Super-EBA exhibited a similar setting duration of 12 hours. All the materials except Super-EBA possessed negligible in vitro cytotoxicity. iRoot FS had the best cell adhesion capacity in both L929 and MG63 cells. With rapid setting, negligible cytotoxicity, and enhanced cell adhesion capacity, iRoot FS demonstrated great potential in clinical applications. Future work should focus on longer-term in vitro cytocompatibility and an in vivo assessment.
Collapse
|
49
|
Zhou H, Cooper MS, Seibel MJ. Endogenous Glucocorticoids and Bone. Bone Res 2013; 1:107-19. [PMID: 26273496 DOI: 10.4248/br201302001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/20/2013] [Indexed: 01/28/2023] Open
Abstract
While the adverse effects of glucocorticoids on bone are well described, positive effects of glucocorticoids on the differentiation of osteoblasts are also observed. These paradoxical effects of glucocorticoids are dose dependent. At both physiologicaland supraphysiological levels of glucocorticoids, osteoblasts and osteocytes are the major glucocorticoid target cells. However, the response of the osteoblasts to each of these is quite distinct. At physiology levels, glucocorticoids direct mesenchymal progenitor cells to differentiate towards osteoblasts and thus increase bone formation in a positive way. In contrast with ageing, the excess production of glucocorticoids, at both systemic and intracellular levels, appear to impact on osteoblast and osteocytes in a negative way in a similar fashion to that seen with therapeutic glucocorticoids. This review will focus on therole of glucocorticoids in normal bone physiology, with particular emphasis on the mechanism by which endogenous glucocorticoids impact on bone and its constituent cells.
Collapse
Affiliation(s)
- Hong Zhou
- Bone Research Program, ANZAC Research Institute , Sydney, Australia ; Concord Clinical School, The University of Sydney , Sydney, Australia
| | - Mark S Cooper
- Concord Clinical School, The University of Sydney , Sydney, Australia ; Department of Endocrinology & Metabolism, Concord Hospital , Sydney, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute , Sydney, Australia ; Concord Clinical School, The University of Sydney , Sydney, Australia ; Department of Endocrinology & Metabolism, Concord Hospital , Sydney, Australia
| |
Collapse
|