1
|
Chianese U, Papulino C, Ali A, Ciardiello F, Cappabianca S, Altucci L, Carafa V, Benedetti R. FASN multi-omic characterization reveals metabolic heterogeneity in pancreatic and prostate adenocarcinoma. J Transl Med 2023; 21:32. [PMID: 36650542 PMCID: PMC9847120 DOI: 10.1186/s12967-023-03874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) and prostate cancer (PCa) are among the most prevalent malignant tumors worldwide. There is now a comprehensive understanding of metabolic reprogramming as a hallmark of cancer. Fatty acid synthase (FASN) is a key regulator of the lipid metabolic network, providing energy to favor tumor proliferation and development. Whereas the biological role of FASN is known, its response and sensitivity to inhibition have not yet been fully established in these two cancer settings. METHODS To evaluate the association between FASN expression, methylation, prognosis, and mutational profile in PDAC and PCa, we interrogated public databases and surveyed online platforms using TCGA data. The STRING database was used to investigate FASN interactors, and the Gene Set Enrichment Analysis platform Reactome database was used to perform an enrichment analysis using data from RNA sequencing public databases of PDAC and PCa. In vitro models using PDAC and PCa cell lines were used to corroborate the expression of FASN, as shown by Western blot, and the effects of FASN inhibition on cell proliferation/cell cycle progression and mitochondrial respiration were investigated with MTT, colony formation assay, cell cycle analysis and MitoStress Test. RESULTS The expression of FASN was not modulated in PDAC compared to normal pancreatic tissues, while it was overexpressed in PCa, which also displayed a different level of promoter methylation. Based on tumor grade, FASN expression decreased in advanced stages of PDAC, but increased in PCa. A low incidence of FASN mutations was found for both tumors. FASN was overexpressed in PCa, despite not reaching statistical significance, and was associated with a worse prognosis than in PDAC. The biological role of FASN interactors correlated with lipid metabolism, and GSEA indicated that lipid-mediated mitochondrial respiration was enriched in PCa. Following validation of FASN overexpression in PCa compared to PDAC in vitro, we tested TVB-2640 as a FASN inhibitor. PCa proliferation arrest was modulated by FASN inhibition in a dose- and time-dependent manner, whereas PDAC proliferation was not altered. In line with this finding, mitochondrial respiration was found to be more affected in PCa than in PDAC. FASN inhibition interfered with metabolic signaling causing lipid accumulation and affecting cell viability with an impact on the replicative processes. CONCLUSIONS FASN exhibited differential expression patterns in PDAC and PCa, suggesting a different evolution during cancer progression. This was corroborated by the fact that both tumors responded differently to FASN inhibition in terms of proliferative potential and mitochondrial respiration, indicating that its use should reflect context specificity.
Collapse
Affiliation(s)
- Ugo Chianese
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Chiara Papulino
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Ahmad Ali
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Fortunato Ciardiello
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Salvatore Cappabianca
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy ,grid.429047.c0000 0004 6477 0469IEOS, Institute for Endocrinology and Oncology “Gaetano Salvatore”, 80131 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
2
|
Jia X, Chen B, Li Z, Huang S, Chen S, Zhou R, Feng W, Zhu H, Zhu X. Identification of a Four-Gene-Based SERM Signature for Prognostic and Drug Sensitivity Prediction in Gastric Cancer. Front Oncol 2022; 11:799223. [PMID: 35096599 PMCID: PMC8790320 DOI: 10.3389/fonc.2021.799223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is a highly molecular heterogeneous tumor with poor prognosis. Epithelial-mesenchymal transition (EMT) process and cancer stem cells (CSCs) are reported to share common signaling pathways and cause poor prognosis in GC. Considering about the close relationship between these two processes, we aimed to establish a gene signature based on both processes to achieve better prognostic prediction in GC. Methods The gene signature was constructed by univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses by using The Cancer Genome Atlas (TCGA) GC cohort. We performed enrichment analyses to explore the potential mechanisms of the gene signature. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves were implemented to assess its prognostic value in TCGA cohort. The prognostic value of gene signature on overall survival (OS), disease-free survival (DFS), and drug sensitivity was validated in different cohorts. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) validation of the prognostic value of gene signature for OS and DFS prediction was performed in the Fudan cohort. Results A prognostic signature including SERPINE1, EDIL3, RGS4, and MATN3 (SERM signature) was constructed to predict OS, DFS, and drug sensitivity in GC. Enrichment analyses illustrated that the gene signature has tight connection with the CSC and EMT processes in GC. Patients were divided into two groups based on the risk score obtained from the formula. The Kaplan-Meier analyses indicated high-risk group yielded significantly poor prognosis compared with low-risk group. Pearson’s correlation analysis indicated that the risk score was positively correlated with carboplatin and 5-fluorouracil IC50 of GC cell lines. Multivariate Cox regression analyses showed that the gene signature was an independent prognostic factor for predicting GC patients’ OS, DFS, and susceptibility to adjuvant chemotherapy. Conclusions Our SERM prognostic signature is of great value for OS, DFS, and drug sensitivity prediction in GC, which may give guidance to the development of targeted therapy for CSC- and EMT-related gene in the future.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Siyuan Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhu T, Lou Q, Shi Z, Chen G. Identification of key miRNA-gene pairs in gastric cancer through integrated analysis of mRNA and miRNA microarray. Am J Transl Res 2021; 13:253-269. [PMID: 33527022 PMCID: PMC7847513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the current bioinformatic methods have been increasingly applied in the field of oncological research. In this study, we expect a better understanding of the molecular mechanism of gastric cancer from the bioinformatic methods. By systematically addressing the differential expression of microRNAs (miRNAs) and mRNAs between gastric cancer specimens and normal gastric specimens with the application of bioinformatics tools, A total of 206 DEGs and 38 DEMs were identified. The Gene Ontology (GO) analysis of Annotation, Visualization and Integrated Discovery (DAVID) database revealed that the differentially expressed genes (DEGs) were significantly enriched in biological process, molecular function and cellular component, while Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed DEGs were significantly enriched in 8 signal pathways. The miRNA-gene regulatory network was constructed based on 385 miRNA-gene (DEM-DEG) pairs, consisting of 35 miRNAs and 107 target genes. In the regulatory network, the top 5 up-regulated genes were Transmembrane Protease, Serine 11B (TMPRSS11B), regulator of G protein signaling 1 (RGS1), cysteine rich angiogenic inducer 61 (CYR61), inhibin subunit beta A (INHBA), syntrophin gamma 1 (SNTG1), and the top 5 down-regulated genes were tumor necrosis factor receptor superfamily, member 19 (TNFRSF19), pleckstrin homology domain containing B2 (PLEKHB2), Tax1 binding protein 3 (TAX1BP3), presenilin enhancer, gamma-secretase subunit (PSENEN), NME/NM23 nucleoside diphosphate kinase 3 (NME3). Based on the gastric cancer patient database from Kaplan-Meier Plotter tools, we found that 8 of 10 genes with most significant changes in the miRNA-gene regulatory network possessed a prognostic value for survival time of gastric cancer patients. Patients with higher level of RGS1, PLEKHB2, TAX1BP3 and PSENEN in gastric cancer had a longer survival time compared with the patients with lower level of these genes. On the contrary, patients with higher level of INHBA, SNTG1, TNFRSF19 and NME3 were found associated with a shorter survival time. In conclusion, our findings provided several potential targets regarding gastric cancer, which may result in a new strategy to treat gastric cancer from a system rather than a single-gene perspective.
Collapse
Affiliation(s)
- Tieming Zhu
- Department of General Surgery, Hangzhou First People’s HospitalHangzhou, Zhejiang Province, China
| | - Qiuyue Lou
- Department of Health Education, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Zhewei Shi
- Department of Cardiology, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Ganghong Chen
- Department of General Surgery, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| |
Collapse
|
4
|
Liu C, Billet S, Choudhury D, Cheng R, Haldar S, Fernandez A, Biondi S, Liu Z, Zhou H, Bhowmick NA. Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia 2021; 23:118-128. [PMID: 33310208 PMCID: PMC7732973 DOI: 10.1016/j.neo.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
Head and neck cancers are often diagnosed at later stages with poor outcomes. Mesenchymal stem cells (MSC) are recruited to primary tumor sites where they can have pro- and antitumorigenic influence. In trying to better understand the dynamics between MSC and cancer cells, we found that head and neck cancer-MSC exposure resulted in mesenchymal features, elevated proliferation rate, and were more motile, like the same cells that fused with MSC. We orthotopically grafted the parental head and neck cancer cells, those fused with MSC, or those exposed to MSC into the tongues of mice. The cancer cells originally incubated with MSC developed larger more aggressive tumors compared to the parental cell line. RNA sequencing analysis revealed the expression of genes associated with drug resistance in the cancer cells exposed to MSC compared to parental cancer cells. Strikingly, MSC exposed cancer cell lines developed paclitaxel resistance that could be maintained up to 30 d after the initial co-incubation period. The secretory profile of the MSC suggested IL-6 to be a potential mediator of epigenetic imprinting on the head and neck cancer cells. When the MSC-imprinted cancer cells were exposed to the demethylation agent, 5-aza-2'deoxycytidine, it restored the expression of the drug resistance genes to that of parental cells. This study demonstrated that the recognized recruitment of MSC to tumors could impart multiple protumorigenic properties including chemotherapy resistance like that observed in the relatively rare event of cancer/MSC cell fusion.
Collapse
Affiliation(s)
- Chuanxia Liu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; The Affiliated Stomatology Hospital, Zhejiang University School of Medical, Hangzhou, China
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diptiman Choudhury
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Subhash Haldar
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ana Fernandez
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Shea Biondi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhenqiu Liu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Expression analysis based diagnostic potential of hypoxia-responsive genes in gastric tumorigenesis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
7
|
Baj J, Korona-Głowniak I, Forma A, Maani A, Sitarz E, Rahnama-Hezavah M, Radzikowska E, Portincasa P. Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:1055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world's population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial-mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial-mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Elżbieta Radzikowska
- Department of Plastic Surgery, Central Clinical Hospital of the MSWiA in Warsaw, 01-211 Warsaw, Poland;
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, 70126 Bari, Italy;
| |
Collapse
|
8
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
9
|
Dao TV, Nguyen CV, Nguyen QT, Vu HTN, Phung HT, Bui OT, Nguyen DK, Luong BV, Tran TV. Evaluation of Tumor Budding in Predicting Survival for Gastric Carcinoma Patients in Vietnam. Cancer Control 2020; 27:1073274820968883. [PMID: 33136444 PMCID: PMC7791444 DOI: 10.1177/1073274820968883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumor budding (Bd) has been demonstrated to be a promising prognostic factor in many carcinomas and in gastric cancer. It may represent an optimal additional parameter that is helpful for risk stratification in gastric adenocarcinoma. Hence, the present research was designed to predict the survival outcomes of gastric cancer in Vietnam, applying the tumor budding criteria of the International Tumor Budding Consensus Conference (ITBCC) 2016. METHODS The present study was conducted on 109 gastric cancer patients who underwent surgery but did not receive neo-adjuvant chemotherapy from 2012 to 2015. The patients' clinicopathological features were recorded. Bd was evaluated according to the 2016 ITBCC criteria and classified as Bd1 (0-4 buds), Bd2 (5-9 buds), and Bd3 (≥10 buds) grades, in addition to being categorized into 2 main Bd groups: low (<10 buds) and high (≥10 buds) Bd. Kaplan-Meier and log-rank models were applied to analyze survival proportions. RESULTS Of all the patients, 22.9% were classified as Bd1, 31.2% as Bd2, and 45.9% as Bd3 grades. Furthermore, 54.1% patients were categorized into the low and 45.9% into the high Bd groups. Patients with Bd1 and Bd2 grades (the low Bd group) exhibited the best prognosis, with 5-year overall survival (OS) rates of 85.7%, 90.8%, and90.3%, respectively. Patients with Bd3 grade (the high Bd group exhibited the worst prognosis, and none of them lived for 5 years (p < 0.001). Similar to OS rates, disease-free survival (DFS) rates markedly reduced from the Bd1 to Bd3 grade: Bd1, 95.0%; Bd2, 84.7%; and Bd3, 0% (p < 0.001). CONCLUSION Patients with different gastric cancer Bd grades exhibited significantly different OS and DFS rates. The present study findings suggest that the ITBCC criteria can be used to stratify Bd for the treatment and prognosis of gastric cancer patients in Vietnam.
Collapse
Affiliation(s)
- Tu Van Dao
- Department of Quan Su Optional Treatment, National Cancer Hospital,
Hanoi, Vietnam
- Cancer Research and Clinical Trial Center, National Cancer Hospital,
Hanoi, Vietnam
| | - Chu Van Nguyen
- Department of Quan Su Pathology, National Cancer Hospital, Hanoi,
Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Quang Tien Nguyen
- Department of Quan Su Optional Treatment, National Cancer Hospital,
Hanoi, Vietnam
| | - Ha Thi Ngoc Vu
- Vietnam University of Traditional Medicine, Hanoi, Vietnam
| | - Huyen Thi Phung
- Department of Internal Medicine No6, National Cancer Hospital,
Hanoi, Vietnam
| | - Oanh Thi Bui
- Cancer Research and Clinical Trial Center, National Cancer Hospital,
Hanoi, Vietnam
| | - Dung Khac Nguyen
- Cancer Research and Clinical Trial Center, National Cancer Hospital,
Hanoi, Vietnam
| | | | | |
Collapse
|
10
|
Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, Yasui W, Chayama K. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact. Neoplasia 2017; 19:429-438. [PMID: 28433772 PMCID: PMC5402629 DOI: 10.1016/j.neo.2017.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 01/13/2023] Open
Abstract
We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow-derived mesenchymal stem cells (MSCs) migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT)-related genes such as fibronectin (FN), SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.
Collapse
Affiliation(s)
- Hidehiko Takigawa
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Health and Science, Prefectural University of Hiroshima, Hiroshima, Japan.
| | | | - Ryo Yuge
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy and Medicine, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.; Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan
| |
Collapse
|
11
|
Che K, Zhao Y, Qu X, Pang Z, Ni Y, Zhang T, Du J, Shen H. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. Onco Targets Ther 2017; 10:1039-1047. [PMID: 28255247 PMCID: PMC5325090 DOI: 10.2147/ott.s127762] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Gastric carcinoma (GC) is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. MATERIALS AND METHODS Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS) was statistically analyzed. RESULTS Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145) of them. Single cell invasion and large cell invasion were observed in 62.8% (186) and 16.9% (50) of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0.001). Similarly, the OS of patients with single cell invasion and large cell invasion was reduced (single cell invasion, HR: 3.553, P<0.001; large cell invasion, HR: 2.466, P<0.001). Following multivariate analysis, tumor budding and single cell invasion were observed to be independent risk factors for gastric adenocarcinoma (P<0.05). According to the Lauren classification, patients with intestinal-type adenocarcinoma had better outcomes than those with diffuse-type adenocarcinoma (HR: 2.563, P<0.001). CONCLUSION Tumor budding and single cell invasion in gastric adenocarcinoma are associated with an unfavorable prognosis.
Collapse
Affiliation(s)
- Keying Che
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Yang Ni
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Tiehong Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
12
|
Carreras J, Kikuti YY, Beà S, Miyaoka M, Hiraiwa S, Ikoma H, Nagao R, Tomita S, Martin-Garcia D, Salaverria I, Sato A, Ichiki A, Roncador G, Garcia JF, Ando K, Campo E, Nakamura N. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBC. Histopathology 2017; 70:595-621. [DOI: 10.1111/his.13106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Joaquim Carreras
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Yara Y Kikuti
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sílvia Beà
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Masashi Miyaoka
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Shinichiro Hiraiwa
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Haruka Ikoma
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Ryoko Nagao
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sakura Tomita
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - David Martin-Garcia
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Itziar Salaverria
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Ai Sato
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Akifumi Ichiki
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Juan F Garcia
- Department of Pathology; MD Anderson Cancer Center Madrid; Madrid Spain
| | - Kiyoshi Ando
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Elias Campo
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Naoya Nakamura
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| |
Collapse
|
13
|
Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 2016; 8:384-395. [PMID: 27928465 PMCID: PMC5120243 DOI: 10.4252/wjsc.v8.i11.384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takeshi Kawabata
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kazuhiko Aoyagi
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroshi Yokozaki
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroki Sasaki
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
14
|
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells 2015; 7:992-998. [PMID: 26328015 PMCID: PMC4550631 DOI: 10.4252/wjsc.v7.i7.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|