1
|
Fu S, Lv R, Wang L, Wang Z, Wang F, Gao H, Zhao W, Huang X, Li X, Wang Y. Bone mesenchymal stem cells based on matric hydrogels attenuate intervertebral disc degeneration by suppressing oxidative stress-induced ferroptosis. Sci Rep 2025; 15:15378. [PMID: 40316606 PMCID: PMC12048664 DOI: 10.1038/s41598-025-00278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) and its attendant lower back pain are a major medical challenge. Ferroptosis has become a new target for the treatment of IVDD. Mesenchymal stem cells (MSCs) are a promising regenerative therapy for IVDD. Hydrogel is usually used as a delivery carrier for MSCs. This study investigated the effect of bone mesenchymal stem cells (BMSCs) in IVDD by magnetic resonance imaging (MRI) and hematoxylin and eosin (HE) staining analysis using a rat-punctured IVDD model. A vitro model of tert-butyl hydroperoxide (TBHP)-induced oxidative stress injury in annulus fibrosus cells (AFCs) was used to explore the underlying molecular mechanisms. Cell viability was detected by cell counting kit-8 assay. Ferroptosis was assessed by measuring the levels of LDH, Fe2+, glutathione, lipid reactive oxygen species, and malondialdehyde. The underlying mechanism was investigated by western blot and phosphor-kinase array. Results suggested that BMSCs inhibited TBHP-induced ferroptosis and the phosphorylated levels of STAT3 in AFCs. The activation of STAT3 (colivelin, a specific agonist for STAT3) reversed the effects on the ferroptosis of BMSCs. Additionally, BMSCs alleviated IVDD progression based on matrix hydrogels, while colivelin abolished the protective effects of BMSCs-encapsulated hydrogels on IVDD. In short, BMSCs inhibited oxidative stress-induced AFCs ferroptosis, thereby alleviating IVDD, which is associated with inhibited STAT3 activation. This study demonstrated the possible underlying mechanism by which BMSCs mitigate IVDD and may provide a new therapeutic idea for IVDD.
Collapse
Affiliation(s)
- Song Fu
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Renhua Lv
- Department of Neurology, Weihai Central Hospital, Weihai, Shandong Province, China
| | - Longqiang Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Zhenyu Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Fengming Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Hao Gao
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Wei Zhao
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Xiaoling Huang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Xiaojun Li
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China
| | - Yanan Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, No.1, Fengshan Road, Wendeng District, Weihai, 264400, Shandong Province, China.
| |
Collapse
|
2
|
Ali A, Kuo WW, Kuo CH, Lo JF, Hsieh DJY, Pai P, Ho TJ, Shibu MA, Lin SZ, Huang CY. Chaperone-assisted E3 ligase-engineered mesenchymal stem cells target hyperglycemia-induced p53 for ubiquitination and proteasomal degradation ameliorates self-renewal. Biol Res 2025; 58:20. [PMID: 40270049 PMCID: PMC12020092 DOI: 10.1186/s40659-025-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Stem cell therapies may potentially be used in regenerative and reconstructive medicine due to their ability for self-renewal and differentiation. Stressful conditions, such as hyperglycemia, adversely affect stem cell functions, impairing their function and promoting differentiation by opposing self-renewal. The carboxyl terminus of HSP70 interacting protein (CHIP), which is a cochaperone and E3 ligase, maintains protein homeostasis and performs quality control of the cell via ubiquitylation. However, the role of CHIP in regulating stemness remains unknown. RESULTS Hyperglycemia downregulated CHIP-induced p53, arrested the cell cycle at the gap (G1) phase, and promoted the loss of stemness in WJMSCs. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and cell cycle analysis showed that CHIP-overexpressing WJMSCs downregulated the expression of phosphorylated p53 and shortened its half-life while enhancing self-renewal factors. Additionally, co-IP and Western blotting revealed that CHIP promoted the ubiquitination and proteasomal degradation of hyperglycemia-induced p53 through the chaperone system. CONCLUSIONS CHIP may promote ubiquitin-mediated proteasomal degradation of hyperglycemia-induced p53 rescues self-renewal genes, which can maintain the long-term undifferentiated state of WJMSCs. CHIP may be an alternative therapeutic option in regenerative medicine for hyperglycemic-related complications in diabetes.
Collapse
Affiliation(s)
- Ayaz Ali
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Peiying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
3
|
Scott-Young M, Alves OL. The Future of Arthroplasty in the Spine. Int J Spine Surg 2025; 19:S25-S37. [PMID: 40068878 PMCID: PMC12050378 DOI: 10.14444/8737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The evolution of spinal arthroplasty, a significant journey that began in the 1960s and 1970s, has seen remarkable progress. Initially designed to preserve motion at spinal segments and avoid complications associated with fusion surgeries, early designs faced setbacks due to rudimentary concepts and limited materials. However, the 1980s marked a turning point with the development of modern total disc replacement concepts, utilizing advanced materials such as titanium and polyethylene to improve implant longevity and integration. The early 2000s saw crucial approvals by the U.S. Food and Drug Administration, leading to broader clinical adoption.By the 2010s, cervical disc arthroplasty (CDA) had been refined through innovations such as patient-specific implants and the integration of robotics and surgical navigation. Cervical disc arthroplasty and lumbar disc arthroplasty are effective alternatives to fusion, particularly in preserving motion and reducing adjacent segment disease. Ongoing research continues to focus on viscoelastic arthroplasty and the integration of biologics to enhance outcomes, providing reassurance about the continuous improvement in spinal arthroplasty and instilling optimism about its future.Selecting patients for arthroplasty is a critical process that requires careful consideration. Ideal candidates display symptoms unresponsive to conservative treatments, have adequate disc height, and possess good bone quality. As arthroplasty typically preserves motion, it is less suited for patients with severe joint diseases or significant spinal stiffness. This emphasis on patient selection underscores the need for thorough evaluation and the importance of considering individual patient factors.Despite its benefits, the adoption of disc arthroplasty faces barriers such as high costs, stringent inclusion criteria, and the need for specialized surgical training. Overcoming these barriers requires advocacy, improved training, and potentially revising inclusion criteria to ensure more patients can benefit from these advanced treatments. The future of spinal arthroplasty looks promising, with potential advancements in biokinetics, biomaterials, and the broader application of minimally invasive techniques. This ongoing evolution promises to improve clinical outcomes and significantly enhance patient quality of life, offering hope for a better future in spinal arthroplasty.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Australia
- Gold Coast Spine, Gold Coast, Australia
| | - Oscar L Alves
- Department of Neurosurgery, Hospital Lusíadas Porto, Porto, Portugal
- Department of Neurosurgery, Unidade Local de Saude de Gaia e Espinho, Nova de Gaia, Portugal
| |
Collapse
|
4
|
Nakielski P, Kosik-Kozioł A, Rinoldi C, Rybak D, More N, Wechsler J, Lehmann TP, Głowacki M, Stępak B, Rzepna M, Marinelli M, Lanzi M, Seliktar D, Mohyeddinipour S, Sheyn D, Pierini F. Injectable PLGA Microscaffolds with Laser-Induced Enhanced Microporosity for Nucleus Pulposus Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404963. [PMID: 39282818 DOI: 10.1002/smll.202404963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Indexed: 04/25/2025]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Namdev More
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jacob Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tomasz P Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, 60-781, Poland
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, 61-545, Poland
| | | | - Magdalena Rzepna
- Institute of Nuclear Chemistry and Technology, Warsaw, 03-195, Poland
| | - Martina Marinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa, 3200003, Israel
| | - Sarah Mohyeddinipour
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
5
|
Das S, Thakur A, Datta A, Sahoo A, Bandyopadhyay S, Sah AK. Advances in Regenerative Medicine for Orthopedic Injuries: A Comprehensive Review. Cureus 2025; 17:e79860. [PMID: 40166527 PMCID: PMC11956119 DOI: 10.7759/cureus.79860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Orthopedics is one field that greatly benefits from the new ideas provided by regenerative medicine. This review pulls together the most recent publications involving stem cell therapy, platelet-rich plasma, growth factor, gene therapy, tissue engineering, stem cell-derived extracellular vesicles, and other regenerative technologies in the context of bone, cartilage, tendon, and ligament healing. Recent studies show that these new therapies can alter cell development, division, and production of fiber and ground substance to remodel tissues. Nevertheless, the clinical application has several issues such as the standardization of cell procurement and preparation, the control of cytokine/gene delivery, the revascularization of tissues, and the requirements of large samples, positively controlled clinical trials. More research must be conducted to overcome such barriers and make practicing more applicable in real life.
Collapse
Affiliation(s)
- Samyabrata Das
- Orthopaedic Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Amit Thakur
- Department of Orthopaedics and Traumatology, All India Institute of Medical Science Jammu, Jammu, IND
| | - Anupam Datta
- Forensic Medicine, Agartala Government Medical College & Govind Ballabh Pant (GBP) Hospital, Agartala, IND
| | - Ayaskant Sahoo
- Anaesthesia, NRI Institute of Medical Sciences, Visakhapatnam, IND
| | | | - Ashok K Sah
- Department of Medical Laboratory Sciences, College of Applied and Health Sciences, A Sharqiyah University, Ibra, OMN
| |
Collapse
|
6
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Xue B, Peng Y, Zhang Y, Yang S, Zheng Y, Hu H, Gao X, Yu B, Gao X, Li S, Wu H, Ma T, Hao Y, Wei Y, Guo L, Yang Y, Wang Z, Xue T, Zhang J, Luo B, Xia B, Huang J. A Novel Superparamagnetic-Responsive Hydrogel Facilitates Disc Regeneration by Orchestrating Cell Recruitment, Proliferation, and Differentiation within Hostile Inflammatory Niche. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408093. [PMID: 39373392 PMCID: PMC11600201 DOI: 10.1002/advs.202408093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Indexed: 10/08/2024]
Abstract
In situ disc regeneration is a meticulously orchestrated process, which involves cell recruitment, proliferation and differentiation within a local inflammatory niche. Thus far, it remains a challenge to establish a multi-staged regulatory framework for coordinating these cellular events, therefore leading to unsatisfactory outcome. This study constructs a super paramagnetically-responsive cellular gel, incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and aptamer-modified palladium-hydrogen nanozymes (PdH-Apt) into a double-network polyacrylamide/hyaluronic acid (PAAm/HA) hydrogel. The Aptamer DB67 within magnetic hydrogel (Mag-gel) showed a high affinity for disialoganglioside (GD2), a specific membrane ligand of nucleus pulposus stem cells (NPSCs), to precisely recruit them to the injury site. The Mag-gel exhibits remarkable sensitivity to a magnetic field (MF), which exerts tunable micro/nano-scale forces on recruited NPSCs and triggers cytoskeletal remodeling, consequently boosting cell expansion in the early stage. By altering the parameters of MF, the mechanical cues within the hydrogel facilitates differentiation of NPSCs into nucleus pulposus cells to restore disc structure in the later stage. Furthermore, the PdH nanozymes within the Mag-gel mitigate the harsh inflammatory microenvironment, favoring cell survival and disc regeneration. This study presents a remote and multi-staged strategy for chronologically regulating endogenous stem cell fate, supporting disc regeneration without invasive procedures.
Collapse
Affiliation(s)
- Borui Xue
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
- Air Force 986(th) HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yan Peng
- College of Advanced ManufacturingFuzhou UniversityJinjiang362200P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Huiling Hu
- Air Force 986(th) HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xueli Gao
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Xue Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Shengyou Li
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Zhenguo Wang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Tingfeng Xue
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jin Zhang
- College of Chemical EngineeringFuzhou UniversityXueyuan RoadFuzhou350108P. R. China
| | - Beier Luo
- Department of Spinal SurgeryShanghai Changhai HospitalAffiliated to Naval Medical UniversityShanghai200433P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
8
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
9
|
Pers YM, Soler-Rich R, Vadalà G, Ferreira R, Duflos C, Picot MC, Herman F, Broussous S, Sánchez A, Noriega D, Ardura F, Alberca Zaballos M, García V, Gordillo Cano V, González-Vallinas M, Denaro V, Russo F, Guicheux J, Vilanova J, Orozco L, Meisel HJ, Alfonso M, Rannou F, Maugars Y, Berenbaum F, Barry FP, Tarte K, Louis-Plence P, Ferreira-Dos-Santos G, García-Sancho J, Jorgensen C. Allogenic bone marrow-derived mesenchymal stromal cell-based therapy for patients with chronic low back pain: a prospective, multicentre, randomised placebo controlled trial (RESPINE study). Ann Rheum Dis 2024; 83:1572-1583. [PMID: 39393844 PMCID: PMC11503111 DOI: 10.1136/ard-2024-225771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/10/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES To assess the efficacy of a single intradiscal injection of allogeneic bone marrow mesenchymal stromal cells (BM-MSCs) versus a sham placebo in patients with chronic low back pain (LBP). METHODS Participants were randomised in a prospective, double-blind, controlled study to receive either sham injection or intradiscal injection of 20 million allogeneic BM-MSC, between April 2018 and December 2022. The first co-primary endpoint was the rate of responders defined by improvement of the Visual Analogue Scale (VAS) for pain of at least 20% and 20 mm, or improvement of the Oswestry Disability Index (ODI) of 20% between baseline and month 12. The secondary structural co-primary endpoint was assessed by the disc fluid content measured by quantitative MRI T2, between baseline and month 12. Secondary endpoints included pain VAS, ODI, the Short Form (SF)-36 and the minimal clinically important difference in all timepoints (1, 3, 6, 12 and 24 months). We determined the immune response associated with allogeneic cell injection between baseline and 6 months. Serious adverse events (SAEs) were recorded. RESULTS 114 patients were randomised (n=58, BM-MSC group; n=56, sham placebo group). At 12 months, the primary outcome was not reached (74% in the BM-MSC group vs 69% in the placebo group; p=0.77). The groups did not differ in all secondary outcomes. No SAE related to the intervention occurred. CONCLUSIONS While our study did not conclusively demonstrate the efficacy of allogeneic BM-MSCs for LBP, the procedure was safe. Long-term outcomes of MSC therapy for LBP are still being studied. TRIAL REGISTRATION NUMBER EudraCT 2017-002092-25/ClinicalTrials.gov: NCT03737461.
Collapse
Affiliation(s)
- Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | | | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Rosanna Ferreira
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpelliera, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Marie-Christine Picot
- Department of Medical Information, Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Fanchon Herman
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, France
| | - Sylvie Broussous
- 7Research and Innovation Department, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Ana Sánchez
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - David Noriega
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Francisco Ardura
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Mercedes Alberca Zaballos
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Verónica García
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Virginia Gordillo Cano
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - Margarita González-Vallinas
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Vicenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Jérôme Guicheux
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
| | | | | | | | - Matias Alfonso
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Yves Maugars
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
- Service de Rhumatologie, Hôtel-Dieu, CHU Nantes, Nantes, France
| | | | - Frank P Barry
- Regenerative Medicine Institute, University of Galway Regenerative Medicine Institute, Galway, Ireland
| | - Karin Tarte
- Laboratoire SITI, Pôle Biologie, CHU Rennes, Rennes, Bretagne, France
| | - Pascale Louis-Plence
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Guilherme Ferreira-Dos-Santos
- Centro Médico Teknon, Barcelona, Spain
- Division of Pain Medicine, Department of Anesthesiology, Reanimation, and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier García-Sancho
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Christian Jorgensen
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| |
Collapse
|
10
|
Zhao Y, Xia Q, Zhu L, Xia J, Xiang S, Mao Q, Dong H, Weng Z, Liao W, Xin Z. Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration. Heliyon 2024; 10:e36509. [PMID: 39286189 PMCID: PMC11402762 DOI: 10.1016/j.heliyon.2024.e36509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic disabling disease caused by degeneration of nucleus pulposus cells, decreased activity and the number of nucleus pulposus cells, decreased extracellular matrix, and infiltration of inflammatory factors, resulting in low back and leg pain. Recent studies have shown that non-surgical treatment is of great significance in reversing the progression of degenerative disc disease, and there are more relevant literature reports. However, there is no bibliometric analysis in this area. This study aimed to describe the knowledge structure and thematic trends of non-surgical treatment methods for IDD through bibliometrics. Methods Articles and reviews on non-surgical treatment of disc degeneration from 1998 to 2022 were collected on the Web of Science. VOSviewer 1.6.18, CiteSpace 6.1.R3, R package "bibliometrix" and two online analysis platforms were used for bibliometric and visual literature analysis. Results 961 articles were screened for inclusion, including 821 articles and 140 reviews. The analysis of our study shows that publications in the non-surgical treatment of disc degeneration are increasing annually, with publications coming mainly from North America and Asia, with China and the United States dominating. Huazhong Univ Sci & Technol and Wang K are the most prolific institutions and authors, respectively, and Le Maitre CL is the most co-cited author. However, there is less collaboration between institutions in different countries. Spine is both the most published and the most cited journal. According to the co-citation and co-occurrence analysis results, "mesenchymal stem cells," "exosomes," "medication," and "tissue engineering" are the current research hotspots in this field. Conclusions This study employs bibliometric analysis to explore the knowledge structure and trends of non-surgical treatments for IDD from 2013 to 2022. Key research hotspots include mesenchymal stem cells, exosomes, medication, and tissue engineering. The number of publications, especially from China and the USA, has increased significantly, though international collaboration needs improvement. Influential contributors include Wang K and the journal Spine. These findings provide a comprehensive overview and highlight important future directions for the field.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shaojie Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
11
|
Farag M, Rezk R, Hutchinson H, Zankevich A, Lucke‐Wold B. Intervertebral disc degeneration and regenerative medicine. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/15/2024] [Indexed: 01/08/2025]
Abstract
AbstractIntervertebral disc (IVD) degeneration is a common phenomenon that affects patients with increasing prevalence with increasing age. Both conservative treatments, such as the use of pain medication or physical therapy, and surgical treatments, such as fusion or disc replacement therapies, are offered to patients. Both non‐invasive and invasive treatments have been shown to improve pain and quality of life for patients. This review explores the role of regenerative medicine techniques as a promising therapeutic intervention that can be used before or in combination with conservative therapy and surgery to enhance the treatment process in patients with IVD degeneration or disc pathology. Currently, there are four major modules of regenerative medicine: genetic therapy, platelet‐rich plasma therapy, stem cell transplantation and tissue engineering. Several research studies have shown promising outcomes of stem cell transplantation and tissue engineering when combined with either surgical or conservative treatment, resulting in improved pain outcomes. The additional benefit of regenerative medicine techniques, specifically stem cell transplantation, is the potential for treating the root pathology of degeneration. Regenerative medicine techniques also have the potential to either halt or reverse degeneration as opposed to current standards of care for managing symptoms. There is a plethora of current research highlighting the benefits of regenerative medicine techniques; however, there remains clinical concerns and ethical concerns regarding the use of regenerative therapy techniques such as stem cell transplantation in the context of IVD degeneration.
Collapse
Affiliation(s)
| | - Rogina Rezk
- University of Florida Gainesville Florida USA
| | | | | | | |
Collapse
|
12
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
13
|
Misbah MH, Quintanilla-Sierra L, Alonso M, Rodríguez-Cabello JC, Santos M. "In-situ" formation of elastin-like recombinamer hydrogels with tunable viscoelasticity through efficient one-pot process. Mater Today Bio 2024; 25:100999. [PMID: 38379933 PMCID: PMC10877175 DOI: 10.1016/j.mtbio.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Despite the remarkable progress in the generation of recombinant elastin-like (ELR) hydrogels, further improvements are still required to enhance and control their viscoelasticity, as well as limit the use of expensive chemical reagents, time-consuming processes and several purification steps. To alleviate this issue, the reactivity of carboxylic groups from glutamic (E) acid distributed along the hydrophilic block of an amphiphilic ELR (coded as E50I60) with amine groups has been studied through a one-pot amidation reaction in aqueous solutions, for the first time. By means of this approach, immediate conjugation of E50I60 with molecules containing amine groups has been performed with a high yield, as demonstrated by the 1H NMR and MALDI-TOF spectroscopies. This has resulted in the preparation of viscoelastic irreversible hydrogels through the "in-situ" cross-linking of E50I60 with another ELR (coded as VKV24) containing amine groups from lysines (K). The rheology analysis demonstrated that the gelation process takes place following a dual mechanism dependent on the ELR concentration: physical cross-linking of I60 block through the hydrophobic interactions, and covalent cross-linking of E50I60 with VKV24 through the amidation reaction. While the chemical network formed between the hydrophilic E50 block and VKV24 ELR preserves the elasticity of ELR hydrogels, the self-assembly of the I60 block through the hydrophobic interactions provides a tunable physical network. The presented investigation serves as a basis for generating ELR hydrogels with tunable viscoelastic properties promising for tissue regeneration, through an ''in-situ", rapid, scalable, economically and feasible one-pot method.
Collapse
Affiliation(s)
- M. Hamed Misbah
- Nanoscience Department, Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| | - Luis Quintanilla-Sierra
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | | | - Mercedes Santos
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
14
|
Wang HS, Lin S, Yu HM. Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs. Curr Stem Cell Res Ther 2024; 19:798-808. [PMID: 37150986 DOI: 10.2174/1574888x18666230504094233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.
Collapse
Affiliation(s)
- Han-Shi Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Hai-Ming Yu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
15
|
Kang H, Yang S, Lee J. Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells. Cells 2023; 12:1463. [PMID: 37296585 PMCID: PMC10252885 DOI: 10.3390/cells12111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. METHODS Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. RESULTS We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. CONCLUSIONS Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.
Collapse
Affiliation(s)
- Hyojin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Sunsik Yang
- Bonecell Biotech Inc., 77 Dunsan-dong, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| |
Collapse
|
16
|
Yao M, Wu T, Wang B. Research trends and hotspots of mesenchymal stromal cells in intervertebral disc degeneration: a scientometric analysis. EFORT Open Rev 2023; 8:135-147. [PMID: 36916744 PMCID: PMC10026060 DOI: 10.1530/eor-22-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are important potential candidates for regenerative therapy for intervertebral disc degeneration (IDD). This scientometric study aimed to summarize the main research trends, identify current research hotspots, and measure the networks of the contributors and their scientific productivity. A total of 1102 publications regarding MSC in IDD were recognized from January 2000 to April 2022. The number of records every year followed an overall uptrend with fluctuations. The main trend of research demonstrated the practice of gradually applying MSC-based therapy to IDD with the assistance of advances in biomaterials and IDD pathology. A recent focus on MSC-derived exosomes and notochordal cells was detected. The basic studies in this field were mainly contributed to by Japan, the USA, and European countries, while China dominated in the number of recent publications. Tokai University with Daisuke Sakai was the most productive contributor. Cell biology, tissue engineering, and biomaterials were the categories with deep engagement in research of this field.
Collapse
Affiliation(s)
- Minghe Yao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
18
|
Peng BG, Yan XJ. Barriers to mesenchymal stromal cells for low back pain. World J Stem Cells 2022; 14:815-821. [PMID: 36619693 PMCID: PMC9813839 DOI: 10.4252/wjsc.v14.i12.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/30/2022] [Indexed: 12/21/2022] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. In the past 20 years, the injection of mesenchymal stromal cells (MSCs) into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain. Despite the progress made in this field, there are still many barriers to overcome. First, intervertebral disc is a highly complex load-bearing composite tissue composed of annulus fibrosus, nucleus pulposus and cartilaginous endplates. Any structural damage will change its overall biomechanical function, thereby causing progressive degeneration of the entire intervertebral disc. Therefore, MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates. Second, to date, there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates, although their pathological changes such as annular tears or fissures, Modic changes, or Schmorl's nodes are more commonly associated with low back pain. Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates, it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration. Finally, due to the harsh microenvironment of the degenerated intervertebral disc, the delivered MSCs die quickly. Taken together, current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.
| | - Xiu-Jie Yan
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| |
Collapse
|
19
|
Romaniyanto FNU, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Adipose-Derived Stem Cells (ASCs) for Regeneration of Intervertebral Disc Degeneration: Review Article. STEM CELLS AND CLONING: ADVANCES AND APPLICATIONS 2022; 15:67-76. [DOI: 10.2147/sccaa.s379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
|
20
|
Nadhif MH, Ghiffary MM, Irsyad M, Mazfufah NF, Nurhaliza F, Rahman SF, Rahyussalim AJ, Kurniawati T. Anatomically and Biomechanically Relevant Monolithic Total Disc Replacement Made of 3D-Printed Thermoplastic Polyurethane. Polymers (Basel) 2022; 14:4160. [PMID: 36236107 PMCID: PMC9571194 DOI: 10.3390/polym14194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Various implant treatments, including total disc replacements, have been tried to treat lumbar intervertebral disc (IVD) degeneration, which is claimed to be the main contributor of lower back pain. The treatments, however, come with peripheral issues. This study proposes a novel approach that complies with the anatomical features of IVD, the so-called monolithic total disc replacement (MTDR). As the name suggests, the MTDR is a one-part device that consists of lattice and rigid structures to mimic the nucleus pulposus and annulus fibrosus, respectively. The MTDR can be made of two types of thermoplastic polyurethane (TPU 87A and TPU 95A) and fabricated using a 3D printing approach: fused filament fabrication. The MTDR design involves two configurations-the full lattice (FLC) and anatomy-based (ABC) configurations. The MTDR is evaluated in terms of its physical, mechanical, and cytotoxicity properties. The physical characterization includes the geometrical evaluations, wettability measurements, degradability tests, and swelling tests. The mechanical characterization comprises compressive tests of the materials, an analytical approach using the Voigt model of composite, and a finite element analysis. The cytotoxicity assays include the direct assay using hemocytometry and the indirect assay using a tetrazolium-based colorimetric (MTS) assay. The geometrical evaluation shows that the fabrication results are tolerable, and the two materials have good wettability and low degradation rates. The mechanical characterization shows that the ABC-MTDR has more similar mechanical properties to an IVD than the FLC-MTDR. The cytotoxicity assays prove that the materials are non-cytotoxic, allowing cells to grow on the surfaces of the materials.
Collapse
Affiliation(s)
- Muhammad Hanif Nadhif
- Medical Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Maulana Ghiffary
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Irsyad
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Mechanical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Fakhira Nurhaliza
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Siti Fauziyah Rahman
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Ahmad Jabir Rahyussalim
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Orthopedics and Traumatology Department, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| | - Tri Kurniawati
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
21
|
Intradiscal Therapies for Lumbar Degenerative Disk Disease. J Am Acad Orthop Surg 2022; 30:e1084-e1094. [PMID: 35984081 DOI: 10.5435/jaaos-d-21-01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Discogenic low back pain is a common musculoskeletal complaint in patients presenting to orthopaedic surgeons. In addition to surgical options, there are several nonsurgical intradiscal treatments that have gained interest, ranging from biologic, nonbiologic, cell-based, and molecular therapies. However, there is limited evidence for many of these techniques, and some are still in the clinical trial stage. We describe a broad overview of these intradiscal therapies, the mechanism of action, and the evidence behind them.
Collapse
|
22
|
Romaniyanto, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Hypoxia Effects in Intervertebral Disc-Derived Stem Cells and Discus Secretomes: An in vitro Study. Stem Cells Cloning 2022; 15:21-28. [PMID: 35655962 PMCID: PMC9153942 DOI: 10.2147/sccaa.s363951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Background This study aimed to investigate the effects of hypoxia and normoxia preconditioning in rabbit intervertebral disc-derived stem cells (IVDSCs) and discus-derived conditioned medium (DD-CM)/secretomes in vitro. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) have a role in the proliferation, development, differentiation, and migration of MSCs. Materials and Methods Intervertebral discs were isolated from rabbit and incubated in normoxia and hypoxia 1%, 3%, and 5% (hypoxia groups) condition. Cell counting was performed after 24 hours of manipulation, then analyzed using one-way ANOVA. TGF-β1, PDGF, FGF, and VEGF were measured using the ELISA. Results The highest number of cells was in the hypoxia 3% preconditioning compared to the normoxia, hypoxia 1%, and hypoxia 5% groups. Hypoxia 3% also had the highest increase in PDGF protein production compared to normoxia, with hypoxia 1% and 5%. Among hypoxia groups, the highest secretions of VEGF and FGF proteins were in the hypoxia 3% group. Based on TGF-β1 protein measurement, the hypoxia 1% group was the highest increase in this protein compared to other groups. Conclusion Oxygen level in hypoxia preconditioning has a role in the preparation of IVDSCs and secretome preparation in vitro. The highest cell numbers were found in the treatment group with 3% hypoxia, and 3% hypoxia was significantly related to support IVDSCs preparation. Preconditioning with 3% hypoxia had higher PDGF and VEGF levels than other hypoxia groups.
Collapse
Affiliation(s)
- Romaniyanto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Orthopedic and Traumatology, Prof. Dr. R. Soeharso Orthopedic Hospital, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopedic and Traumatology, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Dermatology and Venereology, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | | - Damayanti Tinduh
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Physical Medicine and Medical Rehabilitation, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ryan Ausrin
- Department of Orthopedic and Traumatology, Prof. Dr. R. Soeharso Orthopedic Hospital, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Heri Suroto
- Department of Orthopedic and Traumatology, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopedic and Traumatology, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022. [DOI: https://doi.org/10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022; 105:108537. [PMID: 35101851 DOI: 10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Today, the application of mesenchymal stromal/stem cells (MSCs) and their exosomes to treat degenerative diseases has received attention. Due to the characteristics of these cells, such as self-renewability, differentiative and immunomodulatory effects, their use in laboratory and clinical studies shows promising results. However, the allogeneic transplantation problems of MSCs limit the use of these cells in the clinic. Scientists propose the application of exosomes to use from the therapeutic effect of MSCs and overcome their defects. These vesicles change the target cell behaviour and transcription profile by transferring various cargo such as proteins, mi-RNAs, and lipids. One of the degenerative tissue diseases in which MSCs and their exosomes are used in their treatment is intervertebral disc disease (IDD). Different factors such as genetics, nutrition, ageing, and environmental factors play a significant role in the onset and progression of this disease. These factors affect the cellular and molecular properties of the disc, leading to tissue destruction. Nucleus pulposus cells (NPCs) are among the most important cells involved in the pathogenesis of disc degeneration. MSCs exert their therapeutic effects by differentiating, reducing apoptosis, increasing proliferation, and decreasing senescence in NPCs. In addition, the use of MSCs and their exosomes also affects the annulus fibrosus and cartilaginous endplate cells in disc tissue and prevents disc degeneration progression.
Collapse
Affiliation(s)
- Gunawan Widjaja
- Postgraduate Study, Universitas Krisnadwipayana, Bekasi, Indonesia; Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus; College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Syahril Efendi
- Fasilkom-TI, Universitas Sumatera Utara, Medan, Indonesia.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Rauza Sukma Rita
- Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Indonesia
| | - Andri Praja Satria
- Faculty of Nursing, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | | |
Collapse
|
25
|
Enhancing Cell Migration on Polyetherimide-Grafted Fe3O4@SiO2-Labeled Umbilical Cord-Derived Mesenchymal Stem Cells Arrests in Intervertebral Disc Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Ekram S, Khalid S, Salim A, Khan I. Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 2021; 13:1881-1904. [PMID: 35069988 PMCID: PMC8727226 DOI: 10.4252/wjsc.v13.i12.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
27
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
28
|
Peck SH, Bendigo JR, Tobias JW, Dodge GR, Malhotra NR, Mauck RL, Smith LJ. Hypoxic Preconditioning Enhances Bone Marrow-Derived Mesenchymal Stem Cell Survival in a Low Oxygen and Nutrient-Limited 3D Microenvironment. Cartilage 2021; 12:512-525. [PMID: 30971109 PMCID: PMC8461160 DOI: 10.1177/1947603519841675] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Skeletal tissues such as intervertebral disc and articular cartilage possess limited innate potential to regenerate, in part due to their avascularity and low cell density. Despite recent advances in mesenchymal stem cell (MSC)-based disc and cartilage regeneration, key challenges remain, including the sensitivity of these cells to in vivo microenvironmental stress such as low oxygen and limited nutrition. The objective of this study was to investigate whether preconditioning with hypoxia and/or transforming growth factor-β 3 (TGF-β3) can enhance MSC survival and extracellular matrix production in a low oxygen and nutrient-limited microenvironment. DESIGN MSCs from multiple bovine donors were preconditioned in monolayer in normoxia or hypoxia, with or without TGF-β3, and the global effects on gene expression were examined using microarrays. Subsequently, the effects of preconditioning on MSC survival and extracellular matrix production were examined using low oxygen and nutrient-limited pellet culture experiments. RESULTS Hypoxic preconditioning resulted in upregulation of genes associated with growth, cell-cell signaling, metabolism, and cell stress response pathways, and significantly enhanced MSC survival for all donors in low oxygen and nutrient-limited pellet culture. In contrast, TGF-β3 preconditioning diminished survival. The nature and magnitude of the effects of preconditioning with either hypoxia or TGF-β3 on glycosaminoglycan production were donor dependent. CONCLUSIONS These results strongly support the use of hypoxic preconditioning to improve postimplantation MSC survival in avascular tissues such as disc and cartilage.
Collapse
Affiliation(s)
- Sun H. Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Justin R. Bendigo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - John W. Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil R. Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
29
|
Ali A, Shibu MA, Kuo CH, Lo JF, Chen RJ, Day CH, Ho TJ, PadmaViswanadha V, Kuo WW, Huang CY. CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med 2021; 173:70-80. [PMID: 34298092 DOI: 10.1016/j.freeradbiomed.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
30
|
Krut Z, Pelled G, Gazit D, Gazit Z. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells 2021; 10:cells10092241. [PMID: 34571890 PMCID: PMC8471333 DOI: 10.3390/cells10092241] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) occurs as a result of an imbalance of the anabolic and catabolic processes in the intervertebral disc, leading to an alteration in the composition of the extracellular matrix (ECM), loss of nucleus pulposus (NP) cells, excessive oxidative stress and inflammation. Degeneration of the IVD occurs naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. IVDD, often referred to as degenerative disc disease (DDD), poses an increasingly substantial financial burden due to the aging population and increasing incidence of obesity in the United States. Current treatments for IVDD include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the functionality of the IVD. Biological therapies have been evaluated but show varying degrees of efficacy in reversing disc degeneration long-term. Stem cell-based therapies have shown promising results in the regeneration of the IVD, but face both biological and ethical limitations. Exosomes play an important role in intercellular communication, and stem cell-derived exosomes have been shown to maintain the therapeutic benefit of their origin cells without the associated risks. This review highlights the current state of research on the use of stem-cell derived exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
31
|
Intervertebral Disc Stem/Progenitor Cells: A Promising "Seed" for Intervertebral Disc Regeneration. Stem Cells Int 2021; 2021:2130727. [PMID: 34367292 PMCID: PMC8342144 DOI: 10.1155/2021/2130727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain (LBP), which has become more prevalent from 21 century, causing an enormous economic burden for society. However, in spite of remarkable improvements in the basic research of IVD degeneration (IVDD), the effects of clinical treatments of IVDD are still leaving much to be desired. Accumulating evidence has proposed the existence of endogenous stem/progenitor cells in the IVD that possess the ability of proliferation and differentiation. However, few studies have reported the biological properties and potential application of IVD progenitor cells in detail. Even so, these stem/progenitor cells have been consumed as a promising cell source for the regeneration of damaged IVD. In this review, we will first introduce IVD, describe its physiology and stem/progenitor cell niche, and characterize IVDSPCs between homeostasis and IVD degeneration. We will then summarize recent studies on endogenous IVDSPC-based IVD regeneration and exogenous cell-based therapy for IVDD. Finally, we will discuss the potential applications and future developments of IVDSPC-based repair of IVD degeneration.
Collapse
|
32
|
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can't Do. Int J Spine Surg 2021; 15:40-53. [PMID: 34376495 DOI: 10.14444/8054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low back pain (LPB) is the main cause of disability worldwide with enormous socioeconomic burdens. A major cause of LBP is intervertebral disc degeneration (IDD): a chronic, progressive process associated with exhaustion of the resident cell population, tissue inflammation, degradation of the extracellular matrix and dehydration of the nucleus pulposus. Eventually, IDD may lead to serious sequelae including chronic LBP, disc herniation, segmental instability, and spinal stenosis, which may require invasive surgical interventions. However, no treatment is actually able to directly tackle IDD and hamper the degenerative process. In the last decade, the intradiscal injection of stem cells is raising as a promising approach to regenerate the intervertebral disc. This review aims to describe the rationale behind a regenerative stem cell therapy for IDD as well as the effect of stem cells following their implantation in the disc environment according to preclinical studies. Furthermore, actual clinical evidence and ongoing trials will be discussed, taking into account the future perspective and current limitations of this cutting-edge therapy. METHODS A literature analysis was performed for this narrative review. A database search of PubMed, Scopus and ClinicalTrials.gov was conducted using "stem cells" combined with "intervertebral disc", "degeneration" and "regeneration" without exclusion based on publication date. Articles were firstly screened on a title-abstract basis and, subsequently, full-text were reviewed. Both preclinical and clinical studies have been included. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Based on available evidence, intradiscal stem cell therapy has provided encouraging results in terms of regenerative effects and reduction of LBP. However, multicenter, prospective randomized trials are needed in order confirm the safety, efficacy and applicability of such a promising treatment.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
33
|
Friedmann A, Baertel A, Schmitt C, Ludtka C, Milosevic J, Meisel HJ, Goehre F, Schwan S. Intervertebral Disc Regeneration Injection of a Cell-Loaded Collagen Hydrogel in a Sheep Model. Int J Mol Sci 2021; 22:4248. [PMID: 33921913 PMCID: PMC8072963 DOI: 10.3390/ijms22084248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Degenerated intervertebral discs (IVDs) were treated with autologous adipose-derived stem cells (ASC) loaded into an injectable collagen scaffold in a sheep model to investigate the implant's therapeutic potential regarding the progression of degeneration of previously damaged discs. In this study, 18 merino sheep were subjected to a 3-step minimally invasive injury and treatment model, which consisted of surgically induced disc degeneration, treatment of IVDs with an ASC-loaded collagen hydrogel 6 weeks post-operatively, and assessment of the implant's influence on degenerative tissue changes after 6 and 12 months of grazing. Autologous ASCs were extracted from subcutaneous adipose tissue and cultivated in vitro. At the end of the experiment, disc heights were determined by µ-CT measurements and morphological tissue changes were histologically examined.Histological investigations show that, after treatment with the ASC-loaded collagen hydrogel implant, degeneration-specific features were observed less frequently. Quantitative studies of the degree of degeneration did not demonstrate a significant influence on potential tissue regeneration with treatment. Regarding disc height analysis, at both 6 and 12 months after treatment with the ASC-loaded collagen hydrogel implant a stabilization of the disc height can be seen. A complete restoration of the intervertebral disc heights however could not be achieved.The reported injection procedure describes in a preclinical model a translational therapeutic approach for degenerative disc diseases based on adipose-derived stem cells in a collagen hydrogel scaffold. Further investigations are planned with the use of a different injectable scaffold material using the same test model.
Collapse
Affiliation(s)
- Andrea Friedmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| | - Andre Baertel
- Department of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Christine Schmitt
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
- Department for Orthopaedics and Traumatology, Martin Luther University, Halle Wittenberg, 06120 Halle, Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | | | - Hans-Joerg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
| | - Felix Goehre
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00260 Helsinki, Finland
| | - Stefan Schwan
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| |
Collapse
|
34
|
Lo WC, Tsai LW, Yang YS, Chan RWY. Understanding the Future Prospects of Synergizing Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery with Ceramics and Regenerative Cellular Therapies. Int J Mol Sci 2021; 22:3638. [PMID: 33807361 PMCID: PMC8037583 DOI: 10.3390/ijms22073638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Transforaminal lumber interbody fusion (TLIF) is the last resort to address the lumber degenerative disorders such as spondylolisthesis, causing lower back pain. The current surgical intervention for these abnormalities includes open TLIF. However, in recent years, minimally invasive TLIF (MIS-TLIF) has gained a high momentum, as it could minimize the risk of infection, blood loss, and post-operative complications pertaining to fusion surgery. Further advancement in visualizing and guiding techniques along with grafting cage and materials are continuously improving the safety and efficacy of MIS-TLIF. These assistive techniques are also playing a crucial role to increase and improve the learning curve of surgeons. However, achieving an appropriate output through TLIF still remains a challenge, which might be synergized through 3D-printing and tissue engineering-based regenerative therapy. Owing to their differentiation potential, biomaterials such as stem/progenitor cells may contribute to restructuring lost or damaged tissues during MIS-TLIF, and this therapeutic efficacy could be further supplemented by platelet-derived biomaterials, leading to improved clinical outcomes. Thus, based on the above-mentioned strategies, we have comprehensively summarized recent developments in MIS-TLIF and its possible combinatorial regenerative therapies for rapid and long-term relief.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-S.Y.); (R.W.Y.C.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medical Education and Research, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Yi-Shan Yang
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-S.Y.); (R.W.Y.C.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Ryan Wing Yuk Chan
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-S.Y.); (R.W.Y.C.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
35
|
The Application of Mesenchymal Stromal Cells and Their Homing Capabilities to Regenerate the Intervertebral Disc. Int J Mol Sci 2021; 22:ijms22073519. [PMID: 33805356 PMCID: PMC8036861 DOI: 10.3390/ijms22073519] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain (LBP) remains a challenging condition to treat, and especially to cure. If conservative treatment approaches fail, the current “gold standard” for intervertebral disc degeneration (IDD)-provoked back pain is spinal fusion. However, due to its invasive and destructive nature, the focus of orthopedic research related to the intervertebral disc (IVD) has shifted more towards cell-based therapeutic approaches. They aim to reduce or even reverse the degenerative cascade by mimicking the human body’s physiological healing system. The implementation of progenitor and/or stem cells and, in particular, the delivery of mesenchymal stromal cells (MSCs) has revealed significant potential to cure the degenerated/injured IVD. Over the past decade, many research groups have invested efforts to find ways to utilize these cells as efficiently and sustainably as possible. This narrative literature review presents a summary of achievements made with the application of MSCs for the regeneration of the IVD in recent years, including their preclinical and clinical applications. Moreover, this review presents state-of-the-art strategies on how the homing capabilities of MSCs can be utilized to repair damaged or degenerated IVDs, as well as their current limitations and future perspectives.
Collapse
|
36
|
Tang S, Salazar-Puerta A, Richards J, Khan S, Hoyland JA, Gallego-Perez D, Walter B, Higuita-Castro N, Purmessur D. Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study. Eur Cell Mater 2021; 41:90-107. [PMID: 33465243 PMCID: PMC8514169 DOI: 10.22203/ecm.v041a07] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by decreased cellularity and proteoglycan synthesis and increased inflammation, catabolism, and neural/vascular ingrowth. Regenerative methods for IVD degeneration are largely cell-therapy-based or involve viral vectors, which are associated with mutagenesis and undesired immune responses. The present study used bulk electroporation and engineered extracellular vesicles (EVs) to deliver forkhead-box F1 (FOXF1) mRNA to degenerate human nucleus pulposus (NP) cells as a minimally invasive therapeutic strategy for IVD regeneration. Bulk electroporation was used to investigate FOXF1 effects on human NP cells during a 4-week culture in 3D agarose constructs. Engineered EV delivery of FOXF1 into human IVD cells in monolayer was determined, with subsequent in vivo validation in a pilot mouse IVD puncture model. FOXF1 transfection significantly altered gene expression by upregulating healthy NP markers [FOXF1, keratin 19 (KRT19)], decreasing inflammatory cytokines [interleukin (IL)-1β, -6], catabolic enzymes [metalloproteinase 13 (MMP13)] and nerve growth factor (NGF), with significant increases in glycosaminoglycan accumulation in human NP cells. Engineered EVs loaded with FOXF1 demonstrated successful encapsulation of FOXF1 cargo and effective uptake by human NP cells cultured in monolayer. Injection of FOXF1-loaded EVs into the mouse IVD in vivo resulted in a significant upregulation of FOXF1 and Brachyury, compared to controls at 7 d post-injection, with no evidence of cytotoxicity. This is the first study to demonstrate non-viral delivery of FOXF1 and reprogramming of human NP cells in vitro and mouse IVD cells in vivo. This strategy represents a non-addictive approach for treating IVD degeneration and associated back pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D Purmessur
- 3155 Biomedical and Materials Engineering Complex, 140 W. 19th Ave, Columbus, OH 43210,
| |
Collapse
|
37
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
38
|
Zhang C, Gullbrand SE, Schaer TP, Boorman S, Elliott DM, Chen W, Dodge GR, Mauck RL, Malhotra NR, Smith LJ. Combined Hydrogel and Mesenchymal Stem Cell Therapy for Moderate-Severity Disc Degeneration in Goats. Tissue Eng Part A 2021; 27:117-128. [PMID: 32546053 PMCID: PMC7826444 DOI: 10.1089/ten.tea.2020.0103] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration is a cascade of cellular, structural, and biomechanical changes that is strongly implicated as a cause of low-back pain. Current treatment strategies have poor long-term efficacy as they seek only to alleviate symptoms without preserving or restoring native tissue structure and function. The objective of this study was to evaluate the efficacy of a combined triple interpenetrating network hydrogel (comprising dextran, chitosan, and teleostean) and mesenchymal stem cell (MSC) therapy targeting moderate-severity disc degeneration in a clinically relevant goat model. Degeneration was induced in lumbar discs of 10 large frame goats by injection of chondroitinase ABC. After 12 weeks, degenerate discs were treated by injection of either hydrogel alone or hydrogel seeded with allogeneic, bone marrow-derived MSCs. Untreated healthy and degenerate discs served as controls, and animals were euthanized 2 weeks after treatment. Discs exhibited a significant loss of disc height 12 weeks after degeneration was induced. Two weeks after treatment, discs that received the combined hydrogel and MSC injection exhibited a significant, 10% improvement in disc height index, as well as improvements in histological condition. Discs that were treated with hydrogel alone exhibited reduced tumor necrosis factor-α expression in the nucleus pulposus (NP). Microcomputed tomography imaging revealed that the hydrogel remained localized to the central NP region of all treated discs after 2 weeks of unrestricted activity. These encouraging findings motivate further, longer term studies of therapeutic efficacy of hydrogel and MSC injections in this large animal model. Impact statement Low-back pain is the leading cause of disability worldwide, and degeneration of the intervertebral discs is considered to be one of the most common reasons for low-back pain. Current treatment strategies focus solely on alleviation of symptoms, and there is a critical need for new treatments that also restore disc structure and function. In this study, using a clinically relevant goat model of moderate-severity disc degeneration, we demonstrate that a combined interpenetrating network hydrogel and mesenchymal stem cell therapy provides acute improvements in disc height, histological condition, and local inflammation.
Collapse
Affiliation(s)
- Chenghao Zhang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Sophie Boorman
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Weiliam Chen
- Department of Surgery, New York University School of Medicine, New York, New York, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil R. Malhotra
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lachlan J. Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Li D, Zeng Q, Jiang Z, Ding L, Lu W, Bian M, Wu J. Induction of notochordal differentiation of bone marrow mesenchymal‑derived stem cells via the stimulation of notochordal cell‑rich nucleus pulposus tissue. Mol Med Rep 2020; 23:162. [PMID: 33355376 PMCID: PMC7789091 DOI: 10.3892/mmr.2020.11801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022] Open
Abstract
The degeneration of intervertebral disc (IVD) tissue, initiated following the disappearance of notochordal cells (NCs), is characterized by the decreased number of nucleus pulposus (NP) cells (NPCs) and extracellular matrix. Transplanting proper cells into the IVD may sustain cell numbers, resulting in the synthesis of new matrix; this represents a minimally invasive regenerative therapy. However, the lack of cells with a correct phenotype severely hampers the development of regenerative therapy. The present study aimed to investigate whether porcine NC‑rich NP tissue stimulates bone marrow‑derived mesenchymal stem cell (BM‑MSC) differentiation toward NC‑like cells, which possess promising regenerative ability, for the treatment of disc degeneration diseases. BM‑MSCs were successfully isolated from porcine femurs and tibiae, which expressed CD90 and CD105 markers and did not express CD45. Differentiation induction experiments revealed that the isolated cells had osteogenic and adipogenic differentiation potential. When co‑cultured with NC‑rich NP tissue, the BM‑MSCs successfully differentiated into NC‑like cells. Cell morphological analysis revealed that the cells exhibited an altered morphology, from a shuttle‑like to a circular one, and the expression of NC marker genes, including brachyury, keratin‑8, and keratin‑18, was enhanced, and the cells exhibited the ability to generate aggrecan and collagen II. Taken together, the findings of the present study demonstrated that the primarily isolated and cultured BM‑MSCs may be stimulated to differentiate into NC‑like cells by porcine NC‑rich NP explants, potentially providing an ideal cell source for regenerative therapies for disc degeneration diseases.
Collapse
Affiliation(s)
- Defang Li
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Lei Ding
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Wei Lu
- Department of Orthopedic Surgery, Shanghai TCM‑Integrated Hospital, Shanghai University of TCM, Shanghai 200080, P.R. China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jingping Wu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
40
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Zhao Y, Qin Y, Wu S, Huang D, Hu H, Zhang X, Hao D. Mesenchymal stem cells regulate inflammatory milieu within degenerative nucleus pulposus cells via p38 MAPK pathway. Exp Ther Med 2020; 20:22. [PMID: 32934687 PMCID: PMC7471866 DOI: 10.3892/etm.2020.9150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
It has been established that excessive apoptosis of nucleus pulposus cells (NPCs) are responsible for pathogenesis of human intervertebral disc degeneration (IDD). The present study aimed to shed light on the molecular mechanisms underlying the protective effects of mesenchymal stem cells (MSCs) on NPCs in an inflammatory environment. NPCs were treated with TNF-α to induce inflammation and then co-cultured with Wharton's Jelly-derived MSCs (WJ-MSCs)without direct interaction. The levels of inflammation markers (IL-1β, IL-6 and IL-8) in NPCs were detected by performing enzyme-linked immunosorbent assay (ELISA), and expression of metalloproteases and aggrecan, as well as the activity of p38 MAPK pathway were determined through immunoblotting. SB-203580 was used to inhibit p38 signaling, prior to evaluation of the effects of Wharton's Jelly-derived MSCs (WJ-MSCs) on inflammatory response within the co-cultured NPCs. After TNF-α treatment, the levels of inflammatory cytokines, MMP-3, and MMP-13 in NPCs were increased whereas aggrecan was decreased, which was then dramatically reversed by WJ-MSCs co-culture. Likewise, WJ-MSCs suppressed TNF-α-induced phosphorylation of p38 MAPK signaling components including p38, ASK-1, MKK-3 and MKK-6. Blocking p38 MAPK pathway enhanced the anti-inflammatory impact of WJ-MSCs, and there was no significant difference between NPCs co-cultured with WJ-MSCs or the cells cultured alone. WJ-MSCs co-culture mitigate TNF-α-induced inflammatory response and ECM degeneration in NPCs, the major pathological events are implicated in IDD development, probably by suppressing the p38 MAPK signaling cascade.
Collapse
Affiliation(s)
- Yuanting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yue Qin
- Department of Anesthesiology, Honghui Hospital, Xi'an University, Xi'an, Shaanxi 710054, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
42
|
Hu A, Xing R, Jiang L, Li Z, Liu P, Wang H, Li X, Dong J. Thermosensitive hydrogels loaded with human‐induced pluripotent stem cells overexpressing growth differentiation factor‐5 ameliorate intervertebral disc degeneration in rats. J Biomed Mater Res B Appl Biomater 2020; 108:2005-2016. [DOI: 10.1002/jbm.b.34541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/29/2019] [Indexed: 08/30/2023]
Abstract
AbstractTo evaluate the effects of thermosensitive hydrogels loaded with human‐induced pluripotent stem cells transfected with the growth differentiation factor‐5 (GDF5‐hiPSCs) on rat intervertebral disc regeneration. GDF5‐hiPSCs were cocultured with rat nucleus pulposus (NP) cells in vitro. Real‐time PCR and western blot were used to determine the differentiation of hiPSCs. Rat caudal intervertebral discs were punctured using a needle under X‐ray, and groups of coccygeal (Co) discs were subject to various treatments: Puncture group (Co6/7, punctured without treatment); Hydrogel group (Co7/8, 2 μl of hydrogel injected without cells); GDF5‐hiPSCs + Hydrogel group (Co8/9, 2 μl of GDF5‐hiPSCs‐loaded hydrogel injected); and Normal control (Co5/6). X‐ray, MRI, and histological evaluations were performed at 1, 2, and 3 months after cell transplantation and relative changes in the disc height index (DHI%) and voxel count were calculated and compared. GDF5‐hiPSCs were successfully differentiated to a chondrogenic linage after cocultured with rat NP cells. In terms of X‐ray, MRI, and HE staining scores, the GDF5‐hiPSCs + Hydrogel group was significantly superior to the Puncture and Hydrogel groups (p < .05). Compared with the Normal group, the MRI‐based voxel count of the GDF5‐hiPSCs + Hydrogel group was significantly lower at 1, 2, and 3 months after cell transplantation (p < .05). However, there were no significant differences in histological scores at 1 and 2 months after cell transplantation compared with the Normal group (p > .05). In conclusion, thermosensitive hydrogel‐encapsulated hiPSCs overexpressing the GDF5 gene ameliorated intervertebral disc degeneration.
Collapse
Affiliation(s)
- Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Rong Xing
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Zefang Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Peng Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
43
|
Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ, Lee NY. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int J Pharm 2020; 581:119248. [PMID: 32240810 DOI: 10.1016/j.ijpharm.2020.119248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
An ideal scaffold for bone tissue engineering should have chondroinductive, biodegradable, and biocompatible properties, as well as the ability to absorb and slowly release the biological molecules. In order to develop such a system to support bone tissue regeneration, in the present study, we developed a three-dimensional poly(L-lactic-co-glycolic acid) (PLGA)/Polycaprolactone (PCL) nanohybrid scaffold embedded with PLGA macroparticles (MPs) conjugated with TGF-β3 for the growth and chondrogenic differentiation of human mesenchymal stem cells (hMSCs). First, a microfluidic device was used to fabricate porous PLGA MPs with the sizes ranging from 10 to 50 µm. Next, the PLGA MPs were loaded with TGF-β3, mixed with PCL solution, and then electrospun to obtain PLGA-TGF-β3 MPs/PCL nanohybrid scaffold. Our results demonstrated that PLGA MPs fabricated using a microfluidic-based approach exhibited enhanced conjugation of TGF-β3 with over 80% loading efficiency and sustained release of TGF-β3. Furthermore, the results of glycosaminoglycan (GAG) content measurement and Safranin O staining revealed that the PLGA-TGF-β3 MPs and PLGA-TGF-β3 MPs/PCL nanohybrid scaffold can promote the proliferation and chondrogenic differentiation of hMSCs in vitro. Therefore, the PLGA-TGF-β3 MPs/PCL nanohybrid scaffold could pave the way for cartilage regeneration and have wide applications in regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nguyen Xuan Thanh Le
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Thi Phuong Thuy Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon 22711, Republic of Korea.
| | - Sung-Jun Park
- School of Mechanical, Automotive and Aeronautical Engineering, Korea National University of Transportation, 50 Daehangno, Chungju, Chungbuk 27469, Republic of Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
44
|
Ashraf S, Chatoor K, Chong J, Pilliar R, Santerre P, Kandel R. Transforming Growth Factor β Enhances Tissue Formation by Passaged Nucleus Pulposus Cells In Vitro. J Orthop Res 2020; 38:438-449. [PMID: 31529713 DOI: 10.1002/jor.24476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
The nucleus pulposus (NP) is composed of NP and notochord cell. It is a paucicellular tissue and if it is to be used as a source of cells for tissue engineering the cell number will have to be expanded by cell passaging. The hypothesis of this study is that passaged NP and notochordal cells grown in three-dimensional (3D) culture in the presence of transforming growth factor β (TGFβ) will show enhanced NP tissue formation compared with cells grown in the absence of this growth factor. Bovine NP cells isolated by sequential enzymatic digestion from caudal intervertebral discs were either placed directly in 3D culture (P0) or serially passaged up to passage 3 (P3) prior to placement in 3D culture. Serial cell passage in monolayer culture led to de-differentiation, increased senescence and oxidative stress and decreases in the gene expression of NP and notochordal associated markers and increases in de-differentiation markers. The NP tissue regeneration capacity of cells in 3D culture decreases with passaging as indicated by diminished tissue thickness and total collagen content when compared with tissues formed by P0 cells. Immunohistochemical studies showed that type II collagen accumulation appeared to decrease. TGFβ1 or TGFβ3 treatment enhanced the ability of cells at each passage to form tissue, in part by decreasing cell death. However, neither TGFβ1 nor TGFβ3 were able to restore the notochordal phenotype. Although TGFβ1/3 recovered NP tissue formation by passaged cells, to generate NP in vitro that resembles the native tissue will require identification of conditions facilitating retention of notochordal cell differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:438-449, 2020.
Collapse
Affiliation(s)
- Sajjad Ashraf
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kenny Chatoor
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Jasmine Chong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Robert Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Pathology and Laboratory Medicine, Sinai Health System and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Zhang B, Zhao Q, Li Y, Zhang J. Moxibustion alleviates intervertebral disc degeneration via activation of the HIF-1α/VEGF pathway in a rat model. Am J Transl Res 2019; 11:6221-6231. [PMID: 31632589 PMCID: PMC6789265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration (IDD) induces serious back, neck and radicular pain. Recently, moxibustion has been suggested as an effective treatment for IDD. Thus, our study aims to investigate the molecular mechanism of moxibustion in IDD. A rat model of IDD was established by moxibustion treatment. Nucleus pulposus (NP) cells isolated from IDD rats or IDD rats treated with moxibustion were transfected with plasmids harboring overexpressed hypoxia-inducible factor-1 alpha (HIF-1α) to understand the role of treatment on cell autophagy and apoptosis. To investigate the mechanism of moxibustion in IDD, aggrecan, cyclo-oxygenase 2 (COX-2), HIF-1α and vascular endothelial growth factor (VEGF) expression in NP cells was measured. The expression of aggrecan and COX-2 was elevated by moxibustion treatment. Moxibustion induced autophagy and suppressed apoptosis of NP cells from IDD rats. Compared with IDD rats, the expression of light chain 3 (LC3) II/I, Beclin-1, B-cell lymphoma-2 (Bcl-2) and HIF-1α was regulated significantly after moxibustion treatment, while the expression of cleaved-caspase-3, Bcl-2 associated protein X and VEGF was downregulated. In general, moxibustion may be beneficial to IDD by enhancing autophagy and reducing apoptosis of NP cells via the HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Qian Zhao
- Department of Medical Ultrasonics, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Yushi Li
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Jinxue Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| |
Collapse
|
46
|
Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int 2019; 2019:2376172. [PMID: 32587618 PMCID: PMC7294366 DOI: 10.1155/2019/2376172] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/20/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) in one of the most disabling symptoms affecting nearly 80% of the population worldwide. Its primary cause seems to be intervertebral disc degeneration (IDD): a chronic and progressive process characterized by loss of viable cells and extracellular matrix (ECM) breakdown within the intervertebral disc (IVD) especially in its inner region, the nucleus pulposus (NP). Over the last decades, innovative biological treatments have been investigated in order to restore the original healthy IVD environment and achieve disc regeneration. Mesenchymal stem cells (MSCs) have been widely exploited in regenerative medicine for their capacity to be easily harvested and be able to differentiate along the osteogenic, chondrogenic, and adipogenic lineages and to secrete a wide range of trophic factors that promote tissue homeostasis along with immunomodulation and anti-inflammation. Several in vitro and preclinical studies have demonstrated that MSCs are able to acquire a NP cell-like phenotype and to synthesize structural components of the ECM as well as trophic and anti-inflammatory mediators that may support resident cell activity. However, due to its unique anatomical location and function, the IVD presents distinctive features: avascularity, hypoxia, low glucose concentration, low pH, hyperosmolarity, and mechanical loading. Such conditions establish a hostile microenvironment for both resident and exogenously administered cells, which limited the efficacy of intradiscal cell therapy in diverse investigations. This review is aimed at describing the characteristics of the healthy and degenerated IVD microenvironment and how such features influence both resident cells and MSC viability and biological activity. Furthermore, we focused on how recent research has tried to overcome the obstacles coming from the IVD microenvironment by developing innovative cell therapies and functionalized bioscaffolds.
Collapse
|
47
|
Frauchiger DA, Tekari A, May RD, Džafo E, Chan SCW, Stoyanov J, Bertolo A, Zhang X, Guerrero J, Sakai D, Schol J, Grad S, Tryfonidou M, Benneker LM, Gantenbein B. Fluorescence-Activated Cell Sorting Is More Potent to Fish Intervertebral Disk Progenitor Cells Than Magnetic and Beads-Based Methods. Tissue Eng Part C Methods 2019; 25:571-580. [PMID: 31154900 DOI: 10.1089/ten.tec.2018.0375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low back pain related to intervertebral disk (IVD) degeneration has a major socioeconomic impact on our aging society. Therefore, stem cell therapy to activate self-repair of the IVD remains an exciting treatment strategy. In this respect, tissue-specific progenitors may play a crucial role in IVD regeneration, as these cells are perfectly adapted to this niche. Such a rare progenitor cell population residing in the nucleus pulposus (NP) (NP progenitor cells [NPPCs]) was found positive for the angiopoietin-1 receptor (Tie2+), and was demonstrated to possess self-renewal capacity and in vitro multipotency. Here, we compared three sorting protocols; that is, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a mesh-based label-free cell sorting system (pluriSelect), with respect to cell yield, potential to form colonies (colony-forming units), and in vitro functional differentiation assays for tripotency. The aim of this study was to demonstrate the efficiency of three widespread cell sorting methods for picking rare cells (<5%) and how these isolated cells then behave in downstream functional differentiation in adipogenesis, osteogenesis, and chondrogenesis. The cell yields among the isolation methods differed widely, with FACS presenting the highest yield (5.0% ± 4.0%), followed by MACS (1.6% ± 2.9%) and pluriSelect (1.1% ± 1.0%). The number of colonies formed was not significantly different between Tie2+ and Tie2- NPPCs. Only FACS was able to separate into two functionally different populations that showed trilineage multipotency, while MACS and pluriSelect failed to maintain a clear separation between Tie2+ and Tie2- populations in differentiation assays. To conclude, the isolation of NPPCs was possible with all three sorting methods, while FACS was the preferred technique for separation of functional Tie2+ cells. Impact Statement Tissue-specific progenitor cells such as nucleus pulposus progenitor cells of the IVD could become an ultimate cell source for tissue engineering strategies as these cells are presumably best adapted to the tissue's microenvironment. Fluorescence-activated cell sorting seemed to outcompete magnetic-activated cell sorting and pluriSelect concerning selecting a rare cell population from IVD tissue as could be demonstrated by improved cell yield and functional differentiation assays.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rahel D May
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Samantha C W Chan
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | | | | | - Xingshuo Zhang
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Julien Guerrero
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | | | - Marianna Tryfonidou
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Abstract
STUDY DESIGN An experimental laboratory study. OBJECTIVE To investigate the pathogenesis of intervertebral disc degeneration (IDD) in a murine model of type 1 diabetes mellitus (DM), namely nonobese diabetic (NOD) mouse. SUMMARY OF BACKGROUND DATA IDD is a leading contributor of low back pain, which represents one of the most disabling symptoms within the adult population. DM is a chronic metabolic disease currently affecting one in 10 adults in the United States. It is associated with an increased risk of developing IDD, but the underlying process remains poorly understood. METHODS Total disc glycosaminoglycan content, proteoglycan synthesis, aggrecan fragmentation, glucose transporter gene expression, and apoptosis were assessed in NOD mice and wild-type euglycemic control mice. Spinal structural and molecular changes were analyzed by micro-computed tomography, histological staining (Safranin-O and fast green), and quantitative immunofluorescence (anti-ADAMTS-4 and -5 antibodies). RESULTS Compared with euglycemic controls, NOD mice showed increased disc apoptosis and matrix aggrecan fragmentation. Disc glycosaminoglycan content and histological features of NOD mice did not significantly differ from those of euglycemic littermates. CONCLUSION These data demonstrate that DM may contribute to IDD by increasing aggrecan degradation and promoting cell apoptosis, which may represent early indicators of the involvement of DM in the pathogenesis of IDD. LEVEL OF EVIDENCE N/A.
Collapse
|
49
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
50
|
Stergar J, Gradisnik L, Velnar T, Maver U. Intervertebral disc tissue engineering: A brief review. Bosn J Basic Med Sci 2019; 19:130-137. [PMID: 30726701 DOI: 10.17305/bjbms.2019.3778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is associated with low back pain and significantly affects the patient's quality of life. Degeneration of the IVD alters disk height and the mechanics of the spine, leading to chronic segmental spinal instability. The pathophysiology of IVD disease is still not well understood. Current therapies for IDD include conservative and invasive approaches, but none of those treatments are able to restore the disc structure and function. Recently, tissue engineering techniques emerged as a possible approach to treat IDD, by replacing a damaged IVD with scaffolds and appropriate cells. Advances in manufacturing techniques, material processing and development, surface functionalization, drug delivery systems and cell incorporation furthered the development of tissue engineering therapies. In this review, biomaterial scaffolds and cell-based therapies for IVD regeneration are briefly discussed.
Collapse
Affiliation(s)
- Janja Stergar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|