1
|
Rigor J, Martins ME, Passos B, Oliveira R, Martins-Mendes D. Noninvasive tools for the assessment of fibrosis in metabolic dysfunction-associated steatotic liver disease. Minerva Med 2024; 115:660-670. [PMID: 39283245 DOI: 10.23736/s0026-4806.24.09290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously nonalcoholic fatty liver disease (NAFLD), is the number one chronic liver disorder worldwide. Progression to advanced fibrosis marks the emergence of a significant risk of liver-related negative outcomes. However, only a minority of patients will present at this stage. Since widespread liver biopsy in unfeasible at such high disease prevalence, there was a need to develop noninvasive tests (NITs) that could easily and reliably be applied to patients with MASLD, regardless of clinical setting. The NITs include simple scores, like the fibrosis-4 (FIB-4) Index, patented serum tests, like the Enhanced Liver Fibrosis test (ELF™), and imaging-based modalities, like the vibration-controlled transient elastography (VCTE). Guidelines suggests a stepwise approach that utilizes more than one NIT, with FIB-4 <1.30 being used as a first step to rule out patients that do not need further testing. Subsequent choice of NIT will be influenced by setting, cost, and local availability. While these NITs are accurate, they are not perfect. As such, research is ongoing. A promising avenue is that of omics, a group of technologies that provide concomitant results on a large number of molecules (and other variables). With the advance of artificial intelligence, new NITs may arise from large demographic, biochemical, and radiological data sets.
Collapse
Affiliation(s)
- Joana Rigor
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal -
- RISE-UFP, Network of Health Investigation, Fernando Pessoa University, Porto, Portugal -
| | - Maria E Martins
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Beatriz Passos
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Raquel Oliveira
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Daniela Martins-Mendes
- RISE-UFP, Network of Health Investigation, Fernando Pessoa University, Porto, Portugal
- School of Medicine and Biomedical Sciences, Fernando Pessoa University, Porto, Portugal
- FP-I3ID, Fernando Pessoa University, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Päivärinta J, Anastasiou IA, Koivuviita N, Sharma K, Nuutila P, Ferrannini E, Solini A, Rebelos E. Renal Perfusion, Oxygenation and Metabolism: The Role of Imaging. J Clin Med 2023; 12:5141. [PMID: 37568543 PMCID: PMC10420088 DOI: 10.3390/jcm12155141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases.
Collapse
Affiliation(s)
- Johanna Päivärinta
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Ioanna A. Anastasiou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Niina Koivuviita
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK;
| | - Pirjo Nuutila
- Turku PET Centre, 20521 Turku, Finland;
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| | - Ele Ferrannini
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56124 Pisa, Italy;
| | - Eleni Rebelos
- Turku PET Centre, 20521 Turku, Finland;
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
San J, Hu J, Pang H, Zuo W, Su N, Guo Z, Wu G, Yang J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10360. [PMID: 37373507 DOI: 10.3390/ijms241210360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease caused by fat deposition in the liver of humans and mammals, while fatty liver hemorrhagic syndrome (FLHS) is a fatty liver disease in laying hens which can increase the mortality and cause severe economic losses to the laying industry. Increasing evidence has shown a close relationship between the occurrence of fatty liver disease and the disruption of mitochondrial homeostasis. Studies have proven that taurine can regulate hepatic fat metabolism, reduce hepatic fatty deposition, inhibit oxidative stress, and alleviate mitochondrial dysfunction. However, the mechanisms by which taurine regulates mitochondrial homeostasis in hepatocytes need to be further studied. In this study, we determined the effects and mechanisms of taurine on high-energy low-protein diet-induced FLHS in laying hens and in cultured hepatocytes in free fatty acid (FFA)-induced steatosis. The liver function, lipid metabolism, antioxidant capacity, mitochondrial function, mitochondrial dynamics, autophagy, and biosynthesis were detected. The results showed impaired liver structure and function, mitochondrial damage and dysfunction, lipid accumulation, and imbalance between mitochondrial fusion and fission, mitochondrial autophagy, and biosynthesis in both FLHS hens and steatosis hepatocytes. Taurine administration can significantly inhibit the occurrence of FLHS, protect mitochondria in hepatocytes from disease induced by lipid accumulation and FFA, up-regulate the expression levels of Mfn1, Mfn2, Opa1, LC3I, LC3II, PINK1, PGC-1α, Nrf1, Nrf2, and Tfam, and down-regulate the expression levels of Fis1, Drp1, and p62. In conclusion, taurine can protect laying hens from FLHS through the regulation of mitochondrial homeostasis, including the regulation of mitochondrial dynamics, autophagy, and biosynthesis.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiping Pang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Zuo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Su
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zimeng Guo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Renal toxicity and biokinetics models after repeated uranium instillation. Sci Rep 2023; 13:4111. [PMID: 36914734 PMCID: PMC10011524 DOI: 10.1038/s41598-023-31073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
During nuclear fuel processing, workers can potentially be exposed to repeated inhalations of uranium compounds. Uranium nephrotoxicity is well documented after acute uranium intake, but it is controversial after long-term or protracted exposure. This study aims to analyze the nephrotoxicity threshold after repeated uranium exposure through upper airways and to investigate the resulting uranium biokinetics in comparison to reference models. Mice (C57BL/6J) were exposed to uranyl nitrate (0.03-3 mg/kg/day) via intranasal instillation four times a week for two weeks. Concentrations of uranium in urines and tissues were measured at regular time points (from day 1 to 91 post-exposure). At each exposure level, the amount of uranium retained in organs/tissues (kidney, lung, bone, nasal compartment, carcass) and excreta (urine, feces) reflected the two consecutive weeks of instillation except for renal uranium retention for the highest uranium dose. Nephrotoxicity biomarkers, KIM-1, clusterin and osteopontin, are induced from day 4 to day 21 and associated with changes in renal function (arterial fluxes) measured using non-invasive functional imaging (Doppler-ultrasonography) and confirmed by renal histopathological analysis. These results suggest that specific biokinetic models should be developed to consider altered uranium excretion and retention in kidney due to nephrotoxicity. The threshold is between 0.25 and 1 mg/kg/day after repeated exposure to uranium via upper airways.
Collapse
|
5
|
Demiröz Taşolar S, Çiftçi N. Role of pan immune inflammatory value in the evaluation of hepatosteatosis in children and adolescents with obesity. J Pediatr Endocrinol Metab 2022; 35:1481-1486. [PMID: 36284505 DOI: 10.1515/jpem-2022-0494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Inflammation is a feature of non-alcoholic fatty liver disease progression and plays an important role in hepatic steatosis and fibrosis. Since there are no studies in the literature showing the relationship between hepatosteatosis with the systemic immune-inflammation index (SII) and pan-immune inflammation value (PIV), we aimed to evaluate the relationship between these biomarkers and hepatosteatosis in childhood. METHODS We included 133 consecutive obese children and adolescents aged 6-18 years into this single-center, retrospective, and cross-sectional study. Anthropometric, physical examination, radiological and laboratory data were obtained and recorded from the file records of each case. RESULTS When we grouped the patient population according to the grade of hepatosteatosis, there was a statistically significant difference between the groups in terms of SII and PIV values (p<0.05, for both). In the analyzes performed to identify independent predictors of hepatosteatosis pubertal status (p=0.019) and PIV value (p<0.001) were found to be significant as independent predictors. Moreover, in the analysis performed to predict severity of hepatic steatosis, regression analysis was performed by dividing the groups into groups with and without severe adiposity. As a result of this analysis, HOMA-IR (p=0.019) and PIV value (p=0.028) were found to be significant in the prediction of severe hepatic adiposity. CONCLUSIONS Our findings showed that increased PIV levels were associated with the presence and severity of hepatic steatosis, but not with SII.
Collapse
Affiliation(s)
- Sevgi Demiröz Taşolar
- Department of Pediatric Radiology, Malatya Training and Research Hospital, Malatya, Turkiye
| | - Nurdan Çiftçi
- Department of Pediatric Endocrinology, Malatya Training and Research Hospital, Malatya, Turkiye
| |
Collapse
|
6
|
Subramanian R, Tang R, Zhang Z, Joshi V, Miner JN, Lo YH. Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells. Sci Rep 2022; 12:11180. [PMID: 35778474 PMCID: PMC9249889 DOI: 10.1038/s41598-022-15364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
To improve the understanding of the complex biological process underlying the development of non-alcoholic steatohepatitis (NASH), 3D imaging flow cytometry (3D-IFC) with transmission and side-scattered images were used to characterize hepatic stellate cell (HSC) and liver endothelial cell (LEC) morphology at single-cell resolution. In this study, HSC and LEC were obtained from biopsy-proven NASH subjects with early-stage NASH (F2-F3) and healthy controls. Here, we applied single-cell imaging and 3D digital reconstructions of healthy and diseased cells to analyze a spatially resolved set of morphometric cellular and texture parameters that showed regression with disease progression. By developing a customized autoencoder convolutional neural network (CNN) based on label-free cell transmission and side scattering images obtained from a 3D imaging flow cytometer, we demonstrated key regulated cell types involved in the development of NASH and cell classification performance superior to conventional machine learning methods.
Collapse
Affiliation(s)
- Ramkumar Subramanian
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rui Tang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zunming Zhang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Li Q, Li JF, Mao XR. Application of artificial intelligence in liver diseases: From diagnosis to treatment. Artif Intell Gastroenterol 2021; 2:133-140. [DOI: 10.35712/aig.v2.i5.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infectious or noninfectious liver disease has inexorably risen as one of the leading causes of global death and disease burden. There were an estimated 2.14 million liver-related deaths in 2017, representing an 11.4% increase since 2012. Traditional diagnosis and treatment methods have various dilemmas in different causes of liver disease. As a hot research topic in recent years, the application of artificial intelligence (AI) in different fields has attracted extensive attention, and new technologies have brought more ideas for the diagnosis and treatment of some liver diseases. Machine learning (ML) is the core of AI and the basic way to make a computer intelligent. ML technology has many potential uses in hepatology, ranging from exploring new noninvasive means to predict or diagnose different liver diseases to automated image analysis. The application of ML in liver diseases can help clinical staff to diagnose and treat different liver diseases quickly, accurately and scientifically, which is of importance for reducing the incidence and mortality of liver diseases, reducing medical errors, and promoting the development of medicine. This paper reviews the application and prospects of AI in liver diseases, and aims to improve clinicians’ awareness of the importance of AI in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Qiong Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jun-Feng Li
- Department of Infectious Diseases & Institute of Infectious Diseases, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Rong Mao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. LA RADIOLOGIA MEDICA 2021; 126:1296-1311. [PMID: 34213702 PMCID: PMC8520512 DOI: 10.1007/s11547-021-01389-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Radiomics is a process that allows the extraction and analysis of quantitative data from medical images. It is an evolving field of research with many potential applications in medical imaging. The purpose of this review is to offer a deep look into radiomics, from the basis, deeply discussed from a technical point of view, through the main applications, to the challenges that have to be addressed to translate this process in clinical practice. A detailed description of the main techniques used in the various steps of radiomics workflow, which includes image acquisition, reconstruction, pre-processing, segmentation, features extraction and analysis, is here proposed, as well as an overview of the main promising results achieved in various applications, focusing on the limitations and possible solutions for clinical implementation. Only an in-depth and comprehensive description of current methods and applications can suggest the potential power of radiomics in fostering precision medicine and thus the care of patients, especially in cancer detection, diagnosis, prognosis and treatment evaluation.
Collapse
Affiliation(s)
- Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - Michela Gabelloni
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Andrea Barucci
- CNR-IFAC Institute of Applied Physics "N. Carrara", 50019, Sesto Fiorentino, Italy
| | - Dania Cioni
- Academic Radiology, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari),Cagliari, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122, Milano, Italy
| |
Collapse
|
10
|
Rebelos E, Iozzo P, Guzzardi MA, Brunetto MR, Bonino F. Brain-gut-liver interactions across the spectrum of insulin resistance in metabolic fatty liver disease. World J Gastroenterol 2021; 27:4999-5018. [PMID: 34497431 PMCID: PMC8384743 DOI: 10.3748/wjg.v27.i30.4999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named "nonalcoholic fatty liver disease" occurs in about one-third of the general population of developed countries worldwide and behaves as a major morbidity and mortality risk factor for major causes of death, such as cardiovascular, digestive, metabolic, neoplastic and neuro-degenerative diseases. However, progression of MAFLD and its associated systemic complications occur almost invariably in patients who experience the additional burden of intrahepatic and/or systemic inflammation, which acts as disease accelerator. Our review is focused on the new knowledge about the brain-gut-liver axis in the context of metabolic dysregulations associated with fatty liver, where insulin resistance has been assumed to play an important role. Special emphasis has been given to digital imaging studies and in particular to positron emission tomography, as it represents a unique opportunity for the noninvasive in vivo study of tissue metabolism. An exhaustive revision of targeted animal models is also provided in order to clarify what the available preclinical evidence suggests for the causal interactions between fatty liver, dysregulated endogenous glucose production and insulin resistance.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku 20500, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | | | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis, Pisa University Hospital, Pisa 56121, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56121, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| |
Collapse
|
11
|
Jain D, Torres R, Celli R, Koelmel J, Charkoftaki G, Vasiliou V. Evolution of the liver biopsy and its future. Transl Gastroenterol Hepatol 2021; 6:20. [PMID: 33824924 PMCID: PMC7829074 DOI: 10.21037/tgh.2020.04.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Liver biopsies are commonly used to evaluate a wide variety of medical disorders, including neoplasms and post-transplant complications. However, its use is being impacted by improved clinical diagnosis of disorders, and non-invasive methods for evaluating liver tissue and as a result the indications of a liver biopsy have undergone major changes in the last decade. The evolution of highly effective treatments for some of the common indications for liver biopsy in the last decade (e.g., viral hepatitis B and C) has led to a decline in the number of liver biopsies in recent years. At the same time, the emergence of better technologies for histologic evaluation, tissue content analysis and genomics are among the many new and exciting developments in the field that hold great promise for the future and are going to shape the indications for a liver biopsy in the future. Recent advances in slide scanners now allow creation of "digital/virtual" slides that have image of the entire tissue section present in a slide [whole slide imaging (WSI)]. WSI can now be done very rapidly and at very high resolution, allowing its use in routine clinical practice. In addition, a variety of technologies have been developed in recent years that use different light sources and/or microscopes allowing visualization of tissues in a completely different way. One such technique that is applicable to liver specimens combines multiphoton microscopy (MPM) with advanced clearing and fluorescent stains known as Clearing Histology with MultiPhoton Microscopy (CHiMP). Although it has not yet been extensively validated, the technique has the potential to decrease inefficiency, reduce artifacts, and increase data while being readily integrable into clinical workflows. Another technology that can provide rapid and in-depth characterization of thousands of molecules in a tissue sample, including liver tissues, is matrix assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI has already been applied in a clinical research setting with promising diagnostic and prognostic capabilities, as well as being able to elucidate mechanisms of liver diseases that may be targeted for the development of new therapies. The logical next step in huge data sets obtained from such advanced analysis of liver tissues is the application of machine learning (ML) algorithms and application of artificial intelligence (AI), for automated generation of diagnoses and prognoses. This review discusses the evolving role of liver biopsies in clinical practice over the decades, and describes newer technologies that are likely to have a significant impact on how they will be used in the future.
Collapse
Affiliation(s)
- Dhanpat Jain
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Romulo Celli
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
12
|
Corrias G, Erta M, Sini M, Sardu C, Saba L, Mahmood U, Huicochea Castellanos S, Bates D, Mondanelli N, Thomsen B, Carollo G, Sawan P, Mannelli L. Comparison of Multimaterial Decomposition Fat Fraction with DECT and Proton Density Fat Fraction with IDEAL IQ MRI for Quantification of Liver Steatosis in a Population Exposed to Chemotherapy. Dose Response 2021; 19:1559325820984938. [PMID: 33958978 PMCID: PMC8060765 DOI: 10.1177/1559325820984938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Oncologic patients who develop chemotherapy-associated liver injury (CALI) secondary to chemotherapy treatment tend to have worse outcomes. Biopsy remains the gold standard for the diagnosis of hepatic steatosis. The purpose of this article is to compare 2 alternatives: Proton-Density-Fat-Fraction (PDFF) MRI and MultiMaterial-Decomposition (MMD) DECT. MATERIALS AND METHODS 49 consecutive oncologic patients treated with Chemotherapy underwent abdominal DECT and abdominal MRI within 2 weeks of each other. Two radiologists tracked Regions of Interest independently both in the PDFF fat maps and in the MMD DECT fat maps. Non-parametric exact Wilcoxon signed rank test and Cohen's K were used to compare the 2 sequences and to evaluate the agreement. RESULTS There was no statistically significant difference in the fat fraction measured as a continuous value between PDFF and DECT between 2 readers. Within the same imaging method (PDFF) the degree of agreement based on the k coefficient between reader 1 and reader 2 is 0.88 (p-value < 0.05). Similarly, for single-source DECT(ssDECT) the degree of agreement based on the k coefficient between reader 1 and reader 2 is 0.97 (p-value < 0.05). CONCLUSIONS The results of this study demonstrate that the hepatic fat fraction of ssDECT with MMD are not significantly different from PDFF. This could be an advantage in an oncological population that undergoes serial CT scans for follow up of chemotherapy response.
Collapse
Affiliation(s)
- Giuseppe Corrias
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, University of Cagliari, Italy
| | - Marco Erta
- Department of Radiology, University of Cagliari, Italy
| | - Marcello Sini
- Department of Radiology, University of Cagliari, Italy
| | - Claudia Sardu
- Department of Medical Science, University of Cagliari, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - David Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Peter Sawan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- * Peter Sawan and Lorenzo Mannelli have contributed equally
| | - Lorenzo Mannelli
- IRCCS SDN, Napoli, Italy
- * Peter Sawan and Lorenzo Mannelli have contributed equally
| |
Collapse
|
13
|
The Discovery of Endoplasmic Reticulum Storage Disease. The Connection between an H&E Slide and the Brain. Int J Mol Sci 2021; 22:ijms22062899. [PMID: 33809321 PMCID: PMC8001541 DOI: 10.3390/ijms22062899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The revolutionary evolution in science and technology over the last few decades has made it possible to face more adequately three main challenges of modern medicine: changes in old diseases, the appearance of new diseases, and diseases that are unknown (mostly genetic), despite research efforts. In this paper we review the road travelled by pathologists in search of a method based upon the use of routine instruments and techniques which once were available for research only. The application to tissue studies of techniques from immunology, molecular biology, and genetics has allowed dynamic interpretations of biological phenomena with special regard to gene regulation and expression. That implies stepwise investigations, including light microscopy, immunohistochemistry, in situ hybridization, electron microscopy, molecular histopathology, protein crystallography, and gene sequencing, in order to progress from suggestive features detectable in routinely stained preparations to more characteristic, specific, and finally, pathognomonic features. Hematoxylin and Eosin (H&E)-stained preparations and appropriate immunohistochemical stains have enabled the recognition of phenotypic changes which may reflect genotypic alterations. That has been the case with hepatocytic inclusions detected in H&E-stained preparations, which appeared to correspond to secretory proteins that, due to genetic mutations, were retained within the rough endoplasmic reticulum (RER) and were deficient in plasma. The identification of this phenomenon affecting the molecules alpha-1-antitrypsin and fibrinogen has led to the discovery of a new field of cell organelle pathology, endoplasmic reticulum storage disease(s) (ERSD). Over fifty years, pathologists have wandered through a dark forest of complicated molecules with strange conformations, and by detailed observations in simple histopathological sections, accompanied by a growing background of molecular techniques and revelations, have been able to recognize and identify arrays of grotesque polypeptide arrangements.
Collapse
|
14
|
Enhancing the Value of Histopathological Assessment of Allograft Biopsy Monitoring. Transplantation 2020; 103:1306-1322. [PMID: 30768568 DOI: 10.1097/tp.0000000000002656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditional histopathological allograft biopsy evaluation provides, within hours, diagnoses, prognostic information, and mechanistic insights into disease processes. However, proponents of an array of alternative monitoring platforms, broadly classified as "invasive" or "noninvasive" depending on whether allograft tissue is needed, question the value proposition of tissue histopathology. The authors explore the pros and cons of current analytical methods relative to the value of traditional and illustrate advancements of next-generation histopathological evaluation of tissue biopsies. We describe the continuing value of traditional histopathological tissue assessment and "next-generation pathology (NGP)," broadly defined as staining/labeling techniques coupled with digital imaging and automated image analysis. Noninvasive imaging and fluid (blood and urine) analyses promote low-risk, global organ assessment, and "molecular" data output, respectively; invasive alternatives promote objective, "mechanistic" insights by creating gene lists with variably increased/decreased expression compared with steady state/baseline. Proponents of alternative approaches contrast their preferred methods with traditional histopathology and: (1) fail to cite the main value of traditional and NGP-retention of spatial and inferred temporal context available for innumerable objective analyses and (2) belie an unfamiliarity with the impact of advances in imaging and software-guided analytics on emerging histopathology practices. Illustrative NGP examples demonstrate the value of multidimensional data that preserve tissue-based spatial and temporal contexts. We outline a path forward for clinical NGP implementation where "software-assisted sign-out" will enable pathologists to conduct objective analyses that can be incorporated into their final reports and improve patient care.
Collapse
|
15
|
Katsiki N, Gastaldelli A, Mikhailidis DP. Predictive models with the use of omics and supervised machine learning to diagnose non-alcoholic fatty liver disease: A "non-invasive alternative" to liver biopsy? Metabolism 2019; 101:154010. [PMID: 31711877 DOI: 10.1016/j.metabol.2019.154010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece.
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, Pisa, Italy
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| |
Collapse
|
16
|
Di Sessa A, Marzuillo P, Guarino S, Cirillo G, Miraglia Del Giudice E. When a secondary form of pediatric non-alcoholic fatty liver disease should be suspected? Expert Rev Gastroenterol Hepatol 2019; 13:519-521. [PMID: 31002001 DOI: 10.1080/17474124.2019.1605290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Anna Di Sessa
- a Department of Woman, Child and General and Specialized Surgery , University of Studies of Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Pierluigi Marzuillo
- a Department of Woman, Child and General and Specialized Surgery , University of Studies of Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Stefano Guarino
- a Department of Woman, Child and General and Specialized Surgery , University of Studies of Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Grazia Cirillo
- a Department of Woman, Child and General and Specialized Surgery , University of Studies of Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Emanuele Miraglia Del Giudice
- a Department of Woman, Child and General and Specialized Surgery , University of Studies of Campania "Luigi Vanvitelli" , Napoli , Italy
| |
Collapse
|
17
|
Pelusi S, Valenti L. Hepatic fat as clinical outcome and therapeutic target for nonalcoholic fatty liver disease. Liver Int 2019; 39:250-256. [PMID: 30248234 DOI: 10.1111/liv.13972] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 02/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the leading cause of advanced liver disease in Western countries. NAFLD is defined in the presence of increased hepatic fat content, which is mainly stored under the form of neutral lipids within intracellular droplets and is not explained by at risk alcohol intake. In order to understand the pathogenesis, monitor the progression and find novel treatments for this condition, previous research efforts mainly addressed the role of inflammation. However, very recent data seem to suggest that hepatic lipid accumulation may be involved in NAFLD pathogenesis by driving secondary inflammation and fibrosis progression. Here, we will briefly review the novel results derived from natural history, genetics, imaging studies and therapeutic trials that support the notion that hepatic fat accumulation may represent a major clinical outcome and therapeutic target for NAFLD. Indeed, prospective and genetic data are consistent with hepatic fat being a driver of NAFLD progression. Furthermore, new technologies will render possible to monitor hepatic fat content without the need of invasive assessment, thereby allowing to identify patients at higher risk, and to monitor the response to drugs that act by decreasing hepatic lipid accumulation.
Collapse
Affiliation(s)
- Serena Pelusi
- Department of Pathophysiology and Transplantation, University of Milan, and Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, and Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| |
Collapse
|
18
|
Alfani R, Vassallo E, De Anseris AG, Nazzaro L, D'Acunzo I, Porfito C, Mandato C, Vajro P. Pediatric Fatty Liver and Obesity: Not Always Justa Matter of Non-Alcoholic Fatty Liver Disease. CHILDREN-BASEL 2018; 5:children5120169. [PMID: 30551665 PMCID: PMC6306738 DOI: 10.3390/children5120169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Obesity-related non-alcoholic fatty liver disease (NAFLD) represents the most common cause of pediatric liver disease due to overweight/obesity large-scale epidemics. In clinical practice, diagnosis is usually based on clinical features, blood tests, and liver imaging. Here, we underline the need to make a correct differential diagnosis for a number of genetic, metabolic, gastrointestinal, nutritional, endocrine, muscular, and systemic disorders, and for iatrogenic/viral/autoimmune hepatitis as well. This is all the more important for patients who are not in the NAFLD classical age range and for those for whom a satisfactory response of liver test abnormalities to weight loss after dietary counseling and physical activity measures cannot be obtained or verified due to poor compliance. A correct diagnosis may be life-saving, as some of these conditions which appear similar to NAFLD have a specific therapy. In this study, the characteristics of the main conditions which require consideration are summarized, and a practical diagnostic algorithm is discussed.
Collapse
Affiliation(s)
- Renata Alfani
- Pediatrics Residency Joint Programs, University of Naples Federico II, 80131 Naples, Italy.
- Pediatrics Residency Joint Programs, University of Salerno, 84081 Baronissi (Salerno), Italy.
| | - Edoardo Vassallo
- Pediatrics Residency Joint Programs, University of Naples Federico II, 80131 Naples, Italy.
- Pediatrics Residency Joint Programs, University of Salerno, 84081 Baronissi (Salerno), Italy.
| | - Anna Giulia De Anseris
- Clinical Pediatrics Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi D'Aragona, 84131 Salerno, Italy.
| | - Lucia Nazzaro
- Clinical Pediatrics Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi D'Aragona, 84131 Salerno, Italy.
| | - Ida D'Acunzo
- Pediatrics Residency Joint Programs, University of Naples Federico II, 80131 Naples, Italy.
- Pediatrics Residency Joint Programs, University of Salerno, 84081 Baronissi (Salerno), Italy.
| | - Carolina Porfito
- Pediatrics Residency Joint Programs, University of Naples Federico II, 80131 Naples, Italy.
- Pediatrics Residency Joint Programs, University of Salerno, 84081 Baronissi (Salerno), Italy.
| | - Claudia Mandato
- Children's Hospital Santobono-Pausilipon, Department of Pediatrics, 80129 Naples, Italy.
| | - Pietro Vajro
- Pediatrics Residency Joint Programs, University of Naples Federico II, 80131 Naples, Italy.
- Pediatrics Residency Joint Programs, University of Salerno, 84081 Baronissi (Salerno), Italy.
- Clinical Pediatrics Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi D'Aragona, 84131 Salerno, Italy.
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Pediatrics Section, University of Salerno, 84081 Baronissi (Salerno), Italy.
| |
Collapse
|