1
|
Mehrbakhsh Z, Hassanzadeh R, Behnampour N, Tapak L, Zarrin Z, Khazaei S, Dinu I. Machine learning-based evaluation of prognostic factors for mortality and relapse in patients with acute lymphoblastic leukemia: a comparative simulation study. BMC Med Inform Decis Mak 2024; 24:261. [PMID: 39285373 PMCID: PMC11404043 DOI: 10.1186/s12911-024-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Predicting mortality and relapse in children with acute lymphoblastic leukemia (ALL) is crucial for effective treatment and follow-up management. ALL is a common and deadly childhood cancer that often relapses after remission. In this study, we aimed to apply and evaluate machine learning-based models for predicting mortality and relapse in pediatric ALL patients. METHODS This retrospective cohort study was conducted on 161 children aged less than 16 years with ALL. Survival status (dead/alive) and patient experience of relapse (yes/no) were considered as the outcome variables. Ten machine learning (ML) algorithms were used to predict mortality and relapse. The performance of the algorithms was evaluated by cross-validation and reported as mean sensitivity, specificity, accuracy and area under the curve (AUC). Finally, prognostic factors were identified based on the best algorithms. RESULTS The mean accuracy of the ML algorithms for prediction of patient mortality ranged from 64 to 74% and for prediction of relapse, it varied from 64 to 84% on test data sets. The mean AUC of the ML algorithms for mortality and relapse was above 64%. The most important prognostic factors for predicting both mortality and relapse were identified as age at diagnosis, hemoglobin and platelets. In addition, significant prognostic factors for predicting mortality included clinical side effects such as splenomegaly, hepatomegaly and lymphadenopathy. CONCLUSIONS Our results showed that artificial neural networks and bagging algorithms outperformed other algorithms in predicting mortality, while boosting and random forest algorithms excelled in predicting relapse in ALL patients across all criteria. These results offer significant clinical insights into the prognostic factors for children with ALL, which can inform treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Zahra Mehrbakhsh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayyeh Hassanzadeh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasser Behnampour
- Department of Biostatistics and Epidemiology, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ziba Zarrin
- Department of Photogrammetry and Remote Sensing, K.N. Toosi University of Technology, Tehran, Iran
| | - Salman Khazaei
- Health Sciences Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Science, Hamadan, Iran
| | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Huberts LCE, Li S, Blake V, Jorm L, Yu J, Ooi SY, Gallego B. Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach. Comput Biol Med 2024; 174:108321. [PMID: 38626511 DOI: 10.1016/j.compbiomed.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Cardiovascular patients experience high rates of adverse outcomes following discharge from hospital, which may be preventable through early identification and targeted action. This study aimed to investigate the effectiveness and explainability of machine learning algorithms in predicting unplanned readmission and death in cardiovascular patients at 30 days and 180 days from discharge. METHODS Gradient boosting machines were trained and evaluated using data from hospital electronic medical records linked to hospital administrative and mortality data for 39,255 patients admitted to four hospitals in New South Wales, Australia between 2017 and 2021. Sociodemographic variables, admission history, and clinical information were used as potential predictors. The performance was compared to LASSO regression, as well as the HOSPITAL and LACE risk score indices. Important risk factors identified by the gradient-boosting machine model were explored using Shapley values. RESULTS The models performed well, especially for the mortality outcomes. Area under the receiver operating characteristic curve values were 0.70 for readmission and 0.87-0.90 for mortality using the full gradient boosting machine algorithms. Among the top predictors for 30-day and 180-day readmission were increased red cell distribution width, old age (especially above 80 years), high measured troponin and urea levels, not being married or in a relationship, and low albumin levels. For mortality, these included increased red cell distribution width, old age (especially older than 70 years), high measured troponin and urea levels, high neutrophil and monocyte counts, and low eosinophil and lymphocyte counts. The Shapley values gave clear insight into the dynamics of decision-tree-based models. CONCLUSIONS We demonstrated an explainable predictive algorithm to identify cardiovascular patients who are at high risk of readmission or death at discharge from the hospital and identified key risk factors.
Collapse
Affiliation(s)
- Leo C E Huberts
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia.
| | - Sihan Li
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Victoria Blake
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia; Eastern Heart Clinic, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Louisa Jorm
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer Yu
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Prince of Wales Hospital, South Eastern Sydney Local Health District, NSW, Australia
| | - Sze-Yuan Ooi
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Prince of Wales Hospital, South Eastern Sydney Local Health District, NSW, Australia
| | - Blanca Gallego
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Seyedtabib M, Najafi-Vosough R, Kamyari N. The predictive power of data: machine learning analysis for Covid-19 mortality based on personal, clinical, preclinical, and laboratory variables in a case-control study. BMC Infect Dis 2024; 24:411. [PMID: 38637727 PMCID: PMC11025285 DOI: 10.1186/s12879-024-09298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE The COVID-19 pandemic has presented unprecedented public health challenges worldwide. Understanding the factors contributing to COVID-19 mortality is critical for effective management and intervention strategies. This study aims to unlock the predictive power of data collected from personal, clinical, preclinical, and laboratory variables through machine learning (ML) analyses. METHODS A retrospective study was conducted in 2022 in a large hospital in Abadan, Iran. Data were collected and categorized into demographic, clinical, comorbid, treatment, initial vital signs, symptoms, and laboratory test groups. The collected data were subjected to ML analysis to identify predictive factors associated with COVID-19 mortality. Five algorithms were used to analyze the data set and derive the latent predictive power of the variables by the shapely additive explanation values. RESULTS Results highlight key factors associated with COVID-19 mortality, including age, comorbidities (hypertension, diabetes), specific treatments (antibiotics, remdesivir, favipiravir, vitamin zinc), and clinical indicators (heart rate, respiratory rate, temperature). Notably, specific symptoms (productive cough, dyspnea, delirium) and laboratory values (D-dimer, ESR) also play a critical role in predicting outcomes. This study highlights the importance of feature selection and the impact of data quantity and quality on model performance. CONCLUSION This study highlights the potential of ML analysis to improve the accuracy of COVID-19 mortality prediction and emphasizes the need for a comprehensive approach that considers multiple feature categories. It highlights the critical role of data quality and quantity in improving model performance and contributes to our understanding of the multifaceted factors that influence COVID-19 outcomes.
Collapse
Affiliation(s)
- Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Najafi-Vosough
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Kamyari
- Department of Biostatistics and Epidemiology, School of Health, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
4
|
Ketabi M, Andishgar A, Fereidouni Z, Sani MM, Abdollahi A, Vali M, Alkamel A, Tabrizi R. Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach. Clin Cardiol 2024; 47:e24239. [PMID: 38402566 PMCID: PMC10894620 DOI: 10.1002/clc.24239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a global problem, affecting more than 26 million people worldwide. This study evaluated the performance of 10 machine learning (ML) algorithms and chose the best algorithm to predict mortality and readmission of HF patients by using The Fasa Registry on Systolic HF (FaRSH) database. HYPOTHESIS ML algorithms may better identify patients at increased risk of HF readmission or death with demographic and clinical data. METHODS Through comprehensive evaluation, the best-performing model was used for prediction. Finally, all the trained models were applied to the test data, which included 20% of the total data. For the final evaluation and comparison of the models, five metrics were used: accuracy, F1-score, sensitivity, specificity and Area Under Curve (AUC). RESULTS Ten ML algorithms were evaluated. The CatBoost (CAT) algorithm uses a series of decision tree models to create a nonlinear model, and this CAT algorithm performed the best of the 10 models studied. According to the three final outcomes from this study, which involved 2488 participants, 366 (14.7%) of the patients were readmitted to the hospital, 97 (3.9%) of the patients died within 1 month of the follow-up, and 342 (13.7%) of the patients died within 1 year of the follow-up. The most significant variables to predict the events were length of stay in the hospital, hemoglobin level, and family history of MI. CONCLUSIONS The ML-based risk stratification tool was able to assess the risk of 5-year all-cause mortality and readmission in patients with HF. ML could provide an explicit explanation of individualized risk prediction and give physicians an intuitive understanding of the influence of critical features in the model.
Collapse
Affiliation(s)
- Marzieh Ketabi
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | | | - Zhila Fereidouni
- Department of Medical Surgical NursingFasa University of Medical ScienceFarsIran
| | | | - Ashkan Abdollahi
- School of MedicineShiraz University of Medical SciencesShirazIran
| | - Mohebat Vali
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Abdulhakim Alkamel
- Noncommunicable Diseases Research CenterFasa University of Medical ScienceFasaIran
| | - Reza Tabrizi
- Noncommunicable Diseases Research CenterFasa University of Medical ScienceFasaIran
- Clinical Research Development UnitFasa University of Medical SciencesFasaIran
| |
Collapse
|
5
|
NAJAFI-VOSOUGH ROYA, FARADMAL JAVAD, HOSSEINI SEYEDKIANOOSH, MOGHIMBEIGI ABBAS, MAHJUB HOSSEIN. Longitudinal machine learning model for predicting systolic blood pressure in patients with heart failure. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2023; 64:E226-E231. [PMID: 37654862 PMCID: PMC10468193 DOI: 10.15167/2421-4248/jpmh2023.64.2.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/22/2023] [Indexed: 09/02/2023]
Abstract
Objective Systolic blood pressure (SBP) strongly indicates the prognosis of heart failure (HF) patients, as it is closely linked to the risk of death and readmission. Hence, maintaining control over blood pressure is a vital factor in the management of these patients. In order to determine significant variables associated with changes in SBP over time and assess the effectiveness of classical and machine learning models in predicting SBP, this study aimed to conduct a comparative analysis between the two. Methods This retrospective cohort study involved the analysis of data from 483 patients with HF who were admitted to Farshchian Heart Center located in Hamadan in the west of Iran, and hospitalized at least two times between October 2015 and July 2019. To predict SBP, we utilized a linear mixed-effects model (LMM) and mixed-effects least-square support vector regression (MLS-SVR). The effectiveness of both models was evaluated based on the mean absolute error and root mean squared error. Results The LMM analysis revealed that changes in SBP over time were significantly associated with sex, body mass index (BMI), sodium, time, and history of hypertension (P-value < 0.05). Furthermore, according to the MLS-SVR analysis, the four most important variables in predicting SBP were identified as history of hypertension, sodium, BMI, and triglyceride. In both the training and testing datasets, MLS-SVR outperformed LMM in terms of performance. Conclusions Based on our results, it appears that MLS-SVR has the potential to serve as a viable alternative to classical longitudinal models for predicting SBP in patients with HF.
Collapse
Affiliation(s)
- ROYA NAJAFI-VOSOUGH
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - JAVAD FARADMAL
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - SEYED KIANOOSH HOSSEINI
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - ABBAS MOGHIMBEIGI
- Department of Biostatistics and Epidemiology, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - HOSSEIN MAHJUB
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Seyedtabib M, Kamyari N. Predicting polypharmacy in half a million adults in the Iranian population: comparison of machine learning algorithms. BMC Med Inform Decis Mak 2023; 23:84. [PMID: 37147615 PMCID: PMC10161984 DOI: 10.1186/s12911-023-02177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Polypharmacy (PP) is increasingly common in Iran, and contributes to the substantial burden of drug-related morbidity, increasing the potential for drug interactions and potentially inappropriate medications. Machine learning algorithms (ML) can be employed as an alternative solution for the prediction of PP. Therefore, our study aimed to compare several ML algorithms to predict the PP using the health insurance claims data and choose the best-performing algorithm as a predictive tool for decision-making. METHODS This population-based cross-sectional study was performed between April 2021 and March 2022. After feature selection, information about 550 thousand patients were obtained from National Center for Health Insurance Research (NCHIR). Afterwards, several ML algorithms were trained to predict PP. Finally, to assess the models' performance, the metrics derived from the confusion matrix were calculated. RESULTS The study sample comprised 554 133 adults with a median (IQR) age of 51 years (40 - 62) that nested in 27 cities within the Khuzestan province of Iran. Most of the patients were female (62.5%), married (63.5%), and employed (83.2%) during the last year. The prevalence of PP in all populations was about 36.0%. After performing the feature selection, out of 23 features, the number of prescriptions, Insurance coverage for prescription drugs, and hypertension were found as the top three predictors. Experimental results showed that Random Forest (RF) performed better than other ML algorithms with recall, specificity, accuracy, precision and F1-score of 63.92%, 89.92%, 79.99%, 63.92% and 63.92% respectively. CONCLUSION It was found that ML provides a reasonable level of accuracy in predicting polypharmacy. Therefore, the prediction models based on ML, especially the RF algorithm, performed better than other methods for predicting PP in Iranian people in terms of the performance criteria.
Collapse
Affiliation(s)
- Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Naser Kamyari
- Department of Biostatistics and Epidemiology, School of Health, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
7
|
Yousefi H, Bagheri I, Bahrami M, Shafie D. Adaptation of interdisciplinary clinical practice guidelines to palliative care for patients with heart failure in iran: application of adapte method. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2023; 28:92-98. [DOI: 10.4103/ijnmr.ijnmr_152_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 10/23/2022] [Indexed: 01/26/2023]
|
8
|
MAJZOOBI MOHAMMADMAHDI, NAMDAR SEPIDEH, NAJAFI-VOSOUGH ROYA, HAJILOOI ALIABBAS, MAHJUB HOSSEIN. Prediction of Hepatitis disease using ensemble learning methods. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E424-E428. [PMID: 36415304 PMCID: PMC9648545 DOI: 10.15167/2421-4248/jpmh2022.63.3.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hepatitis is one of the chronic diseases that can lead to liver cirrhosis and hepatocellular carcinoma, which cause deaths around the world. Hence, early diagnosis is needed to control, treat, and reduce the effects of this disease. This study's main goal was to compare the performance of traditional and ensemble learning methods for predicting hepatitis B virus (HBV), and hepatitis C virus (HCV). Also, important variables related to HBV and HCV were identified. METHODS This case-control study was conducted in Hamadan Province, in the west of Iran, between 2014 to 2019. It included 534 subjects (267 cases and 267 controls). The bagging, random forest, AdaBoost, and logistic regression were used for predicting HBV and HCV. These methods' performance was evaluated using accuracy. RESULTS According to the results, the accuracy of bagging, random forest, Adaboost, and logistic regression were 0.65 ± 0.03, 0.66 ± 0.03, 0.62 ± 0.04, and 0.64 ± 0.03, respectively, with random forest showing the best performance for predicting HBV. This method showed that ALT was the most important variable for predicting HBV. The the accuracy of random forest was 0.77±0.03 for predicting HCV. Also, the random forest showed that the order of variable importance has belonged to AST, ALT, and age for predicting HCV. CONCLUSION This study showed that random forest performed better than other methods for predicting HBV and HCV.
Collapse
Affiliation(s)
- MOHAMMAD MAHDI MAJZOOBI
- Department of Infectious Diseases, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - SEPIDEH NAMDAR
- Department of Infectious Diseases, Hamadan University of Medical Sciences, Hamadan, Iran
| | - ROYA NAJAFI-VOSOUGH
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - HOSSEIN MAHJUB
- Research Center for Health Sciences, Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Correspondence: Hossein Mahjub, Center for Health Sciences, Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. PO BOX: 65175-4171 - Tel.: +98 81 38380025 - Fax: +98 81 38380509 - E-mail:
| |
Collapse
|
9
|
Shamali M, Østergaard B, Svavarsdóttir EK, Shahriari M, Konradsen H. The relationship of family functioning and family health with hospital readmission in patients with heart failure: insights from an international cross-sectional study. Eur J Cardiovasc Nurs 2022; 22:264-272. [PMID: 35881489 DOI: 10.1093/eurjcn/zvac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The growing hospital readmission rate among patients with heart failure (HF) has imposed a substantial economic burden on healthcare systems. Therefore, it is essential to identify readmission associating factors to reduce hospital readmission. AIMS This study aimed to investigate the relationship of family functioning and family health with hospital readmission rates over six months in patients with HF and identify the sociodemographic and/or clinical variables associated with hospital readmission. METHODS This international multicentre cross-sectional study involved a sample of 692 patients with HF from three countries (Denmark 312, Iran 288, and Iceland 92) recruited from January 2015 to May 2020. The Family Functioning, Health, and Social Support questionnaire was used to collect the data. The number of patients' hospital readmissions during the six-month period was retrieved from patients' hospital records. RESULTS Of the total sample, 184 (26.6%) patients were readmitted during the six-month period. Of these, 111 (16%) had one readmission, 68 (9.9%) had two readmissions, and 5 (0.7%) had three readmissions. Family functioning, family health, being unemployed, and country of residence were significant factors associated with hospital readmission for the patients. CONCLUSION This study highlights the critical roles of family functioning and family health in six-month hospital readmission among patients with HF. Moreover, the strategy of healthcare systems in the management of HF is a key determinant that influences hospital readmission. Our findings may assist the investigation of potential strategies to reduce hospital readmission in patients with HF.
Collapse
Affiliation(s)
- Mahdi Shamali
- Department of Gastroenterology, Herlev and Gentofte University Hospital, Ringvej 75, 2730 Herlev, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5230 Odense, Denmark
| | - Birte Østergaard
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5230 Odense, Denmark
| | - Erla Kolbrún Svavarsdóttir
- School of Health Sciences, Faculty of Nursing, University of Iceland, Eirksgatra 34, 101 Reykjavík, Iceland
| | - Mohsen Shahriari
- Nursing and Midwifery Care Research Center, Adult Health Nursing Department, School of Nursing and Midwifery, Isfahan University of Medical Sciences, Hezar Jerib street, 8174673461 Isfahan, Iran
| | - Hanne Konradsen
- Department of Gastroenterology, Herlev and Gentofte University Hospital, Ringvej 75, 2730 Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Division of Nursing, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Shanbehzadeh M, Yazdani A, Shafiee M, Kazemi-Arpanahi H. Predictive modeling for COVID-19 readmission risk using machine learning algorithms. BMC Med Inform Decis Mak 2022; 22:139. [PMID: 35596167 PMCID: PMC9122247 DOI: 10.1186/s12911-022-01880-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The COVID-19 pandemic overwhelmed healthcare systems with severe shortages in hospital resources such as ICU beds, specialized doctors, and respiratory ventilators. In this situation, reducing COVID-19 readmissions could potentially maintain hospital capacity. By employing machine learning (ML), we can predict the likelihood of COVID-19 readmission risk, which can assist in the optimal allocation of restricted resources to seriously ill patients. Methods In this retrospective single-center study, the data of 1225 COVID-19 patients discharged between January 9, 2020, and October 20, 2021 were analyzed. First, the most important predictors were selected using the horse herd optimization algorithms. Then, three classical ML algorithms, including decision tree, support vector machine, and k-nearest neighbors, and a hybrid algorithm, namely water wave optimization (WWO) as a precise metaheuristic evolutionary algorithm combined with a neural network were used to construct predictive models for COVID-19 readmission. Finally, the performance of prediction models was measured, and the best-performing one was identified. Results The ML algorithms were trained using 17 validated features. Among the four selected ML algorithms, the WWO had the best average performance in tenfold cross-validation (accuracy: 0.9705, precision: 0.9729, recall: 0.9869, specificity: 0.9259, F-measure: 0.9795). Conclusions Our findings show that the WWO algorithm predicts the risk of readmission of COVID-19 patients more accurately than other ML algorithms. The models developed herein can inform frontline clinicians and healthcare policymakers to manage and optimally allocate limited hospital resources to seriously ill COVID-19 patients.
Collapse
Affiliation(s)
- Mostafa Shanbehzadeh
- Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| | - Azita Yazdani
- Clinical Education Research Center, Health Human Resources Research Center, Department of Health Information Management, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shafiee
- Department of Nursing, Abadan University of Medical Sciences, Abadan, Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran. .,Department of Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
11
|
Afrash MR, Kazemi-Arpanahi H, Shanbehzadeh M, Nopour R, Mirbagheri E. Predicting hospital readmission risk in patients with COVID-19: A machine learning approach. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100908. [PMID: 35280933 PMCID: PMC8901230 DOI: 10.1016/j.imu.2022.100908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The Coronavirus 2019 (COVID-19) epidemic stunned the health systems with severe scarcities in hospital resources. In this critical situation, decreasing COVID-19 readmissions could potentially sustain hospital capacity. This study aimed to select the most affecting features of COVID-19 readmission and compare the capability of Machine Learning (ML) algorithms to predict COVID-19 readmission based on the selected features. Material and methods The data of 5791 hospitalized patients with COVID-19 were retrospectively recruited from a hospital registry system. The LASSO feature selection algorithm was used to select the most important features related to COVID-19 readmission. HistGradientBoosting classifier (HGB), Bagging classifier, Multi-Layered Perceptron (MLP), Support Vector Machine ((SVM) kernel = linear), SVM (kernel = RBF), and Extreme Gradient Boosting (XGBoost) classifiers were used for prediction. We evaluated the performance of ML algorithms with a 10-fold cross-validation method using six performance evaluation metrics. Results Out of the 42 features, 14 were identified as the most relevant predictors. The XGBoost classifier outperformed the other six ML models with an average accuracy of 91.7%, specificity of 91.3%, the sensitivity of 91.6%, F-measure of 91.8%, and AUC of 0.91%. Conclusion The experimental results prove that ML models can satisfactorily predict COVID-19 readmission. Besides considering the risk factors prioritized in this work, categorizing cases with a high risk of reinfection can make the patient triaging procedure and hospital resource utilization more effective.
Collapse
Key Words
- AUC, Area under the curve
- Artificial intelligent
- CDSS, Clinical Decision Support Systems
- COVID-19
- COVID-19, Coronavirus disease 2019
- CRISP, Cross-Industry Standard Process
- Coronavirus
- HGB, Hist Gradient Boosting
- LASSO, Least Absolute Shrinkage and Selection Operator
- ML, Machine learning
- MLP, Multi-Layered Perceptron
- Machine learning
- Readmission
- SVM, Support Vector Machine
- XGBoost, Extreme Gradient Boosting
Collapse
Affiliation(s)
- Mohammad Reza Afrash
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information Technology, Abadan Faculty of Medical Sciences, Abadan, Iran
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Mostafa Shanbehzadeh
- Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| | - Raoof Nopour
- Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Esmat Mirbagheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|