1
|
Zhao C, Sinkkonen A, Jumpponen A, Hui N. Urban soils immobilize harmful microbes and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137419. [PMID: 39884039 DOI: 10.1016/j.jhazmat.2025.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Exposure to harmful microbiomes and antibiotic resistance genes (ARGs) can negatively affect human health. However, the contribution of vegetation and soils to the airborne microbiota transferred indoors (AMTI) remains unclear. We used our newly-developed airborne microbial sampler (VenTube) to collect AMTI samples from 72 neighborhoods in Shanghai. The AMTI sampling coincided with simultaneous adjacent phyllosphere and soil microbes. We characterized the microbial communities using next-generation sequencing and quantitative PCR, and employed traceability analysis to identify the sources of AMTI. Our findings revealed that both bacterial and fungal communities in AMTI predominantly originated from phyllosphere, which was estimated to contribute up to 52.3 % and 67.2 % of the bacterial and fungal communities, respectively. Notably, there was extensive co-transfer of potential human pathogens (PHP) between phyllosphere microbes and AMTI. Surprisingly, although the soil harbored higher levels of PHP and respiratory diseases (RDs)-associated ARGs than AMTI, it contained fewer RDs-associated microbes overall. Furthermore, soil sulfur enrichment due to an increase in Ligustrum trees influenced the release of RDs-associated microorganisms from the soil. Collectively, our study emphasizes that the elevated levels of RDs-associated microbes in AMTI primarily derived from phyllosphere microbes. We also highlight that soils may limit the spread of RDs-associated microbes and ARGs.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Aki Sinkkonen
- Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
2
|
Singh S, Verma J, Gupta N, Pathak AK, Rajput MS, Tiwari V, Kulshrestha MR. Association of Arsenic and Nickel with Markers of Insulin Resistance and Beta Cell Dysfunction: A Case-Control Study in Indo Gangetic Plain. Biol Trace Elem Res 2025:10.1007/s12011-025-04574-5. [PMID: 40133720 DOI: 10.1007/s12011-025-04574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Environmental exposure to toxic metals/metalloids (TM) has been linked to type 2 diabetes mellitus (T2DM) via mechanisms involving insulin resistance and beta cell dysfunction, especially in regions with significant industrial and agricultural activities. This study assessed the relationship between serum toxic element levels and glycemic markers, including HbA1c, insulin resistance (HOMA-IR), and beta cell function (HOMA-β%). In total, 783 participants (480 T2DM patients and 303 controls) were recruited. TM (Ni, As, Al, Pb, Cd, and Hg) was quantified using inductively coupled plasma mass spectrometry. HbA1c was measured using ion exchange high-performance liquid chromatography, while fasting insulin and glucose levels were measured using a Cobas 6000 Roche autoanalyzer to calculate HOMA-IR and HOMA-β%. Among the tested TM, As (72.2%) and Ni (66.2%) were the most prevalent and associated with T2DM. On multivariate analysis, Ni and As levels were significantly positively correlated with HbA1c (Ni: β = 0.13, As: β = 0.16) and IR (Ni: β = 0.31, As: β = 0.24), and negatively correlated with β-cell function (Ni: β = -0.09, As: β = -0.19). A significant decline in beta cell function (Ni: Q1:55.96, Q4:34.27; As: Q1:58.61, Q4:27.88) and increased IR (Ni: Q1:2.75, Q4:3.97; As: Q1:2.77, Q4:3.76) was observed across exposure quartiles. Nonfiltered water consumption and smoking were associated with higher levels of Ni, As, and IR. The risk (adjusted odds ratio) of T2DM increased 2.18-fold and 6.81-fold with Ni and As exposure, respectively. The district with the highest exposure (Bahraich) to Ni (82%) and As (88%) had the highest prevalence (82%) of T2DM among the study population. Arsenic and nickel exposure are strongly associated with impaired glycemic markers in T2DM and correspond to drinking water in the Indo-Gangetic Plain. Smoking was also associated with high Ni and As levels.
Collapse
Affiliation(s)
- Shefali Singh
- Department of Biotechnology, Dr. A P J Abdul Kalam Technical University, Uttar Pradesh, Lucknow, India
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Juhi Verma
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Nikhil Gupta
- Department of General Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Uttar Pradesh, Lucknow, India
| | - Anumesh K Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Manish Singh Rajput
- Department of Biotechnology, Dr Ambedkar Institute of Technology for Divyangjan, Uttar Pradesh, Kanpur, India
| | - Vandana Tiwari
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Manish Raj Kulshrestha
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India.
| |
Collapse
|
3
|
Zhang Y, Mu X, Yu J, Yang A, Yang J, Wu R, Luo F, Luo B, Chen R, Ma L, He J. Association Between Multiple Plasma Toxic Metal and Metalloid Exposures and Hypertension in Elderly Chinese Adults. Biol Trace Elem Res 2025:10.1007/s12011-025-04580-7. [PMID: 40117030 DOI: 10.1007/s12011-025-04580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Although environmental exposure to toxic metals and metalloids is linked with the risk of cardiovascular diseases, the evidence is limited in the elderly. We evaluated the associations between 12 plasma metal levels including aluminum (Al), titanium (Ti), strontium (Sr), lead (Pb), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), cuprum (Cu), zinc (Zn), arsenic (As), and selenium (Se) with prevalence of hypertension in the elderly Chinese population. In this study, stratified cluster sampling was conducted among elderly residents in three communities in Gansu province from June to July 2023, with a total of 330 participants included. The concentrations of metals in whole plasma were measured using inductively coupled plasma mass spectrometry (ICP-MS). Logistic regression and restricted cubic spline analyses were used to evaluate the dose-response relationship between plasma metal levels and hypertension, with all metal concentrations log-transformed. We applied quantile g-computation (QG-comp) and Bayesian kernel machine regression (BKMR) models to examine the associations of both individual metals and metal mixtures with hypertension. After multivariable adjustments, the odds ratios (ORs) and 95% confidence intervals (CIs) for hypertension associated with the highest quartile of metal concentrations compared to the lowest quartile were as follows: 4.20 (1.36, 12.98) for Sr, 3.95 (1.30, 12.03) for V, 3.43 (1.09, 10.78) for Cr, 3.28 (1.16, 9.28) for Cu, 3.28 (1.13, 9.52) for Zn, and 2.87 (0.94, 8.74) for As. Using BKMR and restricted cubic spline analysis, we found that exposure to metal mixtures was positively associated with an increased risk of hypertension, with Ni, Cr, As, and V being the primary contributing factors. In addition, Zn, Ni, and Sr were significantly and positively correlated with hypertension, while plasma titanium levels were negatively associated with hypertension development. These results suggest a complex interaction between various metals and the risk of hypertension in the elderly. Exposure to metal mixtures was positively associated with hypertension risk in elderly Chinese adults, with Ni, Cr, As, and V as key contributors. In addition, Zn, Ni, and Sr are significantly associated with an increased risk of hypertension, while Ti was positively associated with its development.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinyue Mu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Junpu Yu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region (SAR), China
| | - Jingli Yang
- Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjie Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Fanhui Luo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Jian He
- Department of Medical Administration, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Rezaeian M, Ahmadinia H, Rabori MS, Dini A, Esmaeili A, Mohammadi H, Ghaffarian-Bahraman A. Human health risk assessment of toxic metals in Nass smokeless tobacco in Iran. Sci Rep 2025; 15:9525. [PMID: 40108331 PMCID: PMC11923225 DOI: 10.1038/s41598-025-93755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Smokeless tobacco (ST) products create a deadly combination of addiction to nicotine and exposure to toxic substances. Nass is the predominant smokeless tobacco (ST) product consumed in Iran. This study was conducted to evaluate the levels of arsenic (As), lead (Pb), nickel (Ni), and cadmium (Cd) in Nass brands available in the Iranian market. A total of 42 samples were analyzed for the levels of heavy metals using flame atomic absorption spectrometry. The study also evaluated the risk associated with carcinogenic and non-carcinogenic toxic metal contamination in smokeless tobacco in Iran. The level of heavy metals measured in various Nass samples was ranked as Pb > Ni > Cd > As .The mean levels (range) of Pb, Cd, As, and Ni in Nass samples were determined to be 38.71 µg/g (17.60-57.70), 2.90 µg/g (1.20-3.65), 0.71 µg/g (0.25-1.17), and 23.24 µg/g (4.95-44.65), respectively. The levels of Pb, Cd, As and Ni in handmade samples are higher than products manufactured at the plant. The levels of Pb, Cd and Ni in all samples were higher than the Swedish Match recommended limits. While the levels of As in 12% of samples were lower than the standard defined by the Swedish Match. The Estimated daily intake (EDI) values for As, Cd, Ni and Pb are below the reference dose (RfD) established by the Environmental Protection Agency. The findings indicate that the target hazard quotient (THQ) and the hazard index (HI) values in the study were below 1. In this study, for the first time demonstrated that Nass consumers in Iran are at risk of exposure to Pb, As, Cd, and Ni. Consequently, the health system should prioritize raising public awareness about the health risks associated to Nass.
Collapse
Affiliation(s)
- Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Marzie Salandari Rabori
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Dini
- Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abbas Esmaeili
- Department of Environmental Health Engineering, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Yüksel B, Ustaoğlu F, Topaldemir H, Yazman MM, Tokatlı C. Unveiling the nutritional value and potentially toxic elements in fish species from Miliç Wetland, Türkiye: A probabilistic human health risk assessment using Monte Carlo simulation. MARINE POLLUTION BULLETIN 2025; 211:117417. [PMID: 39642435 DOI: 10.1016/j.marpolbul.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study evaluates the nutritional value and health risks of fish from Miliç Wetland, Türkiye, focusing on potentially toxic elements (PTEs) in Esox lucius, Squalius cephalus, and Carassius gibelio. Using ICP-MS, mean PTE concentrations were determined, including Zn (4979 μg/kg), Fe (4241 μg/kg), and As (125 μg/kg). Macro elements like K, P, and Ca were also assessed for nutritional profiling. A Monte Carlo-based risk assessment confirmed that PTE levels were below safety limits, indicating safe consumption. Chemometric techniques (PCA, PCC, HCA) helped trace contamination sources, identifying residential, agricultural, and lithogenic inputs. Esox lucius showed the highest essential nutrient levels. This research highlights the importance of combining chemometric analysis with regular monitoring for food safety and public health protection.
Collapse
Affiliation(s)
- Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye 28600, Giresun, Türkiye.
| | - Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Halim Topaldemir
- Ordu University, Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu, Türkiye
| | - Mehmet Metin Yazman
- Giresun University, Department of Food Processing, Espiye 28600, Giresun, Türkiye
| | - Cem Tokatlı
- Trakya University, İpsala Vocational School, Department of Laboratory Technology, Evrenos Gazi Campus, Edirne, Türkiye
| |
Collapse
|
6
|
Ekperusi AO, Michael A, Chukwurah CH, Sunday NM. Evaluation of heavy metals and their potential risk to human health from seafood in Escravos Estuary, Southern Nigeria. MARINE POLLUTION BULLETIN 2024; 208:117014. [PMID: 39326331 DOI: 10.1016/j.marpolbul.2024.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
In this study, we investigated the levels of heavy metals in sediment, shrimps, silver catfish and their potential bioaccumulation, trophic transfer and the associated risk to human health from the Escravos estuary in southern Nigeria. The values of heavy metals in shrimps and silver catfish were disproportionately higher than the allowable limits for seafood, with values in the gills and the rest of the fish higher than those of the muscle, liver and gonads. Furthermore, the increased BSAF for Cd, Cr and Cu in the study, underscore the uptake of metals from sediments into shellfish. High EDI and HR values from silver catfish for adults and children indicate immediate health risks, with the values for children considerably high, emphasizing the urgent need for regulatory measures and continuous monitoring of seafood from the estuary to protect the health of coastal population within the subregion.
Collapse
Affiliation(s)
- Abraham O Ekperusi
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria; Centre for Coastal Research and Development, Sapele 331107, Delta State, Nigeria.
| | - Amaka Michael
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria
| | - Chidiogo H Chukwurah
- Department of Science Laboratory Technology, Federal Polytechnic Orogun, Delta State, Nigeria
| | - Naomi M Sunday
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria
| |
Collapse
|
7
|
Sandaruwan C, Adikaram M, Madugalla N, Pitawala A, Ishiga H. Human and environmental risk assessment and plausible sources of toxic heavy metals at beach placers in southeast Sri Lanka. MARINE POLLUTION BULLETIN 2024; 208:117007. [PMID: 39357367 DOI: 10.1016/j.marpolbul.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Beach placers are typically rich in heavy minerals, which are crucial for a wide range of industrial applications. This study investigates the human and environmental risks posed by toxic heavy metals (As, Pb, Zn, Cu, Cr, Fe, V and Mn) in beach placers of southeastern Sri Lanka using 42 X-ray fluorescence data. Risk indicators (EF, Igeo, CF and PLI) indicate the polluted nature of the placers. Correlation analysis (correlation matrix and HCA) identified pollution sources as heavy mineral-rich rocks, agricultural fertilizers, pesticides and municipal wastes. The environmental impact caused by toxic metals is less in placers. The highest non-carcinogenic risks (HI) resulted by Cr (1.69E+00), V (4.29E+00) and Fe (2.06E+00) to children. The total cancer risk of As and Cr in placers is unacceptable (children: 2.60E-04, 2.48E-03, and adults: 3.14E-05, 2.87E-04, respectively). Different strategies are introduced to mitigate the identified risks in source areas and the coastal environment.
Collapse
Affiliation(s)
- Chaturanga Sandaruwan
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Madurya Adikaram
- Department of Physical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka
| | - Nadeesha Madugalla
- Department of Physical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka.
| | - Amarasooriya Pitawala
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Hiroaki Ishiga
- Department of Geosciences, Graduate School of Science and Engineering, Shimane University, Japan
| |
Collapse
|
8
|
Wu T, Luo C, Li T, Zhang C, Chen HX, Mao YT, Wu YT, Huang HF. Effects of exposure to multiple metallic elements in the first trimester of pregnancy on the risk of preterm birth. MATERNAL & CHILD NUTRITION 2024; 20:e13682. [PMID: 38925571 PMCID: PMC11574644 DOI: 10.1111/mcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Exposure to certain heavy metals has been demonstrated to be associated with a higher risk of preterm birth (PTB). However, studies focused on the effects of other metal mixtures were limited. A nested case‒control study enrolling 94 PTB cases and 282 controls was conducted. Metallic elements were detected in maternal plasma collected in the first trimester using inductively coupled plasma‒mass spectrometry. The effect of maternal exposure on the risk of PTB was investigated using logistic regression, least absolute shrinkage and selection operator, restricted cubic spline (RCS), quantile g computation (QGC) and Bayesian kernel machine regression (BKMR). Vanadium (V) and arsenic (As) were positively associated with PTB risk in the logistic model, and V remains positively associated in the multi-exposure logistic model. QGC analysis determined V (69.42%) and nickel (Ni) (70.30%) as the maximum positive and negative contributors to the PTB risk, respectively. BKMR models further demonstrated a positive relationship between the exposure levels of the mixtures and PTB risk, and V was identified as the most important independent variable among the elements. RCS analysis showed an inverted U-shape effect of V and gestational age, and plasma V more than 2.18 μg/L was considered a risk factor for shortened gestation length. Exposure to metallic elements mixtures consisting of V, As, cobalt, Ni, chromium and manganese in the first trimester was associated with an increased risk of PTB, and V was considered the most important factor in the mixtures in promoting the incidence of PTB.
Collapse
Affiliation(s)
- Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chuan Luo
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui-Xi Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Ting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Cardiology, Shanghai, China
| |
Collapse
|
9
|
Zhang S, Liu T, He M, Zhang S, Liao J, Lei T, Wu X, Yu Y, Wang T, Tan H. A nationwide study of heavy metal(loid)s in agricultural soils and the soil-grown black morel Morchella sextelata in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122243. [PMID: 39213850 DOI: 10.1016/j.jenvman.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of heavy metal(loid)s (HMs) in soil-grown mushrooms poses potential health risks. Morchella sextelata (black morel) is a typical soil-grown mushroom with a rapidly expanding cultivation area. This study investigated the distribution of arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc in 213 pairs of soil and morel samples collected from 29 provincial administrative regions in China, together with the nutritional contents in the morel samples. The HM contents in the arable soils used to cultivate morels were 2.4-33.1 times higher than those in desert soils, while the HM contents in arable-soil morels were 2.9-155.9 times higher than desert morels. The HM contents of morels and their cultivation soils were significantly correlated (0.465 ≤ R ≤ 0.778, P < 0.001). Furthermore, the enrichment factors of most HMs were higher in arable soils than in desert soils (P < 0.05), except Hg. A considerable proportion of the arable soils produced morels with HMs exceeding the risk control standards (RCSs) for food and the health-risk thresholds of dietary intake. In comparison, HMs in morels from desert soils were far below the RCSs and health-risk thresholds. In addition, desert morels contained higher contents of crude proteins, total polysaccharides, and free amino acids (P < 0.001). These findings indicate that growing morels in desert soils is a way of green production that provides mushroom products with improved safety and nutrition.
Collapse
Affiliation(s)
- Shengyin Zhang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Mingjiang He
- Institute of Agricultural Resources and Environments, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shuncun Zhang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jie Liao
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tianzhu Lei
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang Wu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Tao Wang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Tan
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China.
| |
Collapse
|
10
|
Zhang R, Zhou J, Huo P, Zhang H, Shen H, Huang Q, Chen G, Yang L, Zhang D. Exposure to Multiple Metal(loid)s and Hypertension in Chinese Older Adults. Biol Trace Elem Res 2024:10.1007/s12011-024-04388-x. [PMID: 39320571 DOI: 10.1007/s12011-024-04388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Evidence about effects of metal(loid)s on hypertension among adults is insufficient. The aim of our study was to evaluate the individual and joint associations between seven selected metal(loid)s and hypertension, including lead (Pb), manganese (Mn), nickel (Ni), arsenic (As), cadmium (Cd), chromium (Cr), and vanadium (V)) in Chinese older adults. This study included 1009 older adults, and the blood concentrations of seven metal(loid)s were evaluated by inductively coupled plasma mass spectrometry (ICP-MS). The following conditions were considered as hypertension: (1) either systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg, (2) a self-reported history of hypertension, or (3) currently taking antihypertensive medications. Logistic regression was utilized to investigate the association between individual metal(loid) and hypertension, while Bayesian kernel machine regression (BKMR) was employed to investigate the association of the metal(loid) mixture with hypertension. Adjusted single-metal(loid) model showed a significant positive association between Pb and hypertension (OR = 1.24, 95%CI = 1.03-1.50). This significant association still existed in multi-metal(loid) model (OR = 1.22, 95%CI = 1.01-1.47). BKMR further indicated a positive linear association of Pb with hypertension. The metal(loid) mixture was positively associated with hypertension in older adults, although not significant. Within the mixture, Pb had the highest posterior inclusion probabilities value (PIP = 0.9192). There were multiplicative interactions of Pb and Mn on hypertension. In addition, Pb and Mn had additive effects on the association of other blood metal(loid)s with hypertension. The associations of multiple metal(loid)s with hypertension are dependent on diabetes, areas, age, and BMI. The metal(loid) mixture exposure may contribute to hypertension in Chinese older adults, mainly driven by Pb and interactions of Pb and Mn. Reducing exposure to these metal(loid)s may prevent hypertension among older adults, which is especially true for those living with diabetes.
Collapse
Affiliation(s)
- Rui Zhang
- Hefei Stomatological Hospital, Hefei, Anhui Province, China
| | - JiaMou Zhou
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
| | - PengCheng Huo
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
- Lu'an Medical Emergency Relief Center, Lu'an, Anhui Province, China
| | - HeQiao Zhang
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
| | - HuiYan Shen
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
| | - Qian Huang
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
| | - GuiMei Chen
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China
| | - LinSheng Yang
- School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China.
| | - DongMei Zhang
- School of Health Management, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
11
|
Hedayatzadeh F, Ildoromi A, Hassanzadeh N, Bahramifar N, Banaee M. Comprehensive monitoring of contamination and ecological-health risk assessment of potentially harmful elements in surface water of Maroon-Jarahi sub-basin of the Persian Gulf, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:411. [PMID: 39222283 DOI: 10.1007/s10653-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The increase in heavy metal concentration in water bodies due to rapid industrial and socio-economic development significantly threatens ecological and human health. This study evaluated metal pollution and related risks to ecology and human health in the Maroon-Jarahi river sub-basin in the Persian Gulf and Oman Sea basin, southwest Iran, using various indicators. A total of 70 water samples were taken from the sampling sites in the Maroon, Allah, and Jarahi sub-basins and analyzed for nine heavy metals. According to the results, the mean concentration of metals in the sampling locations across the entire sub-basin of Maroon-Jarahi was observed as follows Iron (528.22 µg/L), zinc (292.62 µg/L), manganese (56.47 µg/L), copper (36.23 µg/L), chromium (11.78 µg/L), arsenic (7.09 µg/L), lead (3.43 µg/L), nickel (3.23 µg/L), and cadmium (1.38 µg/L). Most of the metals were detected at the highest concentration in the sub-basin of the Jarahi River. The Water Quality Index (WQI) index in the basin varied from 18.74 to 22.88, indicating well to excellent quality. However, the investigation of the pollution status at the monitoring stations, based on the classification of Degree of Contamination (CD) and Heavy Metal Pollution Index (HPI) indices, revealed that they are in the category of relatively high pollution (16 < CD < 32) to very high (32 ≤ CD), and in the low pollution category (HPI < 15) to high pollution (HPI < 30), respectively. According to the three sub-basins, the highest amount of WQI, HPI, and Cd was observed in the stations located in the sub-basins of the Jarahi River. The calculation of Heavy Metal Evaluation Index (HEI) also indicated that only 10% of the monitoring stations are in moderate pollution (10 < HEI < 20), while in other monitoring stations the HEI level is less than 10. The Potential ecological risk factors ( E r i ) of an individual metal was obtained as follows: Cd (173.70) > As (131.99) > Zn (57.52) > Cu (55.39) > Ni (48.98) > Cr (21.57) > Pb (0.71), revealing that Cd and As are the main elements responsible for creating ecological risk in the studied area. The Maroon-Jarahi watershed included areas with ecological risks that ranged from low (PERI ≤ 150) to very high (PERI ≥ 600). HI and ILCR health indicators indicated that consumption and long-term contact with river water in the study area can cause potential risks to human health, especially children. Moreover, the findings, the highest level of pollution and health risk for both children and adults, considering both exposure routes, occurred in the Jarahi River sub-basin, suggesting that those who live in the vicinity of the Jarahi River are likely to face more adverse health effects. In addition, the findings of the evaluation of the relationship between land use patterns and water quality in the studied basin showed that agricultural lands acts as a main source of pollutants, but forest lands play an important role in the deposition of pollutants and the protection of water quality at the basin scale. In general, the results of pollution indicators, risk assessment, and statistical techniques suggest that the lower sub-basin, the Jarahi area, and the Shadegan wetland are the most polluted areas in the investigated sub-basin due to excessive discharge of agricultural runoff, industrialization, and rapid urbanization. Thus, special measures should be considered to reduce the risks of HMs pollution in the sub-basin of the Maroon-Jarahi watershed, especially its downstream and the impact of agricultural land use on water quality should be taken into consideration in basin management plans.
Collapse
Affiliation(s)
- Fariba Hedayatzadeh
- Department of Environmental Science, Faculty of Environment and Natural Resources, Malayer University, Malayer, Iran
| | - Alireza Ildoromi
- Department of Nature Engineering, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran.
| | - Nasrin Hassanzadeh
- Department of Environmental Science, Faculty of Environment and Natural Resources, Malayer University, Malayer, Iran
| | - Nader Bahramifar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran, Iran
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
12
|
Kuzukiran O, Yurdakok-Dikmen B, Uyar R, Turgut-Birer Y, Çelik HT, Simsek I, Karakas-Alkan K, Boztepe UG, Ozyuncu O, Kanca H, Ozdag H, Filazi A. Transcriptomic evaluation of metals detected in placenta. CHEMOSPHERE 2024; 363:142929. [PMID: 39048050 DOI: 10.1016/j.chemosphere.2024.142929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This research aims to assess the concentration of metals in human and canine placentas from the same geographic area and to investigate how these metal levels influence gene expression within the placenta. Placentas of 25 dogs and 60 women who had recently given birth residing in Ankara, Turkey were collected and subjected to metal analysis using ICP-OES. Placentas with detectable metal levels underwent further examination including Next Generation Sequencing, transcriptional analysis, single nucleotide polymorphism investigation, and extensive scrutiny across various groups. For women, placentas with concurrent detection of aluminum (Al), lead (Pb), and cadmium (Cd) underwent transcriptomic analysis based on metal analysis results. However, the metal load in dog placentas was insufficient for comparison. Paired-end sequencing with 100-base pair read lengths was conducted using the DNBseq platform. Sequencing quality control was evaluated using FastQC, fastq screen, and MultiQC. RNA-sequencing data is publicly available via PRJNA936158. Comparative analyses were performed between samples with detected metals and "golden" samples devoid of these metals, revealing significant gene lists and read counts. Normalization of read counts was based on estimated size factors. Principal Component Analysis (PCA) was applied to all genes using rlog-transformed count data. Results indicate that metal exposure significantly influences placental gene expression, impacting various biological processes and pathways, notably those related to protein synthesis, immune responses, and cellular structure. Upregulation of immune-related pathways and alterations in protein synthesis machinery suggest potential defense mechanisms against metal toxicity. Nonetheless, these changes may adversely affect placental function and fetal health, emphasizing the importance of monitoring and mitigating environmental exposure to metals during pregnancy.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| | - Recep Uyar
- Ankara University, The Stem Cell Institute, Ankara, Turkey; Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Yagmur Turgut-Birer
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Hasan Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, 06230, Altindag, Ankara, Turkey.
| | - Ilker Simsek
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Cankiri, Turkey.
| | - Kubra Karakas-Alkan
- Selcuk University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Konya, Turkey.
| | - Ummu Gulsum Boztepe
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Ozgur Ozyuncu
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, 06230, Altindag, Ankara, Turkey.
| | - Halit Kanca
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Ankara, Turkey.
| | - Hilal Ozdag
- Ankara University Biotechnology Institute, 06135, Ankara, Turkey.
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| |
Collapse
|
13
|
Hadikhani R, Karbassi A, Tajziehchi S, Mehdizadeh Y. Mechanisms and controlling factors of heavy metals removal by electroflocculation in estuarine environments. MARINE POLLUTION BULLETIN 2024; 206:116699. [PMID: 38991606 DOI: 10.1016/j.marpolbul.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Estuaries play a crucial role in preventing the influx of metals from rivers into seas, thereby offering potential insights for the water purification industry. This study seeks to identify the key parameters (including pH, electricity conductivity (EC), and Eh) influencing the removal efficiency of Mn, Zn, Cu, Co, and Ni during natural and electro-flocculation processes in the Siahroud River estuary. The experiments were conducted in three stages, each representing varying salinity levels and voltage conditions, to determine the most effective parameters for metal removal. The findings revealed that heavy metal flocculation rates were highest at lower salinities (0.5 to 1.5 PSU), with no significant improvement in contaminant removal observed with increasing voltage. Electro-flocculation efficiency was found to be more dependent on Eh. Overall, the flocculation processes reduced the annual total dissolved metal content from 14.84 to 6.46 tons, underscoring the potential of this method in water quality management.
Collapse
Affiliation(s)
- Rezvan Hadikhani
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Abdolreza Karbassi
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Sanaz Tajziehchi
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Yusef Mehdizadeh
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran; Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| |
Collapse
|
14
|
Li MY, Shi YC, Xu WX, Zhao L, Zhang AZ. Exploring Cr(VI)-induced blood-brain barrier injury and neurotoxicity in zebrafish and snakehead fish, and inhibiting toxic effects of astaxanthin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124280. [PMID: 38815890 DOI: 10.1016/j.envpol.2024.124280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Cr(VI) is a common hazardous heavy metal contaminant that seriously endangers human and aquatic animal health. GPX4 was the key enzyme that reduces heavy metal toxicity through inhibiting ferroptosis pathway. Astaxanthin was GPX4 activator that can weaken biological toxicity induced by Cr(VI) exposure. The present study was conducted to evaluate the major role of GPX4 in astaxanthin protects Cr(VI)-induced oxidative damage, blood-brain barrier injury and neurotoxicity in brain-liver axis through inhibiting ferroptosis pathway. In the current study, astaxanthin intervention can effectively alleviate Cr(VI)-induced oxidative stress, blood-brain barrier damage, and neurotoxicity. GPX4 plays a major role in mediating astaxanthin nutritional intervention to reduce ROS and liver non-heme iron accumulation, which would contribute to the reduction of ferroptosis. Meanwhile, astaxanthin maintains the stability of transport receptors and protein macromolecules such as TMEM163, SLC7A11, SLC3A2, FPN1 and GLUT1 in the brain liver axis, promoting substance exchange and energy supply. Moreover, astaxanthin alleviates Cr(VI)-induced neurotoxicity by promoting tight protein expression and reducing blood-brain barrier permeability.
Collapse
Affiliation(s)
- Mu-Yang Li
- Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Yan-Chao Shi
- Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Wan-Xin Xu
- Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Lei Zhao
- Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| | - Ai-Zhong Zhang
- Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
15
|
Karadeniz S, Ustaoğlu F, Aydın H, Yüksel B. Toxicological risk assessment using spring water quality indices in plateaus of Giresun Province/Türkiye: a holistic hydrogeochemical data analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:285. [PMID: 38967745 PMCID: PMC11226512 DOI: 10.1007/s10653-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Water scarcity is a growing concern due to rapid urbanization and population growth. This study assesses spring water quality at 20 stations in Giresun province, Türkiye, focusing on potentially toxic elements and physicochemical parameters. The Water Quality Index rated most samples as "excellent" during the rainy season and "good" during the dry season, except at stations 4 (40° 35' 12″ North/38° 26' 34″ East) and 19 (40° 44' 28″ North/38° 06' 53″ West), indicating "poor" quality. Mean macro-element concentrations (mg/L) were: Ca (34.27), Na (10.36), Mg (8.26), and K (1.48). Mean trace element values (μg/L) were: Al (1093), Zn (110.54), Fe (67.45), Mn (23.03), Cu (9.79), As (3.75), Ni (3.00), Cr (2.84), Pb (2.70), Co (1.93), and Cd (0.76). Health risk assessments showed minimal non-carcinogenic risks, while carcinogenic risk from arsenic slightly exceeded safe limits (CR = 1.75E-04). Higher arsenic concentrations during the rainy season were due to increased recharge, arsenic-laden surface runoff, and human activities. Statistical analyses (PCA, PCC, HCA) suggested that metals and physico-chemical parameters originated from lithogenic, anthropogenic, or mixed sources. Regular monitoring of spring water is recommended to mitigate potential public health risks from waterborne contaminants.
Collapse
Affiliation(s)
- Selin Karadeniz
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Fikret Ustaoğlu
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Handan Aydın
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Bayram Yüksel
- Department of Property Protection and Security, Giresun Universitesi Espiye Meslek Yuksekokulu, Adabuk Mahallesi Maresal Fevzi Cakmak Cd No:2, Espiye, 28600, Giresun, Turkey.
| |
Collapse
|
16
|
Huang H, Su H, Li X, Li Y, Jiang Y, Liu K, Xie X, Jia Z, Zhang H, Wang G, Ye Z, Cheng X, Wen J, Li N, Yu Y. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of the tropical region in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:234. [PMID: 38849608 DOI: 10.1007/s10653-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The disturbance of ecological stability may take place in tropical regions due to the elevated biomass density resulting from heavy metal and other contaminant pollution. In this study, 62 valid soil samples were collected from Sanya. Source analysis of heavy metals in the area was carried out using absolute principal component-multiple linear regression receptor modelling (APCS-MLR); the comprehensive ecological risk of the study area was assessed based on pollution sources; the Monte-Carlo model was used to accurately predict the health risk of pollution sources in the study area. The results showed that: The average contents of soil heavy metals Cu, Ni and Cd in Sanya were 5.53, 6.56 and 11.66 times higher than the background values of heavy metals. The results of soil geo-accumulation index (Igeo) showed that Cr, Mo, Mn and Zn were unpolluted to moderately polluted, Cu and Ni were moderately polluted, and Cd was moderately polluted to strongly polluted. The main sources of heavy metal pollution were natural sources (57.99%), agricultural sources (38.44%) and traffic sources (3.57%). Natural and agricultural sources were jointly identified as priority control pollution sources and Cd was the priority control pollution element for soil ecological risk. Heavy metal content in Sanya did not pose a non-carcinogenic risk to the population, but there was a carcinogenic risk to children. The element Zn had a high carcinogenic risk to children, and was a priority controlling pollutant element for the risk of human health, with agricultural sources as the priority controlling pollutant source.
Collapse
Affiliation(s)
- Haoran Huang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Hang Su
- Office of International Cooperation and Exchanges, Nanjing Institute of Technology, Nanjing, China
| | - Xiang Li
- School of Architectural Engineering, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China.
- Nanjing Institute of Geography & Limnology Chinese Academy of Sciences, State Key Laboratory of Lakes and Environment, Nanjing, Jiangsu, China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
- College of Resources and Environment, Henan University of Economics and Law, Zhengzhou, Henan, China.
| | - Yujie Jiang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ke Liu
- College of Resources and Environment, Henan University of Economics and Law, Zhengzhou, Henan, China
| | - Xuefeng Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Zhenyi Jia
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Zi Ye
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Jiale Wen
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ye Yu
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| |
Collapse
|
17
|
Shaheen ME, Gagnon JE, Barrette JC, Keshta AE. Evaluation of pollution levels in sediments from Lake Edku, Egypt using laser ablation inductively coupled plasma mass spectrometry. MARINE POLLUTION BULLETIN 2024; 202:116387. [PMID: 38663346 DOI: 10.1016/j.marpolbul.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The concentrations of 11 heavy metals in sediments from Lake Edku, Egypt were determined using LA-ICP-MS. The average concentrations of elements occurred in the order of Fe > V > Cr > Zn > Ni > Cu > Co > Pb > As > Sn > Mo with respective values of 4.67 %, 104.8, 77.9, 76.6, 59.2, 52, 27.8, 19.8, 4.14, 2.24, and 1.45 μg/g. Several pollution indices were used to evaluate individual and cumulative contamination levels. All HMs were found to be in the deficiency to minimal enrichment range based on the enrichment factor. The contamination factor indicated low contamination levels of Cr and As, low to moderate contamination levels of Fe, Ni, Zn, Mo, Sn, and Pb, and moderate contamination levels of Co and Cu. The pollution load index and contamination degree indicated the sediments to be polluted and moderately polluted, respectively.
Collapse
Affiliation(s)
- Mohamed E Shaheen
- Physics Department, Faculty of Science, Tanta University, Tanta 31512, Egypt.
| | - Joel E Gagnon
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada; School of the Environment, University of Windsor, Windsor, ON, Canada
| | - J C Barrette
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr E Keshta
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31512, Egypt
| |
Collapse
|
18
|
Afzal A, Mahreen N. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Front Pharmacol 2024; 15:1375137. [PMID: 38567355 PMCID: PMC10985271 DOI: 10.3389/fphar.2024.1375137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metals, common environmental pollutants with widespread distribution hazards and several health problems linked to them are distinguished from other toxic compounds by their bioaccumulation in living organisms. They pollute the food chain and threaten the health of animals. Biologically, heavy metals exhibit both beneficial and harmful effects. Certain essential heavy metals such as Co, Mn, Se, Zn, and Mg play crucial roles in vital physiological processes in trace amounts, while others like As, Pb, Hg, Cd, and Cu are widely recognized for their toxic properties. Regardless of their physiological functions, an excess intake of all heavy metals beyond the tolerance limit can lead to toxicity. Animals face exposure to heavy metals through contaminated feed and water, primarily as a result of anthropogenic environmental pollution. After ingestion heavy metals persist in the body for an extended duration and the nature of exposure dictates whether they induce acute or chronic, clinical or subclinical, or subtle toxicities. The toxic effects of metals lead to disruption of cellular homeostasis through the generation of free radicals that develop oxidative stress. In cases of acute heavy metal poisoning, characteristic clinical symptoms may arise, potentially culminating in the death of animals with corresponding necropsy findings. Chronic toxicities manifest as a decline in overall body condition scoring and a decrease in the production potential of animals. Elevated heavy metal levels in consumable animal products raise public health concerns. Timely diagnosis, targeted antidotes, and management strategies can significantly mitigate heavy metal impact on livestock health, productivity, and reproductive performance.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| | - Naima Mahreen
- National Institute for Biotechnology and Genetics Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
19
|
Wang B, Zhao C, Feng Q, Lee X, Zhang X, Wang S, Chen M. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123148. [PMID: 38104766 DOI: 10.1016/j.envpol.2023.123148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.
Collapse
Affiliation(s)
- Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
20
|
Ganji F, Kamani H, Ghayebzadeh M, Abdipour H, Moein H. Evaluation of physical and chemical characteristics of wastewater and sludge of Zahedan urban wastewater treatment plant for reuse. Heliyon 2024; 10:e24845. [PMID: 38312560 PMCID: PMC10835325 DOI: 10.1016/j.heliyon.2024.e24845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Following the water shortage in the world, the use of wastewater as a sustainable resource has been considered in large volume. The study conducted to evaluate the physical and chemical characteristics of the wastewater and sludge of the Zahedan urban wastewater treatment plant showed that the wastewater and sludge treatment system of the treatment plant has high efficiency and effectiveness in removing the investigated parameters. The investigated parameters in the effluent included Chemical oxygen demand (COD), Biochemical oxygen demand (BOD), and Total suspended solids (TSS), turbidity, temperature, nitrate, nitrite, phosphate, pH, zinc, cobalt, lead and copper. Also, the investigated parameters in the sludge included Mixed liquor suspended solids (MLSS), Mixed liquor volatile suspended solids (MLVSS), pH, electrical conductivity and heavy metals. The results showed that the average concentration of metals in the treated effluent is Zn > Mn > Cu > Pb > Ni > Cr > Cd ،and Chemical oxygen demand and Biochemical oxygen demand in the effluent of this treatment plant are on average 171 and 44.4 mg/L, respectively, and its discharge in surface water is limited, but it can be applied for agriculture. Also, the purified sludge had the necessary standards and could be used as soil or household fertilizer and compost for agricultural land.
Collapse
Affiliation(s)
- Fatemeh Ganji
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Ghayebzadeh
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Moein
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
21
|
Islam N, Zamir R, Faruque MO. Health Risk Assessment of Metals in Antidiabetic Herbal Preparations: A Safety Screening. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:6507185. [PMID: 39145043 PMCID: PMC11324365 DOI: 10.1155/2024/6507185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/16/2024]
Abstract
The present study evaluates the human health risk of metals in locally consumed herbal preparations used to treat diabetes. Atomic absorption spectroscopy (AAS) was used after microwave-assisted digestion to mineralize the samples. Toxic metal assessment was done by adopting mathematical modeling for carcinogenic and noncarcinogenic risks in the exposed population and comparing the raw results with maximum residue limits (MRLs) set by regulatory authorities. Hazard quotient (HQ) values for Fe, Hg, Cu, Pb, and Zn were recorded above 1. Noncarcinogenic health risks remain in 29% of samples for Fe, 67% of samples for Hg, 17% of samples for Cu, 33% of samples for Pb, and 4% of samples for Zn. Hazard index (HI) values in 33% of samples were above 1. Carcinogenic risks for Pb, Cr, Cd, and Ni were higher than the acceptable limit (1 × 10-6). Carcinogenic health risks exist in 54% of samples for Pb, 58% of samples for Cr, 46% of samples for Cd, and 58% of samples for Ni. MRLs for metals were crossed in samples in varying degrees. This is a harrowing account and may put public health safety at risk. Considering these facts, there should be more investigation into toxic metals in other frequently marketed herbal drugs in the antidiabetic and other therapeutic classes. Pre- and postmarket monitoring strategies for the preparations should also be in place to ensure safe consumption.
Collapse
Affiliation(s)
- Nazmul Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of General Educational Development, Daffodil International University, Dhaka, Bangladesh
| | - Rausan Zamir
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
22
|
Javan S, Eskandari M, Babaei Z, Aminisani N, Ahmadi R, Ramezani AM. Separation and identification of snuff constituents by using GC-MS and ICP-OES as well as health risk assessment of some existing heavy metals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1513. [PMID: 37989886 DOI: 10.1007/s10661-023-12121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The identification of volatile organic components in snuff was accomplished using GC-MS analysis in this study. The findings of the GC-MS analysis revealed the presence of nicotine, its derivatives, and several other toxic chemicals that are hazardous to human health. Furthermore, the content of 34 elements in four brands of snuff consumed in Neyshabur City was determined by ICP-OES analysis (with five repetitions). The health hazards of measured heavy elements were examined from two perspectives: carcinogenic (7 heavy elements were checked) and non-carcinogenic (4 heavy elements were checked). The investigation of non-carcinogenic hazards from inhalation was based on the computation of the hazard quotient (HQ) factor, and the results indicated that inhaling five heavy metals, Cu, Pb, Ni, Zn, and Cd, does not represent a substantial health risk ((HQ < 1). In contrast, the computed HQ factors for Cr and As were relatively high (1 < HQ < 10), indicating a substantial health risk from breathing these two elements. The carcinogenic factor (CR value) results revealed that the degree of carcinogenic risk for Cd was very low (CR value less than 1 × 10-6) and did not pose a concern to the consumer population. However, the risk of As, Cr, and Ni exposure is considerable in the carcinogenic risk range (CR values between 1 × 10-6 and 1 × 10-4).
Collapse
Affiliation(s)
- Safoura Javan
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahboube Eskandari
- Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Babaei
- Department of Plant Breeding & Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nayyereh Aminisani
- Iranian Research Center On Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Raheleh Ahmadi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amir M Ramezani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
23
|
James VR, Panchal HJ, Shah AP. Estimation of selected elemental impurities by inductively coupled plasma-mass spectroscopy (ICP-MS) in commercial and fresh fruit juices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1390. [PMID: 37904047 DOI: 10.1007/s10661-023-11965-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
The main objective of the study is the estimation of elemental impurities in selected packaged commercial fruit juices and fresh fruit juices available in Ahmedabad, Gujarat. Estimation of seventeen samples (9 commercial fruit juices and 8 fresh fruit juices) was carried out for elemental impurities which include lead, cadmium, arsenic, mercury, methyl mercury, nickel, chromium, tin, copper, and zinc. Inductively coupled plasma-mass spectroscopy (ICP-MS) with microwave-assisted sample digestion was used to determine the element content of samples. The ICP-MS method was confirmed for accuracy by performing validation with validation parameters such as linearity, precision, and accuracy. The method's trueness was confirmed with single-element standards. The results were compared with Food Safety and Standards Authority of India (FSSAI) standards. Arsenic, mercury, methyl mercury, tin, and copper were within permissible limits in all samples of fruit juices. The concentration of lead was found to exceed limits in 5 samples of commercial fruit juices which were 0.07, 0.13, 0.18, 0.21, and 0.38 mg/kg, respectively. The concentration of nickel was found to be above permissible limits in 5 samples (1.26, 1.72, 1.95, 3.24, and 4.07 mg/kg) of commercial fruit juices and 6 samples of fresh fruit juices (0.19. 0.21, 0.21, 0.42, 0.66, and 2.42 mg/kg). The concentration of chromium was found to be above permissible limits in 5 samples (3.13, 3.51, 4.29, 5.91, and 6.02 mg/kg) of commercial fruit juices and 6 samples of fresh fruit juices (0.80. 0.88, 0.98, 0.99, 1.16, and 8.95 mg/kg). Health risk assessment was performed for elemental impurities. Target hazard quotient and health risk index for elemental impurities were found to be less than 1 which is considered safe for consumers. Hazard index for elemental impurities was found to be more than 1 in two samples which can cause serious non-carcinogenic risk to consumers. Target carcinogenic risk was found within acceptable levels for all elemental impurities in all samples of fruit juices. Essential elements like copper and zinc are required by the human body for various body functions but heavy metals like lead, arsenic, and cadmium are highly toxic to human beings due to their adverse effects and it needs to be controlled. Lead poses a significant health risk to human health. It is essential to further monitor the levels of elemental impurities on a regular basis in commercial and fresh fruit juices.
Collapse
Affiliation(s)
- Vanessa R James
- Gujarat Technological University, Ahmedabad, Gujarat, India.
- Department of Pharmaceutical Regulatory Affairs, L.J. Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India.
| | - Hiral J Panchal
- Shree Swaminarayan Sanskar Pharmacy College, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Ashish P Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| |
Collapse
|
24
|
Mehmood S, Ahmed W, Mahmood M, Rizwan MS, Asghar RMA, Alatalo JM, Imtiaz M, Akmal M, Abdelrahman H, Ma J, Ali EF, Li W, Lee SS, Shaheen SM. Aquaculture sediments amended with biochar improved soil health and plant growth in a degraded soil. MARINE POLLUTION BULLETIN 2023; 191:114899. [PMID: 37027965 DOI: 10.1016/j.marpolbul.2023.114899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Sustainable and safe management of aquaculture sediments is of great concern. Biochar (BC) and fishpond sediments (FPS) are rich in organic carbon and nutrients and thus can be used as soil amendments; however, it is not fully explored how the biochar amended fishpond sediments can affect soil properties/fertility and modulate plant physiological and biochemical changes, particularly under contamination stress. Therefore, a comprehensive investigation was carried out to explore the effects of FPS and BC-treated FPS (BFPS) on soil and on spinach (Spinacia oleracea L.) grown in chromium (Cr) contaminated soils. Addition of FPS and BFPS to soil caused an increase in nutrients content and reduced Cr levels in soil, which consequently resulted in a significant increase in plant biomass, chlorophyll pigments, and photosynthesis, over the control treatment. The most beneficial effect was observed with the BFPS applied at 35 %, which further increased the antioxidant enzymes (by 2.75-fold, at minimum), soluble sugars by 24.9 %, and upregulated the gene expression activities. However, the same treatment significantly decreased proline content by 74.9 %, Malondialdehyde by 65.6 %, H2O2 by 65.1 %, and Cr concentration in spinach root and shoot tissues. Moreover, the average daily intake analysis showed that BFPS (at 35 %) could effectively reduce human health risks associated with Cr consumption of leafy vegetables. In conclusion, these findings are necessary to provide guidelines for the reutilization of aquaculture sediments as an organic fertilizer and a soil amendment for polluted soils. However, more future field studies are necessary to provide guidelines and codes on aquaculture sediments reutilization as organic fertilizer and soil amendment for polluted soils, aiming for a more sustainable food system in China and globally, with extended benefits to the ecosystem and human.
Collapse
Affiliation(s)
- Sajid Mehmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Waqas Ahmed
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Akmal
- Institute of Soil and Water Conversation, PMAS-Arid Agriculture University, Punjab, Pakistan
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jifu Ma
- School of Life Science, Yan'an University, Yan'an 716000, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Weidong Li
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
25
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Topaldemir H, Taş B, Yüksel B, Ustaoğlu F. Potentially hazardous elements in sediments and Ceratophyllum demersum: an ecotoxicological risk assessment in Miliç Wetland, Samsun, Türkiye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26397-26416. [PMID: 36367653 DOI: 10.1007/s11356-022-23937-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 05/16/2023]
Abstract
Potentially hazardous elements (PHEs) are non-biodegradable and accumulate in places like water, soil, and plants where they endanger environmental health. There are a considerable number of wetlands having both national and worldwide importance in Türkiye. Regarding PHE accumulation, sediments and Ceratophyllum demersum were examined in the Miliç Wetland (MW), situated in a basin with intense hazelnut and rice farming, which is next to the international highway on the Central Black Sea Coast of Türkiye. The quantification of PHEs in the study subjects was undertaken using a validated inductively coupled plasma-mass spectrometry (ICP-MS) method, and mean concentrations (mg/kg) of PHEs in the sediments were in the order of Al (13,133) > Fe (10,790) > Mn (205.84) > Cu (17.95) > Cr (16.40) > Zn (15.55) > Ni (11.74) > Pb (9.17) > Co (6.30) > As (2.07) > Cd (0.19). The ecotoxicological risk was assessed using sediment quality guidelines (SQGs) and certain geological indices, indicating mostly low ecological risk, low pollution, and no hazardous risk. Based on the modified hazard quotient (mHQ) classification of values, Ni showed low contamination, while Cd, Pb, As, and Cu displayed very low contamination, and Zn presented minor contamination. The findings of total lifetime cancer risk (LCR), hazard quotient (HQ), and hazard index (HI) identified that exposure of adults or children to sediments containing PHEs would not represent a major health risk. As a recommendation, it is necessary to avoid the direct entrance of agricultural pesticides and fertilizers to enhance the sediment quality of the MW. Since the highway was constructed close to MW, this is considered a significant source of human-caused pollution. Consequently, all PHEs analyzed, except for Cd, displayed a bioconcentration factor (BCF) value of more than 1000, indicating that Ceratophyllum demersum is a promising plant for phytoremediation in PHE-polluted ecological systems involving wetlands, and it can efficiently be employed as an indicator species in biological screening investigations.
Collapse
Affiliation(s)
- Halim Topaldemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye
| | - Beyhan Taş
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye.
| | - Bayram Yüksel
- Department of Property Protection and Security, Giresun University, Espiye, 28600, Giresun, Türkiye
| | - Fikret Ustaoğlu
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Türkiye
| |
Collapse
|
27
|
Gu T, Jia X, Shi H, Gong X, Ma J, Gan Z, Yu Z, Li Z, Wei Y. An Evaluation of Exposure to 18 Toxic and/or Essential Trace Elements Exposure in Maternal and Cord Plasma during Pregnancy at Advanced Maternal Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14485. [PMID: 36361359 PMCID: PMC9659256 DOI: 10.3390/ijerph192114485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Pregnant women of advanced maternal age (AMA) are vulnerable to exposure to the surrounding environment. Assessment of trace elements in pregnant women living in specific areas is important for biomonitoring. However, exposure levels and variation patterns during pregnancy remains controversial and attracts extensive public concern. Therefore, we aimed to evaluate exposure of 18 toxic and/or essential trace elements in maternal plasma and in paired cord plasma during pregnancy at AMA. A total of 48 pregnant women of AMA were recruited in Peking University Third Hospital from 2018 to 2021. Eighteen elements found in maternal plasma during the 1st, 2nd, or 3rd trimester of pregnancy and paired cord plasma were measured by 7700x ICP-MS (Agilent Technologies, Palo Alto, CA, USA) and Elan DRC type II ICP-MS (The Perkin-Elmer Corporation, Waltham, MA USA). Concentrations of Pb, Se, Fe, Zn, and Mo all decreased during pregnancy, while Cu increased. Interestingly, concentrations of Rb decreased initially but then increased. Elements as Al, Co, Se, Cu, and Ni showed significantly lower levels in cord than in maternal plasma, while elements as Sr, Fe, Rb, Mn and Zn displayed significantly higher levels in cord than in maternal plasma. Moreover, positively- interacted clusters were found in Ni-Co-Cu-Al-Rb-Zn and Zn-Mn-Al-Pb in maternal blood. Similar positively-interacted clusters were found in Zn-Ni-Co, Zn-Ni-Fe, Mn-Al-Pb, Fe-Pb-Mn, Fe-Ni-Cu, and Rb-Cu-Sb-Fe-Mn in cord plasma. Furthermore, correlations between paired maternal and cord blood samples for As, Sr, and Mo were statistically significant, indicating that the fetus burden may reflect maternal exposure to some extent. Admittedly, levels of toxic and essential elements in our cohort study were comparatively lower than those in the scientific literature.
Collapse
Affiliation(s)
- Tingfei Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| | - Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| | - Jinxi Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zhihang Gan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zhixin Yu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| |
Collapse
|
28
|
Jiang Q, He Y, Wu Y, Dian B, Zhang J, Li T, Jiang M. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120094. [PMID: 36067972 DOI: 10.1016/j.envpol.2022.120094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solidification/stabilization technology is one of the most desirable technologies for the remediation of heavy metal contaminated soils due to its convenience and effectiveness. The annual production of alkaline industrial wastes in China is in the hundreds of millions of tons. Alkaline industrial wastes have the potential to replace conventional stabilizers because of their cost effectiveness and performance in stabilizing heavy metals in soils. This paper systematically summarizes the use of four alkaline industrial wastes (soda residue, steel slag, carbide slag, and red mud) for the solidification/stabilization of heavy metal contaminated soils and provides a comprehensive analysis of the three mechanisms of action (hydration, precipitation, and adsorption) and factors that influence the process. In addition, the environmental risks associated with the use of alkaline industrial wastes are highlighted. We found that soda residues, steel slag and carbide slag are appropriate for solidification/stabilization of Pb, Cd, Zn and Cu, while red mud is a potential passivation agent for the stabilization of As in soils. However, implementation of remediation methods using alkaline industrial wastes has been limited because the long-term effectiveness, synergistic effects, and usage in soils containing multiple heavy metals have not been thoroughly studied. This review provides the latest knowledge on the mechanisms, risks, and challenges of using alkaline industrial wastes for solidification/stabilization of heavy metal contaminated soils.
Collapse
Affiliation(s)
- Qi Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yonglin Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Dian
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
29
|
Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Yüksel B, Ustaoğlu F, Tokatli C, Islam MS. Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: association between garbage disposal facility and metallic accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17223-17240. [PMID: 34661839 DOI: 10.1007/s11356-021-17023-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/09/2021] [Indexed: 04/16/2023]
Abstract
The objective of this paper was to stress the possible potential toxic element (PTE) accumulation in the surface sediments of the Çavuşlu Stream (ÇS), as well as examining the source identification of whether or not any association between garbage disposal facility (GDF) and ecotoxicity or human health risk in Giresun, Turkey. The sediment specimens were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) followed by microwave digestion. The descending order of metals (mg/kg) in sediments were as follows: Fe (38,791 ± 3269) > Al (27,753 ± 4051) > Mn (730.90 ± 114.60) > Cr (233.39 ± 53.32) > V (176.40 ± 19.66) > Cu (85.22 ± 6.06) > Ni (72.87 ± 11.50) > Zn (46.45 ± 3.68) > Co (21.96 ± 3.33) > Pb (12.17 ± 1.97) > As (3.12 ± 1.45) > Sb (0.22 ± 0.06) > Cd (0.17 ± 0.02) > Hg (0.04 ± 0.01). Among these elements, certain metals (V, Cr, Cu, and Ni) in the sediments were above the average shale. Cr and Ni levels were above their corresponding threshold effect level (TEL) and probable effect level (PEL) values while Cu concentration exceeding its TEL, indicating that benthic organisms in the sediment of ÇS have likely toxic responses. Based on the results from contamination factor (CF), enrichment factor (EF), and geo-accumulation factor (Igeo) values of PTEs, the sediment was frequently classified into moderate contamination, moderate enrichment, and unpolluted to moderately polluted group. Pollution load index (PLI), integrated pollution index (IPI), and ecological risk index (Eri) indicated low pollution or low potential ecological risk. Toxicity risk index (TRI) and toxic unit analysis (TUs) suggested moderate toxicity. The outcomes of hazard quotient (HQ), total hazard index (THI), and lifetime cancer risk (LCR) stressed out that PTEs would not pose a significant health risk when adults are exposed to sediments in ÇS. However, a non-cancerogenic health risk for children was considered as the collective effect of 14 PTE (THI = 1.47 > 1). Multivariate statistical analysis (principal component analysis (PCA), Pearson's correlation coefficient (PCC), and hierarchical cluster analysis (HCA)) outlined that the metallic accumulation in the sediments of ÇS was related to lithological, geological, and anthropogenic impacts. Therefore, the GDF is likely a major reason in terms of anthropogenic pollution in the sediments of the ÇS.
Collapse
Affiliation(s)
- Bayram Yüksel
- Department of Property Protection and Security, Giresun University, Espiye, 28600, Giresun, Turkey
| | - Fikret Ustaoğlu
- Biology Department, Faculty of Arts and Science, Giresun University, 28200, Giresun, Turkey
| | - Cem Tokatli
- Department of Laboratory Technology, Evrenos Gazi Campus, Trakya University, İpsala, Edirne, Turkey
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| |
Collapse
|
31
|
Yüksel B, Şen N, Ögünç GI, Erdoğan A. Elemental profiling of toxic and modern primers using ICP-MS, SEM-EDS, and XPS: an application in firearm discharge residue investigation. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2043436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bayram Yüksel
- Department of Property Protection and Security, Giresun University, Giresun, Turkey
| | - Nilgün Şen
- Turkish National Police Academy, Institute of Forensic Sciences, Ankara, Turkey
| | - Gökhan Ibrahim Ögünç
- Gendarmerie and Coast Guard Academy, Institute of Forensic Sciences, Ankara, Turkey
| | - Ayşegül Erdoğan
- Application and Research Center for Testing and Analysis, Ege University, Izmir, Turkey
| |
Collapse
|
32
|
Nazlıcan E, Arıca E, Gören İE, Kılınçlı B, Mete B, Daglioglu N. The risk estimation and assessment of heavy metal exposure by biomonitoring in the breast milk of mothers in the Cukurova Region, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13963-13970. [PMID: 34599714 DOI: 10.1007/s11356-021-16602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Toxic heavy metals released into the environment through various industrial processes have potential adverse effects on the environment and human health. In order to reveal these adverse health effects, it is vital to carry out toxicological studies by performing biomonitoring. This study aimed to assess the level of Cr, As, Cd, Hg, and Pb in the breast milk samples of mothers in the Cukurova region, Turkey, and its association with health risk to infants. Ten-milliliter postpartum milk samples were collected from 34 breast-feeding mothers in the first 2 months of their postpartum period and living in the Cukurova region, Adana. The measurement of target heavy metals levels was performed by using inductively coupled plasma mass spectroscopy (ICP-MS). The average breast milk levels of Cr, As, Cd, Hg, and Pb were 8.25, 1.64, 0.37, 2.60, and 12.12 μg/L, respectively. Evaluation of breast milk samples for these toxic heavy metals revealed the high exposure level for Cr and As. However, the mothers who participated in the study were not occupationally exposed to these metals. This study showed that Cr, As, Cd, Hg, and Pb cross the placenta and blood-brain barrier prenatally and accumulate in breast milk postnatally.
Collapse
Affiliation(s)
- Ersin Nazlıcan
- Faculty of Medicine, Department of Public Health, Çukurova University, Adana, Turkey
| | - Enes Arıca
- Faculty of Medicine, Department of Forensic Medicine, Dicle University, Diyarbakir, Turkey
| | - İsmail Ethem Gören
- Faculty of Medicine, Department of Forensic Medicine, Cukurova University, 01330, Adana, Turkey
| | - Betül Kılınçlı
- Department of Food Chemistry, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Burak Mete
- Faculty of Medicine, Department of Public Health, Çukurova University, Adana, Turkey
| | - Nebile Daglioglu
- Faculty of Medicine, Department of Forensic Medicine, Cukurova University, 01330, Adana, Turkey.
| |
Collapse
|