1
|
Lim XYH, Luo L, Yu J. Intrinsic functional brain connectivity in adolescent anxiety: Associations with behavioral phenotypes and cross-syndrome network features. J Affect Disord 2025; 372:251-261. [PMID: 39644927 PMCID: PMC11846206 DOI: 10.1016/j.jad.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Considerable research has mapped the human brain networks implicated in anxiety. Yet, less is known about the intrinsic features of the brain implicated in adolescent anxiety and their generalizability to affective and behavioral problems. To this end, we investigated the intrinsic functional connectomes associated with anxiety, their associations with behavioral phenotypes of clinical interest, and the cross-syndrome overlap between the anxiety network and other affective syndromes in an adolescent sample. METHODS We used the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) dataset which comprises 203 clinical and healthy adolescents aged 14-17. Participants underwent a resting-state magnetic resonance imaging scan and completed the Child Behavior Checklist (CBCL) and Behavioral Inhibition/Activation System scale. Using network-based statistics, we identified functional networks associated with anxiety and other behavioral syndromes. The anxiety network strengths were then correlated with behavioral measures. RESULTS A significant resting-state functional network associated with anxiety was identified, largely characterized by hyperconnectivity between the somatomotor and both the default mode network and subcortical regions. Network strengths derived from the anxiety network were significantly correlated to various behavioral syndromes, including internalizing and externalizing tendencies. Cross-syndrome overlapping edges were also observed in networks of internalizing disorders, more prominently post-traumatic stress syndromes. CONCLUSIONS Our results revealed the functional connectomes characteristic of anxiety in adolescents. This resting-state functional network was also predictive of and shared similar features with behavioral syndromes typically associated with anxiety-related disorders, providing evidence that the high comorbidity of anxiety with other clinical conditions may have a neurobiological basis.
Collapse
Affiliation(s)
- Xavier Yan Heng Lim
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore.
| | - Lizhu Luo
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Junhong Yu
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Jia X, Li M, Wang C, Antwi CO, Darko AP, Zhang B, Ren J. Local brain abnormalities in emotional disorders: Evidence from resting state fMRI studies. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1694. [PMID: 39284783 DOI: 10.1002/wcs.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
Emotional disorders inflict an enormous burden on society. Research on brain abnormalities implicated in emotional disorders has witnessed great progress over the past decades. Using cross-sectional and longitudinal designs, resting state functional magnetic resonance imaging (rs-fMRI) and its analytic approaches have been applied to characterize the local properties of patients with emotional disorders. Additionally, brain activity alterations of emotional disorders have shown frequency-specific. Despite the gains in understanding the roles of brain abnormalities in emotional disorders, the limitation of the small sample size needs to be highlighted. Lastly, we proposed that evidence from the positive psychology research stream presents it as a viable discipline, whose suggestions could be developed in future emotional disorders research. Such interdisciplinary research may produce novel treatments and intervention options. This article is categorized under: Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Xize Jia
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | | | - Baojing Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
He J, Kurita K, Yoshida T, Matsumoto K, Shimizu E, Hirano Y. Comparisons of the amplitude of low-frequency fluctuation and functional connectivity in major depressive disorder and social anxiety disorder: A resting-state fMRI study. J Affect Disord 2024; 362:425-436. [PMID: 39004312 DOI: 10.1016/j.jad.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies comparing the brain functions of major depressive disorder (MDD) and social anxiety disorder (SAD) at the regional and network levels remain scarce. This study aimed to elucidate their pathogenesis using neuroimaging techniques and explore biomarkers that can differentiate these disorders. METHODS Resting-state fMRI data were collected from 48 patients with MDD, 41 patients with SAD, and 82 healthy controls. Differences in the amplitude of low-frequency fluctuations (ALFF) among the three groups were examined to identify regions showing abnormal regional spontaneous activity. A seed-based functional connectivity (FC) analysis was conducted using ALFF results as seeds and different connections were identified between regions showing abnormal local spontaneous activity and other regions. The correlation between abnormal brain function and clinical symptoms was analyzed. RESULTS Patients with MDD and SAD exhibited similar abnormal ALFF and FC in several brain regions; notably, FC between the right superior frontal gyrus (SFG) and the right posterior supramarginal gyrus (pSMG) in patients with SAD was negatively correlated with depressive symptoms. Furthermore, patients with MDD showed higher ALFF in the right SFG than HCs and those with SAD. LIMITATION Potential effects of medications, comorbidities, and data type could not be ignored. CONCLUSION MDD and SAD showed common and distinct aberrant brain function patterns at the regional and network levels. At the regional level, we found that the ALFF in the right SFG was different between patients with MDD and those with SAD. At the network level, we did not find any differences between these disorders.
Collapse
Affiliation(s)
- Junbing He
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Kurita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan.
| |
Collapse
|
4
|
Ma Y, Zou Y, Liu X, Chen T, Kemp GJ, Gong Q, Wang S. Social intelligence mediates the protective role of resting-state brain activity in the social cognition network against social anxiety. PSYCHORADIOLOGY 2024; 4:kkae009. [PMID: 38799033 PMCID: PMC11119848 DOI: 10.1093/psyrad/kkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Background Social intelligence refers to an important psychosocial skill set encompassing an array of abilities, including effective self-expression, understanding of social contexts, and acting wisely in social interactions. While there is ample evidence of its importance in various mental health outcomes, particularly social anxiety, little is known on the brain correlates underlying social intelligence and how it can mitigate social anxiety. Objective This research aims to investigate the functional neural markers of social intelligence and their relations to social anxiety. Methods Data of resting-state functional magnetic resonance imaging and behavioral measures were collected from 231 normal students aged 16 to 20 years (48% male). Whole-brain voxel-wise correlation analysis was conducted to detect the functional brain clusters related to social intelligence. Correlation and mediation analyses explored the potential role of social intelligence in the linkage of resting-state brain activities to social anxiety. Results Social intelligence was correlated with neural activities (assessed as the fractional amplitude of low-frequency fluctuations, fALFF) among two key brain clusters in the social cognition networks: negatively correlated in left superior frontal gyrus (SFG) and positively correlated in right middle temporal gyrus. Further, the left SFG fALFF was positively correlated with social anxiety; brain-personality-symptom analysis revealed that this relationship was mediated by social intelligence. Conclusion These results indicate that resting-state activities in the social cognition networks might influence a person's social anxiety via social intelligence: lower left SFG activity → higher social intelligence → lower social anxiety. These may have implication for developing neurobehavioral interventions to mitigate social anxiety.
Collapse
Affiliation(s)
- Yingqiao Ma
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zou
- Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Taolin Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
5
|
Shan X, Yan H, Li H, Liu F, Li P, Zhao J, Guo W. Abnormal regional activity in the prefrontal-limbic circuit at rest: Potential imaging markers and treatment predictors in drug-naive anxiety disorders. CNS Neurosci Ther 2024; 30:e14523. [PMID: 37990350 PMCID: PMC11017453 DOI: 10.1111/cns.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previous research has identified functional impairments within the prefrontal-limbic circuit in individuals with anxiety disorders. However, the link between these deficiencies, clinical symptoms, and responses to antipsychotic treatment is still not fully understood. This study aimed to investigate abnormal regional activity within the prefrontal-limbic circuit among drug-naive individuals diagnosed with generalized anxiety disorder (GAD) and panic disorder (PD) and to analyze changes following treatment. METHODS Resting-state magnetic resonance imaging was performed on a cohort of 118 anxiety disorder patients (64 GAD, 54 PD) and 61 healthy controls (HCs) at baseline. Among them, 52 patients with GAD and 44 patients with PD underwent a 4-week treatment regimen of paroxetine. Fractional amplitude of low-frequency fluctuation (fALFF) measurements and pattern classification techniques were employed to analyze the data in accordance with the human Brainnetome atlas. RESULTS Both patients with GAD and PD demonstrated decreased fALFF in the right cHipp subregion of the hippocampus and increased fALFF in specified subregions of the cingulate and orbitofrontal lobe. Notably, patients with PD exhibited significantly higher fALFF in the left A24cd subregion compared to patients with GAD, while other ROI subregions showed no significant variations between the two patient groups. Whole-brain analysis revealed abnormal fALFF in both patient groups, primarily in specific areas of the cingulate and parasingulate gyrus, as well as the inferior and medial orbitofrontal gyrus (OFG). Following a 4-week treatment period, specific subregions in the GAD and PD groups showed a significant decrease in fALFF. Further analysis using support vector regression indicated that fALFF measurements in the right A13 and right A24cd subregions may be predictive of treatment response among anxiety disorder patients. CONCLUSIONS Aberrant functional activity in certain subregions of the prefrontal-limbic circuit appears to be linked to the manifestation of anxiety disorders. These findings suggest potential imaging indicators for individual responses to antipsychotic treatment.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Psychiatry, Shandong Mental Health CenterShandong UniversityJinanShandongChina
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Huabing Li
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Feng Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Ping Li
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Li Q, Zhang X, Yang X, Pan N, He M, Suo X, Li X, Gong Q, Wang S. Pre-COVID resting-state brain activity in the fusiform gyrus prospectively predicts social anxiety alterations during the pandemic. J Affect Disord 2024; 344:380-388. [PMID: 37838273 DOI: 10.1016/j.jad.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Social anxiety (SA) has been linked to the coronavirus disease 2019 (COVID-19) pandemic, but the neurobiopsychological mechanisms underlying this relationship remain unclear. This study aimed to elucidate the neurofunctional markers for COVID-induced SA development and the potential role of COVID-related posttraumatic stress symptoms (PTSS) in the brain-SA alterations link. METHODS Before the COVID-19 pandemic (T1), 100 general college students underwent resting-state magnetic resonance imaging and behavioral tests. During the period of community-level outbreaks (T2), these students were re-contacted to undergo follow-up behavioral assessments. RESULTS Whole-brain correlation and prediction analyses found that pre-pandemic spontaneous neural activity (measured by fractional amplitude of low-frequency fluctuations) in the right fusiform gyrus (FG) was positively correlated to SA alterations (T2 - T1). Mediation analyses revealed that COVID-specific PTSS mediated the effects of right FG on SA alterations. LIMITATIONS The results should be interpreted carefully because only one-session neuroimaging data in a sample of normal adults were included. CONCLUSIONS The results provide evidence for neurofunctional markers of COVID-induced SA and may help develop targeted brain-based interventions that reduce SA.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Min He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
7
|
Li Q, Zhang X, Yang X, Pan N, Li X, Kemp GJ, Wang S, Gong Q. Pre-COVID brain network topology prospectively predicts social anxiety alterations during the COVID-19 pandemic. Neurobiol Stress 2023; 27:100578. [PMID: 37842018 PMCID: PMC10570707 DOI: 10.1016/j.ynstr.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
Background Social anxiety (SA) is a negative emotional response that can lead to mental health issues, which some have experienced during the coronavirus disease 2019 (COVID-19) pandemic. Little attention has been given to the neurobiological mechanisms underlying inter-individual differences in SA alterations related to COVID-19. This study aims to identify neurofunctional markers of COVID-specific SA development. Methods 110 healthy participants underwent resting-state magnetic resonance imaging and behavioral tests before the pandemic (T1, October 2019 to January 2020) and completed follow-up behavioral measurements during the pandemic (T2, February to May 2020). We constructed individual functional networks and used graph theoretical analysis to estimate their global and nodal topological properties, then used Pearson correlation and partial least squares correlations examine their associations with COVID-specific SA alterations. Results In terms of global network parameters, SA alterations (T2-T1) were negatively related to pre-pandemic brain small-worldness and normalized clustering coefficient. In terms of nodal network parameters, SA alterations were positively linked to a pronounced degree centrality pattern, encompassing both the high-level cognitive networks (dorsal attention network, cingulo-opercular task control network, default mode network, memory retrieval network, fronto-parietal task control network, and subcortical network) and low-level perceptual networks (sensory/somatomotor network, auditory network, and visual network). These findings were robust after controlling for pre-pandemic general anxiety, other stressful life events, and family socioeconomic status, as well as by treating SA alterations as categorical variables. Conclusions The individual functional network associated with SA alterations showed a disrupted topological organization with a more random state, which may shed light on the neurobiological basis of COVID-related SA changes at the network level.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China
| | - Nanfang Pan
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Song Wang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
8
|
Zhang X, Cheng B, Yang X, Suo X, Pan N, Chen T, Wang S, Gong Q. Emotional intelligence mediates the protective role of the orbitofrontal cortex spontaneous activity measured by fALFF against depressive and anxious symptoms in late adolescence. Eur Child Adolesc Psychiatry 2023; 32:1957-1967. [PMID: 35737106 DOI: 10.1007/s00787-022-02020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
As a stable personality construct, trait emotional intelligence (TEI) refers to a battery of perceived emotion-related skills that make individuals behave effectively to adapt to the environment and maintain well-being. Abundant evidence has consistently shown that TEI is important for the outcomes of many mental health issues, particularly depression and anxiety. However, the neural substrates involved in TEI and the underlying neurobehavioral mechanism of how TEI reduces depression and anxiety symptoms remain largely unknown. Herein, resting-state functional magnetic resonance imaging and a group of behavioral measures were applied to examine these questions among a large sample comprising 231 general adolescent students aged 16-20 years (52% female). Whole-brain correlation analysis and prediction analysis demonstrated that TEI was negatively linked with spontaneous activity (measured with the fractional amplitude of low-frequency fluctuations) in the bilateral medial orbitofrontal cortex (OFC), a critical site implicated in emotion-related processes. Furthermore, structural equation modeling analysis found that TEI mediated the link of OFC spontaneous activity to depressive and anxious symptoms. Collectively, the current findings present new evidence for the neurofunctional bases of TEI and suggest a potential "brain-personality-symptom" pathway for alleviating depressive and anxious symptoms among students in late adolescence.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
9
|
Li J, Yu X, Zou Y, Leng Y, Yang F, Liu B, Fan W. Altered static and dynamic intrinsic brain activity in unilateral sudden sensorineural hearing loss. Front Neurosci 2023; 17:1257729. [PMID: 37719156 PMCID: PMC10500124 DOI: 10.3389/fnins.2023.1257729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Sudden sensorineural hearing loss (SSHL) is a critical otologic emergency characterized by a rapid decline of at least 30 dB across three consecutive frequencies in the pure-tone audiogram within a 72-hour period. This audiological condition has been associated with alterations in brain cortical and subcortical structures, as well as changes in brain functional activities involving multiple networks. However, the extent of cerebral intrinsic brain activity disruption in SSHL remains poorly understood. The aimed of this study is to investigate intrinsic brain activity alterations in SSHL using static and dynamic fractional amplitude of low-frequency fluctuation (fALFF) analysis. Methods Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a cohort of SSHL patients (unilateral, n = 102) and healthy controls (n = 73). Static and dynamic fALFF methods were employed to analyze the acquired fMRI data, enabling a comprehensive examination of intrinsic brain activity changes in SSHL. Results Our analysis revealed significant differences in static fALFF patterns between SSHL patients and healthy controls. SSHL patients exhibited decreased fALFF in the left fusiform gyrus, left precentral gyrus, and right inferior frontal gyrus, alongside increased fALFF in the left inferior frontal gyrus, left superior frontal gyrus, and right middle temporal gyrus. Additionally, dynamic fALFF analysis demonstrated elevated fALFF in the right superior frontal gyrus and right middle frontal gyrus among SSHL patients. Intriguingly, we observed a positive correlation between static fALFF in the left fusiform gyrus and the duration of hearing loss, shedding light on potential temporal dynamics associated with intrinsic brain activity changes. Discussion The observed disruptions in intrinsic brain activity and temporal dynamics among SSHL patients provide valuable insights into the functional reorganization and potential compensatory mechanisms linked to hearing loss. These findings underscore the importance of understanding the underlying neural alterations in SSHL, which could pave the way for the development of targeted interventions and rehabilitation strategies aimed at optimizing SSHL management.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
10
|
Tai APL, Leung MK, Geng X, Lau WKW. Conceptualizing psychological resilience through resting-state functional MRI in a mentally healthy population: a systematic review. Front Behav Neurosci 2023; 17:1175064. [PMID: 37538200 PMCID: PMC10394620 DOI: 10.3389/fnbeh.2023.1175064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Conceptualizations and operational definitions of psychological resilience vary across resilience neuroimaging studies. Data on the neural features of resilience among healthy individuals has been scarce. Furthermore, findings from resting-state functional magnetic resonance imaging (fMRI) studies were inconsistent across studies. This systematic review summarized resting-state fMRI findings in different modalities from various operationally defined resilience in a mentally healthy population. The PubMed and MEDLINE databases were searched. Articles that focused on resting-state fMRI in relation to resilience, and published before 2022, were targeted. Orbitofrontal cortex, anterior cingulate cortex, insula and amygdala, were reported the most from the 19 included studies. Regions in emotional network was reported the most from the included studies. The involvement of regions like amygdala and orbitofrontal cortex indicated the relationships between emotional processing and resilience. No common brain regions or neural pathways were identified across studies. The emotional network appears to be studied the most in association with resilience. Matching fMRI modalities and operational definitions of resilience across studies are essential for meta-analysis.
Collapse
Affiliation(s)
- Alan P. L. Tai
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mei-Kei Leung
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, Hong Kong SAR, China
| | - Xiujuan Geng
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Way K. W. Lau
- Department of Health Sciences, The Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Zhang Y, Chen J, Gao W, Chen W, Xiao Z, Qi Y, Turel O, He Q. From fears of evaluation to social anxiety: The longitudinal relationships and neural basis in healthy young adults. Int J Clin Health Psychol 2023; 23:100345. [PMID: 36381587 PMCID: PMC9630624 DOI: 10.1016/j.ijchp.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/01/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is a common mental health problem, and its core cognitive manifestation is the persistent fear of being evaluated, including both negatively (FNE) and positively (FPE). This study aimed to examine the longitudinal relationships of FNE, FPE and SAD and explore their neural basis. METHODS Three samples were retrieved in this study. First, the data of 649 college students who completed a survey and fMRI scan were used to explore the neural basis of FNE, FPE, and SAD symptoms. Next, the data of 450 participants who completed the same survey twice were used to examine the longitudinal relationships of the variables. Finally, the overlapping of the two samples (N = 288) who completed two surveys and the fMRI scan were used to establish a brain-behavior model. RESULTS Both FNE and FPE predicted SAD, and SAD also predicted FPE. The neural signals of subregions in prefrontal cortex were correlated with the scores of FNE, FPE and SAD. Abnormal prefrontal signals influenced SAD symptoms via fears of evaluation. CONCLUSIONS Our findings explain the behavioral and neural underpinnings of social anxiety from a fear of evaluation angle. This contributes to a better theorical understanding of SAD and clinical practice.
Collapse
Affiliation(s)
- Yifei Zhang
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Junwen Chen
- Research School of Psychology, College of Health & Medicine, The Australia National University, Canberra, Australia
| | - Wei Gao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Wanting Chen
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Zhibing Xiao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Yawei Qi
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China,Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Chongqing, China,Corresponding author at: Faculty of Psychology, Southwest University, 2 Tiansheng Rd, Chongqing, 400715 China.
| |
Collapse
|
12
|
Resting state functional connectivity as a marker of internalizing disorder onset in high-risk youth. Sci Rep 2022; 12:21337. [PMID: 36494495 PMCID: PMC9734132 DOI: 10.1038/s41598-022-25805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
While research has linked alterations in functional connectivity of the default mode (DMN), cognitive control (CCN), and salience networks (SN) to depression and anxiety, little research has examined whether these alterations may be premorbid vulnerabilities. This study examined resting state functional connectivity (RSFC) of the CCN, DMN, and SN as markers of risk for developing an onset of a depressive or anxiety disorder in adolescents at high familial risk for these disorders. At baseline, 135 participants aged 11-17 completed resting-state functional magnetic resonance imaging, measures of internalizing symptoms, and diagnostic interviews to assess history of depressive and anxiety disorders. Diagnostic assessments were completed again at 9- or 18-month follow-up for 112 participants. At baseline, increased CCN connectivity to areas of the visual network, and decreased connectivity between the left SN and the precentral gyrus, predicted an increased likelihood of a new onset at follow-up. Increased connectivity between the right SN and postcentral gyrus at baseline predicted first episode onsets at follow-up. Altered connectivity between these regions may represent a risk factor for developing a clinically significant onset of an internalizing disorder. Results may have implications for understanding the neural bases of internalizing disorders for early identification and prevention efforts.
Collapse
|
13
|
Wen K, Zhao Y, Zhang F, Lui S, Kemp GJ, Gong Q. Large-scale dysfunctional white matter and grey matter networks in patients with social anxiety disorder. iScience 2022; 25:105094. [PMID: 36185352 PMCID: PMC9519591 DOI: 10.1016/j.isci.2022.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Dysfunction of large-scale brain networks has been implicated in social anxiety disorder (SAD); most work has focused on grey matter (GM) functional connectivity (FC) abnormalities, whereas white matter (WM) FC alterations remain unclear. Here, using a K-means clustering algorithm, we obtained 8 GM and 10 WM functional networks from a cohort dataset (48 SAD patients and 48 healthy controls). By calculating and comparing FC matrices between SAD group and healthy controls, we demonstrated disrupted connections between the limbic and dorsal prefrontal, lateral temporal, and sensorimotor networks, and between the visual and sensorimotor networks. Furthermore, there were negative correlations between HAMD scores and limbic-dorsal prefrontal and limbic-sensorimotor networks, and between illness duration and sensorimotor-visual networks. These findings reflect the critical role of limbic network, with its extensive connections to other networks, and the neurobiology of disordered cognition processing and emotional regulation in SAD.
Collapse
Affiliation(s)
- Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361021, China
| |
Collapse
|
14
|
Li CQ, Ge QM, Shu HY, Liao XL, Pan YC, Wu JL, Su T, Zhang LJ, Liang RB, Shao Y, Zeng EM. Investigation of Altered Spontaneous Brain Activities in Patients With Moyamoya Disease Using Percent Amplitude of Fluctuation Method: A Resting-State Functional MRI Study. Front Neurol 2022; 12:801029. [PMID: 35002939 PMCID: PMC8740316 DOI: 10.3389/fneur.2021.801029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Moyamoya disease (MMD) is a chronic progressive cerebrovascular abnormality characterized by chronic occlusion of large intracranial vessels with smoky vascular development at the base of the skull. In patients with MMD, abnormal spontaneous brain activity would be expected. Purpose: To assess the brain activity changes in patients with MMD by resting-state functional MRI (rs-fMRI), using the percent amplitude of fluctuation (PerAF) analysis method. Materials and Methods: A total of 17 patients with MMD (3 males and 14 females) and 17 healthy control (HC) subjects with matched gender and age were recruited for this study. We used rs-fMRI to scan all the patients with MMD. Spontaneous neural activity was evaluated using the PerAF approach. The receiver operating characteristic (ROC) curve analysis was used to assess the ability of the PerAF to distinguish patients with MMD from HCs. The Hospital Anxiety and Depression Scale (HADS) tests were performed to assess the emotional status of patients with MMD and retinal nerve fiber layer thickness (RNFLT) was measured using high-resolution optical coherence tomography (hr-OCT). The relationship between the HADS scores, RNFLT values, and the PerAF signals was assessed using the Pearson's correlation analysis. Results: Compared with HCs, the PerAF signals in patients with MMD were decreased in the Frontal_Sup_Medial_R and Precentral_L, whereas those in the Caudate_L were increased. The areas under the ROC curves indicated that signals in these brain regions could distinguish between patients with MMD and HCs. The PerAF value of Frontal_Sup_Medial_R was positively correlated with the left and right eye RNFLT values and negatively correlated with the HADS scores. Conclusion: In patients with MMD, reduced PerAF signals in the Frontal_Sup_Medial_R, Precentral_L, and Caudate_L may be associated with psychiatric diseases including anxiety and depression and decreased RNFLT may be associated with ophthalmic complications due to the compression of terminal branches of the internal carotid artery in the retinal fiber layer. The PerAF can be used as an effective indicator of ocular complications of MMD and to study the neural mechanism underpinning emotional complications in patients with MMD.
Collapse
Affiliation(s)
- Chu-Qi Li
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi-Cong Pan
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie-Li Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Eye Institute of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Eye Institute of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, China.,Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Li-Juan Zhang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Er-Ming Zeng
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Resting-state neuroimaging in social anxiety disorder: a systematic review. Mol Psychiatry 2022; 27:164-179. [PMID: 34035474 DOI: 10.1038/s41380-021-01154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
There has been a growing interest in resting-state brain alterations in people with social anxiety disorder. However, the evidence has been mixed and contested and further understanding of the neurobiology of this disorder may aid in informing methods to increase diagnostic accuracy and treatment targets. With this systematic review, we aimed to synthesize the findings of the neuroimaging literature on resting-state functional activity and connectivity in social anxiety disorder, and to summarize associations between brain and social anxiety symptoms to further characterize the neurobiology of the disorder. We systematically searched seven databases for empirical research studies. Thirty-five studies met the inclusion criteria, with a total of 1611 participants (795 people with social anxiety disorder and 816 controls). Studies involving resting-state seed-based functional connectivity analyses were the most common. Individuals with social anxiety disorder (vs. controls) displayed both higher and lower connectivity between frontal-amygdala and frontal-parietal regions. Frontal regions were the most consistently implicated across other analysis methods, and most associated with social anxiety symptoms. Small sample sizes and variation in the types of analyses used across studies may have contributed to the inconsistencies in the findings of this review. This review provides novel insights into established neurobiological models of social anxiety disorder and provides an update on what is known about the neurobiology of this disorder in the absence of any overt tasks (i.e., resting state). The knowledge gained from this body of research enabled us to also provide recommendations for a more standardized imaging pre-processing approach to examine resting-state brain activity and connectivity that could help advance knowledge in this field. We believe this is warranted to take the next step toward clinical translation in social anxiety disorder that may lead to better treatment outcomes by informing the identification of neurobiological targets for treatment.
Collapse
|
16
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, et alBas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Q, Wang C, Deng Q, Zhan L, Tang Y, Li H, Antwi CO, Xiang A, Lv Y, Jia X, Ren J. Alterations of regional spontaneous brain activities in anxiety disorders: A meta-analysis. J Affect Disord 2022; 296:233-240. [PMID: 34619449 DOI: 10.1016/j.jad.2021.09.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recent resting-state functional magnetic resonance imaging studies have provided strong evidence of abnormal regional spontaneous brain activities among anxiety-disordered patients. However, the evidence has been divergent and inconclusive. Therefore, it is necessary to perform a meta-analysis identifying a common pattern of altered regional spontaneous brain activity for anxiety disorders. METHOD Corresponding research of anxiety disorders, namely, whole-brain rs-fMRI studies that measured differences in regional homogeneity, amplitude of low-frequency fluctuations, or fractional amplitude of low-frequency fluctuations, were analyzed in this study. Overall, seven studies with 235 anxiety-disordered patients and 241 healthy controls were ultimately included in the meta-analysis. The meta-analysis was processed by seed-based d mapping. RESULTS Compared with healthy controls, patients with anxiety disorders showed significantly decreased regional spontaneous brain activities in the right putamen, the right orbital inferior frontal gyrus, and the right temporal pole. No increases in regional spontaneous brain activities were detected in patients relative to the controls. LIMITATION Limited number of available studies, only Asian samples, and insufficient information of sample characteristics. CONCLUSION The present study suggests that anxiety disorders are associated with aberrant regional brain activity in areas connected with emotion processing, which extends our understanding of anxiety disorders' pathophysiology.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Qiuyue Deng
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Linlin Zhan
- School of Western Language, Heilongjiang University, Heilongjiang, China
| | - Yingying Tang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Collins Opoku Antwi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Anfeng Xiang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Yating Lv
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China; Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| | - Jun Ren
- School of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
18
|
Wang S, Zhao Y, Wang X, Yang X, Cheng B, Pan N, Suo X, Gong Q. Emotional intelligence mediates the association between middle temporal gyrus gray matter volume and social anxiety in late adolescence. Eur Child Adolesc Psychiatry 2021; 30:1857-1869. [PMID: 33011842 DOI: 10.1007/s00787-020-01651-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
As a common mental health problem, social anxiety refers to the fear and avoidance of interacting in social or performance situations, which plays a crucial role in many health and social problems. Although a growing body of studies has explored the neuroanatomical alterations related to social anxiety in clinical patients, far fewer have examined the association between social anxiety and brain morphology in the general population, which may help us understand the neural underpinnings of social anxiety more comprehensively. Here, utilizing a voxel-based morphometry approach via structural magnetic resonance imaging, we investigated brain gray matter correlates of social anxiety in 231 recent graduates of the same high school grade. We found that social anxiety was positively associated with gray matter volume in the right middle temporal gyrus (MTG), which is a core brain area for cognitive processing of emotions and feelings. Critically, emotional intelligence mediated the impact of right MTG volume on social anxiety. Notably, our results persisted even when controlling for the effects of general anxiety and depression. Altogether, our research reveals right MTG gray matter volume as a neurostructural correlate of social anxiety in a general sample of adolescents and suggests a potential indirect effect of emotional intelligence on the association between gray matter volume and social anxiety.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Xiuli Wang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China. .,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Bas-Hoogendam JM, van Steenbergen H, Cohen Kadosh K, Westenberg PM, van der Wee NJA. Intrinsic functional connectivity in families genetically enriched for social anxiety disorder - an endophenotype study. EBioMedicine 2021; 69:103445. [PMID: 34161885 PMCID: PMC8237289 DOI: 10.1016/j.ebiom.2021.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is a serious psychiatric condition with a high prevalence, and a typical onset during childhood/adolescence. The condition runs in families, but it is largely unknown which neurobiological characteristics transfer this genetic vulnerability ('endophenotypes'). Using data from the Leiden Family Lab study on SAD, including two generations of families genetically enriched for SAD, we investigated whether social anxiety (SA) co-segregated with changes in intrinsic functional connectivity (iFC), and examined heritability. METHODS Functional MRI data were acquired during resting-state in 109 individuals (56 males; mean age: 31·5, range 9·2-61·5 years). FSL's tool MELODIC was used to perform independent component analysis. Six networks of interest (default mode, dorsal attention, executive control, frontoparietal, limbic and salience) were identified at the group-level and used to generate subject-specific spatial maps. Voxel-wise regression models, with SA-level as predictor and voxel-wise iFC as candidate endophenotypes, were performed to investigate the association with SA, within masks of the networks of interest. Subsequently, heritability was estimated. FINDINGS SA co-segregated with iFC within the dorsal attention network (positive association in left middle frontal gyrus and right postcentral gyrus) and frontoparietal network (positive association within left middle temporal gyrus) (cluster-forming-threshold z>2·3, cluster-corrected extent-threshold p<0·05). Furthermore, iFC of multiple voxels within these clusters was at least moderately heritable. INTERPRETATION These findings provide initial evidence for increased iFC as candidate endophenotype of SAD, particularly within networks involved in attention. These changes might underlie attentional biases commonly present in SAD. FUNDING Leiden University Research Profile 'Health, Prevention and the Human Lifecycle'.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | | | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| |
Collapse
|
20
|
Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Analysis of Default Mode Network in Social Anxiety Disorder: EEG Resting-State Effective Connectivity Study. SENSORS (BASEL, SWITZERLAND) 2021; 21:4098. [PMID: 34203578 PMCID: PMC8232236 DOI: 10.3390/s21124098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Recent brain imaging findings by using different methods (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, due to many limitations associated with these methods, such as poor temporal resolution and limited number of samples per second, neuroscientists could not quantify the fast dynamic connectivity of causal information networks in SAD. In this study, SAD-related changes in brain connections within the default mode network (DMN) were investigated using eight electroencephalographic (EEG) regions of interest. Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The DMN is a large-scale brain network basically composed of the mesial prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/precuneus, and lateral parietal cortex (LPC). The EEG data were collected from 88 subjects (22 control, 22 mild, 22 moderate, 22 severe) and used to estimate the effective connectivity between DMN regions at different frequency bands: delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), low beta (13-21 Hz), and high beta (22-30 Hz). Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta (p = 0.009) and alpha (p = 0.001) bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, HC exhibited higher resting-state connectivity at the mPFC, providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group, r (22) = 0.576, p = 0.006 and negatively correlated with those of the HC group, r (22) = -0.689, p = 0.001. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Ibrahima Faye
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Esther Gunaseli
- Psychiatry Discipline Sub Unit, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| |
Collapse
|
21
|
Chen MJ, Wu SN, Shu HY, Ge QM, Pan YC, Zhang LJ, Liang RB, Li QY, Zhang W, Shao Y. Spontaneous functional changes in specific cerebral regions in patients with hypertensive retinopathy: a resting-state functional magnetic resonance imaging study. Aging (Albany NY) 2021; 13:13166-13178. [PMID: 33972462 PMCID: PMC8148467 DOI: 10.18632/aging.202999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
This study investigated functional alterations in the cerebral network of patients with hypertensive retinopathy (HR) by resting-state functional magnetic resonance imaging (rs-fMRI) and degree centrality (DC) methods. 31 patients with HR along with 31 healthy controls (HC) closely matched in gender and age were enrolled for the research. All participants were examined by rs-fMRI, and the DC method was applied to evaluate alterations in spontaneous cerebral activity between the 2 groups. We used the independent samples t test to evaluate demographic and general information differences between HR patients and HCs. The 2-sample t test was used to compare the DC values of different cerebral regions between the 2 groups. The accuracy of differential diagnostic HR was analyzed by receiver operating characteristic (ROC) curve method for rs-fMRI DC values changes. Pearson’s correlation coefficient was applied to determine the correlation between differences in DC in specific cerebral areas and clinical manifestation. Results showed that DC values were higher in the left cerebellum posterior lobe (LCPL), left medial occipital gyrus (LMOG), and bilateral precuneus (BP) of HR patients compared to HCs. Mean DC values were lower in the right medial frontal gyrus/bilateral anterior cingulate cortex of HR patients. Anxiety and depression scores were positively correlated with DC values of LMOG and LCPL, respectively. Bilateral best-corrected visual acuity in HR patients was negatively correlated with the DC value of BP. Hence, changes in DC in specific cerebral areas of patients with HR reflect functional alterations that provide insight into the pathophysiologic mechanisms of HR.
Collapse
Affiliation(s)
- Min-Jie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Wan Zhang
- Department of Cardiovascularology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of Natural Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
22
|
Manic and euthymic states in pediatric bipolar disorder patients during an emotional Go/Nogo task: A functional magnetic resonance imaging study. J Affect Disord 2021; 282:82-90. [PMID: 33401127 DOI: 10.1016/j.jad.2020.12.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neural abnormalities in emotional response inhibition still exist in the euthymic phase of bipolar disorder (BD). Few studies on comparisons of functional magnetic resonance imaging (fMRI) manifestations between different mood phases of pediatric bipolar disorder (PBD) have ever been published. The goal of this study was to explore the differences in neural activities between manic and euthymic PBD during emotional response inhibition. METHODS Simultaneous imaging of neural activity was recorded during an emotional Go/Nogo paradigm and the effect of emotional response inhibition was analyzed. Neural activities were compared between the three groups. RESULTS In the presence of emotional versus neutral distractors, both manic and euthymic PBD subjects similarly showed widespreadly increased activities in the cognitive and emotional regulation circuits compared with healthy individuals. Compared with euthymic PBD patients, those with manic PBD exhibited increased activities in the left superior frontal gyrus. Hyperactivity in the left superior frontal, left middle frontal and right inferior frontal gyrus in manic PBD was positively associated with false response errors. CONCLUSION Increased activity in the left superior frontal gyrus may be characteristic of manic episodes in PBD patients, and such a disparity between manic and euthymic phrases may attribute to more severe emotional dysregulation.
Collapse
|
23
|
Contreras JA, Aslanyan V, Sweeney MD, Sanders LMJ, Sagare AP, Zlokovic BV, Toga AW, Han SD, Morris JC, Fagan A, Massoumzadeh P, Benzinger TL, Pa J. Functional connectivity among brain regions affected in Alzheimer's disease is associated with CSF TNF-α in APOE4 carriers. Neurobiol Aging 2020; 86:112-122. [PMID: 31870643 PMCID: PMC7205323 DOI: 10.1016/j.neurobiolaging.2019.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
It is now recognized that understanding how neuroinflammation affects brain function may provide new insights into Alzheimer's pathophysiology. Tumor necrosis factor (TNF)-α, an inflammatory cytokine marker, has been implicated in Alzheimer's disease (AD), as it can impair neuronal function through suppression of long-term potentiation. Our study investigated the relationship between cerebrospinal fluid TNF-α and functional connectivity (FC) in a cohort of 64 older adults (μ age = 69.76 years; 30 cognitively normal, 34 mild AD). Higher cerebrospinal fluid TNF-α levels were associated with lower FC among brain regions important for high-level decision-making, inhibitory control, and memory. This effect was moderated by apolipoprotein E-ε4 (APOE4) status. Graph theory metrics revealed there were significant differences between APOE4 carriers at the node level, and by diagnosis at the network level suggesting global brain network dysfunction in participants with AD. These findings suggest proinflammatory mechanisms may contribute to reduced FC in regions important for high-level cognition. Future studies are needed to understand the role of inflammation on brain function and clinical progression, especially in APOE4 carriers.
Collapse
Affiliation(s)
- Joey Annette Contreras
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Vahan Aslanyan
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Melanie D Sweeney
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Lianne M J Sanders
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA; Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Abhay P Sagare
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - S Duke Han
- Family Medicine, Neurology, Psychology, and Gerontology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University, St Louis, MO, USA
| | - Anne Fagan
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University, St Louis, MO, USA
| | - Parinaz Massoumzadeh
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Tammie L Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA; Department of Radiology and Neurological Surgery, Washington University, St. Louis, MO, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Wang S, Zhao Y, Zhang L, Wang X, Wang X, Cheng B, Luo K, Gong Q. Stress and the brain: Perceived stress mediates the impact of the superior frontal gyrus spontaneous activity on depressive symptoms in late adolescence. Hum Brain Mapp 2019; 40:4982-4993. [PMID: 31397949 DOI: 10.1002/hbm.24752] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/11/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Identifying factors for the prediction of depression is a long-standing research topic in psychiatry and psychology. Perceived stress, which reflects the tendency to appraise one's life situations as stressful and overwhelming, has emerged as a stable predictor for depressive symptoms. However, the neurobiological bases of perceived stress and how perceived stress influences depressive symptoms in the healthy brain remain largely unknown. Here, we investigated these issues in 217 healthy adolescents by estimating the fractional amplitude of low-frequency fluctuations (fALFFs) via resting-state functional magnetic resonance imaging. A whole-brain correlation analysis showed that higher levels of perceived stress were associated with greater fALFF in the left superior frontal gyrus (SFG), which is a core brain region for cognitive control and emotion regulation-related processes. Mediation analysis further indicated that perceived stress mediated the link between the fALFF in the left SFG and depressive symptoms. Importantly, our results remained significant even when excluding the influences of head motion, anxiety, SFG gray matter structure, and school environment. Altogether, our findings suggested that the fALFF in the left SFG is a neurofunctional marker of perceived stress in adolescents and revealed a potential indirect effect of perceived stress on the association between the SFG spontaneous activity and depressive symptoms.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuli Wang
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Kong F, Ma X, You X, Xiang Y. The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci 2019; 13:755-763. [PMID: 29939335 PMCID: PMC6121151 DOI: 10.1093/scan/nsy045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Psychological resilience reflects the capacity to bounce back from stress, which plays an important role in health and well-being. However, less is known about the neural substrate for psychological resilience and the underlying mechanism for how psychological resilience enhances subjective well-being in the healthy brain. To investigate these issues, we employed fractional amplitude of low-frequency fluctuations (fALFF) measured with resting-state fMRI in 100 young healthy adults. The correlation analysis found that higher psychological resilience was related to lower fALFF in the left orbitofrontal cortex (OFC), which is involved in reward-related processing and emotion regulation. Furthermore, the mediation analysis indicated that psychological resilience acted as a full mediator of the association between the fALFF in left OFC and subjective well-being indicators (i.e. life satisfaction and hedonic balance). Importantly, these results remained significant after controlling for the effect of gray matter volume and regional homogeneity in the region. Overall, the present study provides the further evidence for functional neural substrates of psychological resilience and reveals a potential mechanism that psychological resilience mediates the effect of spontaneous brain activity on subjective well-being.
Collapse
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, China
| | - Xiaosi Ma
- School of Psychology, Shaanxi Normal University, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, China
| | - Yanhui Xiang
- Department of Psychology, Hunan Normal University, China
| |
Collapse
|
26
|
Li X, Zhang M, Li K, Zou F, Wang Y, Wu X, Zhang H. The Altered Somatic Brain Network in State Anxiety. Front Psychiatry 2019; 10:465. [PMID: 31312147 PMCID: PMC6613038 DOI: 10.3389/fpsyt.2019.00465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Highly anxious individuals often show excessive emotional arousal, somatic arousal, and characteristics of mental illness. Previous researches have extensively investigated the emotional and cognitive biases of individuals with high anxiety, but overlooked the spontaneous brain activity and functional connections associated with somatic arousal. In this study, we investigated the relationship between state anxiety and the spontaneous brain activity of the somatosensory cortex in a non-clinical healthy population with state anxiety. Furthermore, we also explored the functional connections of the somatosensory cortex. We found that state anxiety was positively correlated with the amplitude of low-frequency fluctuations (ALFFs) of somatic related brain regions, including the right postcentral gyrus (somatosensory cortex) and the right precentral gyrus (somatic motor cortex). Furthermore, we found that state anxiety was positively correlated with the connections between the postcentral gyrus and the left cerebellum gyrus, whereas state anxiety was negatively correlated with the connectivity between the postcentral gyrus and brain regions including the left inferior frontal cortex and left medial superior frontal cortex. These results revealed the association between the anxious individuals' body-loop and state anxiety in a healthy population, which revealed the importance of somatic brain regions in anxiety symptoms and provided a new perspective on anxiety for further study.
Collapse
Affiliation(s)
- Xianrui Li
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Meng Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kun Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feng Zou
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Yufeng Wang
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Xin Wu
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan key Laboratory of Biological Psychiatry, Xinxiang, China
| |
Collapse
|
27
|
Xue SW, Lee TW, Guo YH. Spontaneous activity in medial orbitofrontal cortex correlates with trait anxiety in healthy male adults. J Zhejiang Univ Sci B 2018; 19:643-653. [PMID: 30070087 DOI: 10.1631/jzus.b1700481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Medial orbitofrontal cortex (mOFC) abnormalities have been observed in various anxiety disorders. However, the relationship between mOFC activity and anxiety among the healthy population has not been fully examined. Here, we conducted a resting state functional magnetic resonance imaging (R-fMRI) study with 56 healthy male adults from the Nathan Kline Institute/Rockland Sample (NKI-RS) to examine the relationship between the fractional amplitude of low-frequency fluctuation (fALFF) signals and trait anxiety across the whole brain. A Louvain method for module detection based on graph theory was further employed in the automated functional subdivision to explore subregional correlates of trait anxiety. The results showed that trait anxiety was related to fALFF in the mOFC. Additionally, the resting-state functional connectivity (RSFC) between the right subregions of the mOFC and the precuneus was correlated with trait anxiety. These findings provided evidence about the involvement of the mOFC in anxiety processing among the healthy population.
Collapse
Affiliation(s)
- Shao-Wei Xue
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou 311121, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
| | - Tien-Wen Lee
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou 311121, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China.,Department of Psychiatry, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung 43748, China
| | - Yong-Hu Guo
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou 311121, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
| |
Collapse
|
28
|
Giménez M, Guinea-Izquierdo A, Villalta-Gil V, Martínez-Zalacaín I, Segalàs C, Subirà M, Real E, Pujol J, Harrison BJ, Haro JM, Sato JR, Hoexter MQ, Cardoner N, Alonso P, Menchón JM, Soriano-Mas C. Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder. Brain Imaging Behav 2018; 11:1690-1706. [PMID: 27771857 DOI: 10.1007/s11682-016-9601-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The extent of functional abnormalities in frontal-subcortical circuits in obsessive-compulsive disorder (OCD) is still unclear. Although neuroimaging studies, in general, and resting-state functional Magnetic Resonance Imaging (rs-fMRI), in particular, have provided relevant information regarding such alterations, rs-fMRI studies have been typically limited to the analysis of between-region functional connectivity alterations at low-frequency signal fluctuations (i.e., <0.08 Hz). Conversely, the local attributes of Blood Oxygen Level Dependent (BOLD) signal across different frequency bands have been seldom studied, although they may provide valuable information. Here, we evaluated local alterations in low-frequency fluctuations across different oscillation bands in OCD. Sixty-five OCD patients and 50 healthy controls underwent an rs-fMRI assessment. Alterations in the fractional amplitude of low-frequency fluctuations (fALFF) were evaluated, voxel-wise, across four different bands (from 0.01 Hz to 0.25 Hz). OCD patients showed decreased fALFF values in medial orbitofrontal regions and increased fALFF values in the dorsal-medial prefrontal cortex (DMPFC) at frequency bands <0.08 Hz. This pattern was reversed at higher frequencies, where increased fALFF values also appeared in medial temporal lobe structures and medial thalamus. Clinical variables (i.e., symptom-specific severities) were associated with fALFF values across the different frequency bands. Our findings provide novel evidence about the nature and regional distribution of functional alterations in OCD, which should contribute to refine neurobiological models of the disorder. We suggest that the evaluation of the local attributes of BOLD signal across different frequency bands may be a sensitive approach to further characterize brain functional alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Mònica Giménez
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907, Barcelona, Spain
| | - Victoria Villalta-Gil
- Research Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, University of Barcelona, 08950, Sant Boi de Llobregat, Barcelona, Spain.,Affective Neuroscience Laboratory, Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cinto Segalàs
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain
| | - Marta Subirà
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907, Barcelona, Spain
| | - Eva Real
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain
| | - Jesús Pujol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,MRI Research Unit, Department of Radiology, Hospital del Mar, 08003, Barcelona, Spain
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, 3010, Australia
| | - Josep Maria Haro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,Research Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, University of Barcelona, 08950, Sant Boi de Llobregat, Barcelona, Spain
| | - Joao R Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, 5001, Brazil
| | - Marcelo Q Hoexter
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, 05403-903, Brazil
| | - Narcís Cardoner
- Depression and Anxiety Program, Department of Mental Health, Parc Taulí Sabadell, Hospital Universitari, 08208, Sabadell, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Barcelona, Spain
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907, Barcelona, Spain
| | - José Manuel Menchón
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907, Barcelona, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain. .,Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Barcelona, Spain.
| |
Collapse
|
29
|
Wang S, Zhao Y, Cheng B, Wang X, Yang X, Chen T, Suo X, Gong Q. The optimistic brain: Trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Hum Brain Mapp 2018; 39:3943-3955. [PMID: 29923264 DOI: 10.1002/hbm.24222] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/05/2023] Open
Abstract
As a hot research topic in the field of psychology and psychiatry, trait optimism reflects the tendency to expect positive outcomes in the future. Consistent evidence has demonstrated the role of trait optimism in reducing anxiety among different populations. However, less is known about the neural bases of trait optimism and the underlying mechanisms for how trait optimism protects against anxiety in the healthy brain. In this investigation, we examined these issues in 231 healthy adolescent students by assessing resting-state brain activity (i.e., fractional amplitude of low-frequency fluctuations, fALFF) and connectivity (i.e., resting-state functional connectivity, RSFC). Whole-brain correlation analyses revealed that higher levels of trait optimism were linked with decreased fALFF in the right orbitofrontal cortex (OFC) and increased RSFC between the right OFC and left supplementary motor cortex (SMC). Mediation analyses further showed that trait optimism mediated the influence of the right OFC activity and the OFC-SMC connectivity on anxiety. Our results remained significant even after excluding the impact of head motion, positive and negative affect and depression. Taken together, this study reveals that fALFF and RSFC are functional neural markers of trait optimism and provides a brain-personality-symptom pathway for protection against anxiety in which fALFF and RSFC affect anxiety through trait optimism.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiuli Wang
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China
| | - Xun Yang
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China.,Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Precuneus-related regional and network functional deficits in social anxiety disorder: A resting-state functional MRI study. Compr Psychiatry 2018; 82:22-29. [PMID: 29367059 DOI: 10.1016/j.comppsych.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/05/2017] [Accepted: 12/10/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neuroimaging findings suggest that social anxiety disorder (SAD) may be correlated with changes in regional- or network-level brain function. However, few studies have explored alterations in intrinsic resting cerebral function in patients with SAD at both the regional and network levels, particularly focusing on the theory of mind (ToM)-related regions. This study was performed to investigate changes in neural activity and functional connectivity (FC) in ToM-related regions during the resting state in SAD patients and to determine how these alterations are correlated with the clinical symptoms of SAD. METHODS Forty-three SAD patients and 43 matched healthy controls underwent resting-state functional magnetic resonance imaging (rsfMRI) scans. First, the amplitude of low-frequency fluctuation (ALFF) approach was used to explore regional activity. Then, the ToM-related region, i.e., the left precuneus, which showed altered ALFF values, was adopted as a seed for further FC analyses to assess network-level alterations in SAD. Between-group differences were compared using voxel-based two-sample t-tests (P<0.05, with Gaussian random field correction). Pearson's correlation analyses were performed to examine relationships between alterations in ALFF and FC and clinical symptoms. RESULTS Compared with the healthy controls, SAD patients showed decreased ALFF in the bilateral putamen (PUT) and left supplementary motor area (SMA) and increased ALFF in the right inferior parietal lobule (IPL), left precuneus and right cerebellar posterior lobe. Moreover, SAD patients exhibited lower connectivity between the left precuneus and the cerebellar posterior lobe, right inferior temporal gyrus (ITG), right parahippocampal gyrus (PHG) and left medial prefrontal cortex (mPFC). The altered ALFF values in the left precuneus and the hypoconnectivity between the left precuneus and left cerebellar posterior lobe were correlated with the patients' clinical symptoms (P<0.05). CONCLUSION The precuneus, a ToM-related region, was altered at both the regional and network level in patients with SAD. Pathological fear and avoidance in SAD were correlated with abnormal regional function in the precuneus, whereas depression and anxiety were primarily correlated with functional deficits in the precuneus-related network. The altered FC within the precuneus-cerebellar region may reflect an imbalance in the neuromodulation of anxiety and depressive symptoms in SAD. These findings may facilitate a greater understanding of potential SAD neural substrates and could be used to identify potential targets for further treatment.
Collapse
|
31
|
Zhang P, Wang J, Xu Q, Song Z, Dai J, Wang J. Altered functional connectivity in post-ischemic stroke depression: A resting-state functional magnetic resonance imaging study. Eur J Radiol 2018; 100:156-165. [DOI: 10.1016/j.ejrad.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
32
|
Yuan M, Zhu H, Qiu C, Meng Y, Zhang Y, Ren Z, Li Y, Yuan C, Gao M, Lui S, Gong Q, Zhang W. Altered regional and integrated resting-state brain activity in general social anxiety disorder patients before and after group cognitive behavior therapy. Psychiatry Res Neuroimaging 2018; 272:30-37. [PMID: 29275125 DOI: 10.1016/j.pscychresns.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/26/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
We aimed to investigate the recovery neuromechanism underlying the treatment efficacy in generalized social anxiety disorder (GSAD). We recruited fifteen patients with GSAD and nineteen healthy control (HC) participants, all of whom underwent a baseline resting-state fMRI scan. The GSAD patients underwent an additional fMRI scan after group cognitive behavior therapy (GCBT). Amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) measures were used to examine altered regional and integrated spontaneous brain activity in group comparisons. After GCBT, ALFF of the right precuneus decreased. At baseline, the GSAD group showed higher ALFF in the left precuneus and the left middle temporal gyrus (MTG) and lower ALFF in the lingual gyrus compared with the HC group. The DC of the left precuneus and the MTG were attenuated and the right putamen increased in the post-treatment group. The changes in DC in the precuneus were positively correlated with changes in clinical symptom. The abnormal ALFF of the precuneus, MTG and lingual gyrus may be the neural underpinning of GSAD, whereas the neural response to symptom remission after GCBT was achieved by a rebalance within the default mode network.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengjia Ren
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Cui Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Gao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Wang X, Cheng B, Luo Q, Qiu L, Wang S. Gray Matter Structural Alterations in Social Anxiety Disorder: A Voxel-Based Meta-Analysis. Front Psychiatry 2018; 9:449. [PMID: 30298028 PMCID: PMC6160565 DOI: 10.3389/fpsyt.2018.00449] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
The current insight into the neurobiological pathogenesis underlying social anxiety disorder (SAD) is still rather limited. We implemented a meta-analysis to explore the neuroanatomical basis of SAD. We undertook a systematic search of studies comparing gray matter volume (GMV) differences between SAD patients and healthy controls (HC) using a whole-brain voxel-based morphometry (VBM) approach. The anisotropic effect size version of seed-based d mapping (AES-SDM) meta-analysis was conducted to explore the GMV differences of SAD patients compared with HC. We included eleven studies with 470 SAD patients and 522 HC in the current meta-analysis. In the main meta-analysis, relative to HC, SAD patients showed larger GMVs in the left precuneus, right middle occipital gyrus (MOG) and supplementary motor area (SMA), as well as smaller GMV in the left putamen. In the subgroup analyses, compared with controls, adult patients (age ≥ 18 years) with SAD exhibited larger GMVs in the left precuneus, right superior frontal gyrus (SFG), angular gyrus, middle temporal gyrus (MTG), MOG and SMA, as well as a smaller GMV in the left thalamus; SAD patients without comorbid depressive disorder exhibited larger GMVs in the left superior parietal gyrus and precuneus, right inferior temporal gyrus, fusiform gyrus, MTG and superior temporal gyrus (STG), as well as a smaller GMV in the bilateral thalami; and currently drug-free patients with SAD exhibited a smaller GMV in the left thalamus compared with HC while no larger GMVs were found. For SAD patients with different clinical features, our study revealed directionally consistent larger cortical GMVs and smaller subcortical GMVs, including locationally consistent larger precuneus and thalamic deficits in the left brain. Age, comorbid depressive disorder and concomitant medication use of the patients might be potential confounders of SAD at the neuroanatomical level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Qiang Luo
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China
| | - Song Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China.,Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Wang S, Zhou M, Chen T, Yang X, Chen G, Wang M, Gong Q. Grit and the brain: spontaneous activity of the dorsomedial prefrontal cortex mediates the relationship between the trait grit and academic performance. Soc Cogn Affect Neurosci 2017; 12:452-460. [PMID: 27672175 PMCID: PMC5390743 DOI: 10.1093/scan/nsw145] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 02/05/2023] Open
Abstract
As a personality trait, grit involves the tendency to strive to achieve long-term goals with continual passion and perseverance and plays an extremely crucial role in personal achievement. However, the neural mechanisms of grit remain largely unknown. In this study, we aimed to explore the association between grit and the fractional amplitude of low-frequency fluctuations (fALFF) in 217 healthy adolescent students using resting-state functional magnetic resonance imaging (RS-fMRI). We found that an individual’s grit was negatively related to the regional fALFF in the right dorsomedial prefrontal cortex (DMPFC), which is involved in self-regulation, planning, goal setting and maintenance, and counterfactual thinking for reflecting on past failures. The results persisted even after the effects of general intelligence and the ‘big five’ personality traits were adjusted for. More importantly, the fALFF of the right DMPFC played a mediating role in the association between grit and academic performance. Overall, these findings reveal regional fALFF as a neural basis of grit and highlight the right DMPFC as a neural link between grit and academic performance.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ming Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xun Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Hope and the brain: Trait hope mediates the protective role of medial orbitofrontal cortex spontaneous activity against anxiety. Neuroimage 2017; 157:439-447. [PMID: 28559191 DOI: 10.1016/j.neuroimage.2017.05.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
|
36
|
Yun JY, Kim JC, Ku J, Shin JE, Kim JJ, Choi SH. The left middle temporal gyrus in the middle of an impaired social-affective communication network in social anxiety disorder. J Affect Disord 2017; 214:53-59. [PMID: 28266321 DOI: 10.1016/j.jad.2017.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies on patients diagnosed with social anxiety disorder (SAD) reported changed patterns of the resting-state functional connectivity network (rs-FCN) between the prefrontal cortices and other prefrontal, amygdalar or striatal regions. Using a graph theory approach, this study explored the modularity-based community profile and patterns of inter-/intra-modular communication for the rs-FCN in SAD. METHODS In total, for 28 SAD patients and 27 healthy controls (HC), functional magnetic resonance imaging (fMRI) data were acquired in resting-state and subjected to a graph theory analysis. RESULTS The within-module degree z-score for a hub region [out of a total of 10 hub regions ranked using the participation coefficient] named left middle temporal gyrus was impaired in SAD compared to HC, proportional to the severity of clinician-scored and patient-reported functional impairment in SAD. LIMITATIONS Most of participants included in this study were undergraduate students in their early-to-mid 20's. CONCLUSIONS This study showed the importance of functional communication from the left middle temporal gyrus with other opercular-insular-subcortical regions for better objective functioning and lesser subjective disability in SAD.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Chang Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Ku
- Department of Biomedical Engineering, Keimyung University, Daegu, Republic of Korea
| | - Jung-Eun Shin
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine and Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|