1
|
Zhao W, Hong SY, Kim JY, Om AS. Effects of temperature, pH, and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biol 2024; 128:1885-1897. [PMID: 38876541 DOI: 10.1016/j.funbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.
Collapse
Affiliation(s)
- Wencai Zhao
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sung-Yong Hong
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Roumani F, Barros-Velázquez J, Garrido-Maestu A, Prado M. Real-time PCR, and Recombinase Polymerase Amplification combined with SYBR Green I for naked-eye detection, along with Propidium Monoazide (PMA) for the detection of viable patulin-producing fungi in apples and by-products. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
da Silva Lima G, Franco Dos Santos G, Ramalho RRF, de Aguiar DVA, Roque JV, Maciel LIL, Simas RC, Pereira I, Vaz BG. Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food Chem 2022; 373:131490. [PMID: 34743054 DOI: 10.1016/j.foodchem.2021.131490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
This work describes the use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) to investigate the diffusion of the mycotoxin patulin from rotten to healthy areas of fruits. Slices of mold-infected and uninfected (control) apples and strawberries were prepared, and this was the only sample preparation step used. An infrared laser beam (2.94 μm) was used to irradiate the slices, resulting in the ablation of sample compounds directly ionized by electrospray and analyzed by mass spectrometry. Multivariate curve resolution - alternating least squares was applied in unfolded LAESI images to obtain relative quantity information. Patulin was not detected in the control samples but was seen in all mold-infected fruits. LAESI images showed the diffusion of patulin from the rotten area to unaffected parts of the fruits. This study points out the advantage of LAESI imaging over traditional analytical methods used to study the diffusion of mycotoxins in fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| |
Collapse
|
4
|
Maor U, Barda O, Sadhasivam S, Bi Y, Zakin V, Prusky DB, Sionov E. Host Factors Modulating Ochratoxin A Biosynthesis during Fruit Colonization by Aspergillus carbonarius. J Fungi (Basel) 2020; 7:10. [PMID: 33379151 PMCID: PMC7823970 DOI: 10.3390/jof7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Aspergillus carbonarius is a strong and consistent ochratoxin A (OTA) producer and considered to be the main source of this toxic metabolite in grapes and grape products such as wine, grape juice and dried vine fruit. OTA is produced under certain growth conditions and its accumulation is affected by several environmental factors, such as growth phase, substrate, temperature, water activity and pH. In this study, we examined the impact of fruit host factors on regulation and accumulation of OTA in colonized grape berries, and assessed in vitro the impact of those factors on the transcriptional levels of the key genes and global regulators contributing to fungal colonization and mycotoxin synthesis. We found that limited sugar content, low pH levels and high malic acid concentrations activated OTA biosynthesis by A. carbonarius, both in synthetic media and during fruit colonization, through modulation of global regulator of secondary metabolism, laeA and OTA gene cluster expression. These findings indicate that fruit host factors may have a significant impact on the capability of A. carbonarius to produce and accumulate OTA in grapes.
Collapse
Affiliation(s)
- Uriel Maor
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Omer Barda
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Varda Zakin
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Dov B. Prusky
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| |
Collapse
|
5
|
Zheng X, Wei W, Zhou W, Li H, Rao S, Gao L, Yang Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res Int 2020; 140:110034. [PMID: 33648261 DOI: 10.1016/j.foodres.2020.110034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Patulin-producing fungi pose an unavoidable problem for apple and its product quality, thereby threatening human and/or animal health. Studies on controlling the patulin-producing fungal growth and patulin contamination in apple and its products by physical methods, chemical fungicides, and biological methods have been performed for decades, but patulin contamination has not been addressed. Here, the important of studying regulation mechanism of patulin production in apple at the protein expression and metabolism levels is proposed, which will facilitate the development of controlling patulin production by using physical, chemical, and biological methods. Furthermore, the advantages or disadvantages and effects or mechanisms of using physical, chemical, biological methods to control the decay caused by Penicillium expansum and to remove patulin in food was discussed. The development of physical methods to remove patulin depends on the development of special equipment. Chemical methods are economical and efficient, if we have ensured that there are no unknown reactions or toxic by-products by using these chemicals. The biological method not only effectively controls the decay caused by Penicillium espansum, but also removes the toxins that already exist in the food. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method to remove patulin in food if the microorganisms used and the degradation products are completely non-toxic.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanning Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
6
|
Hussain S, Asi MR, Iqbal M, Akhtar M, Imran M, Ariño A. Surveillance of Patulin in Apple, Grapes, Juices and Value-Added Products for Sale in Pakistan. Foods 2020; 9:E1744. [PMID: 33255986 PMCID: PMC7761417 DOI: 10.3390/foods9121744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023] Open
Abstract
The prime objective of the current study was to investigate the occurrence of mycotoxin patulin (PAT) in apples, grapes and their value added products. PAT was determined by a validated method based on HPLC with UV detector. A total of 381 samples comprising apple and grape fruits (n = 133 each), apple-based products (n = 76, juice, puree, jam) and grape juice (n = 39) were analyzed. PAT was found in 58.9% samples of apple and apple-based products, with a mean of 49.8 µg/kg (maximum 396 µg/kg), while 27.3% samples contained PAT beyond the maximum regulatory limit of 50 µg/kg. The average levels of PAT contamination in apple-derived products was higher in apple juice concentrate, followed by apple puree, apple juice and apple jam. The incidence of PAT in table grapes was 65.1%, with a mean of 53.9 µg/kg (maximum 505 µg/kg), whereas 23.8% exceeded the maximum level. Among the fruit samples, there were differences in PAT contents due to apple variety (6 types) or grape variety (8 types), as well as for sampling location. Our investigations showed the wide PAT occurrence in fruits and derived value-added products affecting consumer product safety, so that the population is chronically exposed to this toxin.
Collapse
Affiliation(s)
- Shabbir Hussain
- Food Toxicology Laboratory, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
- Central Analytical Facility Division (CAFD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), P. O. Nilore, Islamabad 45650, Pakistan
| | - Muhammad Rafique Asi
- Food Toxicology Laboratory, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Muhammad Akhtar
- Soil & Environmental Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Jhang Road, Faisalabad 38000, Pakistan; (M.A.); (M.I.)
| | - Muhammad Imran
- Soil & Environmental Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Jhang Road, Faisalabad 38000, Pakistan; (M.A.); (M.I.)
| | - Agustín Ariño
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Guo C, Han L, Guo M, Li M, Yu L, Yang Y. Synthesis of triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin and its adsorption application for removal of patulin from apple juice. J Food Sci 2020; 85:1371-1379. [PMID: 32237092 DOI: 10.1111/1750-3841.15112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
In this study, triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin (TETA-WICF/MCR) was firstly prepared, which indicates novel aspects for immobilization and chemically modification of mycotoxin adsorbents. The TETA-WICF/MCR was characterized using zoom stereo microscope, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometer (XRD), and magnetic separation performance analysis. Experimental results confirmed successful layer by layer modification of chitosan, biosorbent water-insoluble corn flour (WICF), TETA onto the surface of magnetic beads. The mean diameter of the TETA-WICF/MCR was 2.63 mm with good magnetic-responsive ability. Subsequently, the adsorption performance of the TETA-WICF/MCR obtained toward patulin was assessed in batch adsorption system and the results demonstrated that the adsorption process was strongly depended on adsorbent dosage, contact time, temperature, and initial patulin concentration. The results of SEM images and FTIR analysis showed obvious changes in the porous structure of TETA-WICF/MCR after adsorbing patulin, and -NH2 and -OH groups were predominantly involved in the adsorption of patulin. Furthermore, the adsorption kinetics followed the mechanism of pseudo-second-order model, and equilibrium data were well fitted in the Freundlich isotherm model. It was also found that the TETA-WICF/MCR had good reusability without any adverse changes in apple juice. PRACTICAL APPLICATION: Patulin is a regulated toxin biosynthesized by certain fungi that contaminate agricultural commodities, such as fruits, juices, and other beverages. Several approaches have been studied to reduce patulin levels in apple juice and other aqueous systems. There is need for more low-cost and eco-friendly adsorbent capable of detoxifying patulin contaminated. In this sense, triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin (TETA-WICF/MCR) was first prepared and exhibits easy solid-liquid separation and high adsorption capacity for removing patulin from contaminated apple juice.
Collapse
Affiliation(s)
- Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li Han
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Meng Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Meiping Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
8
|
Adsorption properties of magnetic carbon nanotubes for patulin removal from aqueous solution systems. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Przybylska A, Bazylak G, Kosicki R, Altyn I, Twaruzek M, Grajewski J, Soltys-Lelek A. Advantageous Extraction, Cleanup, and UHPLC-MS/MS Detection of Patulin Mycotoxin in Dietary Supplements and Herbal Blends Containing Hawberry from Crataegus spp. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2159097. [PMID: 30881725 PMCID: PMC6381574 DOI: 10.1155/2019/2159097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/21/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Patulin (PAT) is a highly genotoxic mycotoxin still found as the common contaminant of various kinds of spoiled fruits and related commodities which are often endorsed as the health-enhancing products. Thus, a fast and convenient liquid-solid extraction followed by a solid-phase cleanup with the MycoSep®228 AflaPat multifunctional column was used for the highly efficient isolation of PAT with an average recovery of 112.7% from commercial dietary supplements and herbal blends formulated with dried hawberry. Analysis of the PAT content was carried out using gradient elution with a Synergi Polar C18 column (150 × 2 mm, 4 μm) and UHPLC system equipped with a mass spectrometer. PAT was detected in all (n=14) commercial single-component dietary supplements formulated with dried hawberry belonging to Crataegus monogyna and/or Crataegus laevigata. Similarly, PAT was detected in 67% of the studied multicomponent commercial herbal blends (n=6) that contained-in addition to hawberry-different amounts of apple, chokeberry, elderberry, hibiscus, or mallow. Moreover, the PAT content was determined in the hawberry collected from the mature wild hawthorn trees belonging to three botanical species, Crataegus monogyna Jacq., Crataegus laevigata (Poiret) DC, and Crataegus rhipidophylla Gand, growing in the recreational forest areas and in the law-protected state national forest park in Poland. In conclusion, to prevent PAT accumulation and reduce the health risk of consumers in globalizing markets, the implementation of improved cultivation/processing practices of hawthorn trees and hawberry as well as increased analytical control related to the presence of PAT in dietary supplements and herbal blends formulated with fresh, dried, or frozen hawberry should be urgently recommended.
Collapse
Affiliation(s)
- Anna Przybylska
- Department of Pharmaco-Bromatology and Molecular Nutrition, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13, PL-85067 Bydgoszcz, Poland
| | - Grzegorz Bazylak
- Department of Pharmaco-Bromatology and Molecular Nutrition, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13, PL-85067 Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Iwona Altyn
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Magdalena Twaruzek
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Jan Grajewski
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | | |
Collapse
|
10
|
Erdoğan A, Ghimire D, Gürses M, Çetin B, BARAN A. Meyve Sularında Patulin Kirlenmesi ve Kontrol Önlemleri. ACTA ACUST UNITED AC 2018. [DOI: 10.31590/ejosat.434750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
12
|
Touhami N, Soukup ST, Schmidt-Heydt M, Kulling SE, Geisen R. Citrinin as an accessory establishment factor of P. expansum for the colonization of apples. Int J Food Microbiol 2018; 266:224-233. [DOI: 10.1016/j.ijfoodmicro.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
13
|
Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens? Toxins (Basel) 2017; 9:toxins9090280. [PMID: 28895896 PMCID: PMC5618213 DOI: 10.3390/toxins9090280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/02/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023] Open
Abstract
Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit.
Collapse
|
14
|
Tannous J, Keller NP, Atoui A, El Khoury A, Lteif R, Oswald IP, Puel O. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research. Crit Rev Food Sci Nutr 2017; 58:2082-2098. [DOI: 10.1080/10408398.2017.1305945] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Atoui
- Laboratory of Microorganisms and Food Irradiation, Lebanese Atomic Energy Commission-CNRS, Riad El Solh, Beirut, Lebanon
- Laboratory of Microbiology, Department of Biology, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - André El Khoury
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Roger Lteif
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
15
|
Piletska EV, Pink D, Karim K, Piletsky SA. Development of a computationally-designed polymeric adsorbent specific for mycotoxin patulin. Analyst 2017; 142:4678-4683. [DOI: 10.1039/c7an01294b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed bespoke polymer demonstrates a quantitative binding towards the patulin present in undiluted apple juice using conventional chromatography methods.
Collapse
Affiliation(s)
- Elena V. Piletska
- Leicester Biotechnology Group
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- University Road
| | - Demi Pink
- Leicester Biotechnology Group
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- University Road
| | - Kal Karim
- Leicester Biotechnology Group
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- University Road
| | - Sergey A. Piletsky
- Leicester Biotechnology Group
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- University Road
| |
Collapse
|
16
|
Tannous J, Atoui A, El Khoury A, Francis Z, Oswald IP, Puel O, Lteif R. A study on the physicochemical parameters for Penicillium expansum growth and patulin production: effect of temperature, pH, and water activity. Food Sci Nutr 2016; 4:611-22. [PMID: 27386110 PMCID: PMC4930504 DOI: 10.1002/fsn3.324] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022] Open
Abstract
Penicillium expansum is among the most ubiquitous fungi disseminated worldwide, that could threaten the fruit sector by secreting patulin, a toxic secondary metabolite. Nevertheless, we lack sufficient data regarding the growth and the toxigenesis conditions of this species. This work enables a clear differentiation between the favorable conditions to the P. expansum growth and those promising for patulin production. A mathematical model allowing the estimation of the P. expansum growth rate according to temperature, a W, and pH, was also developed. An optimal growth rate of 0.92 cm/day was predicted at 24°C with pH level of 5.1 and high a W level of 0.99. The model's predictive capability was tested successfully on artificial contaminated apples. This model could be exploited by apple growers and the industrialists of fruit juices in order to predict the development of P. expansum during storage and apple processing.
Collapse
Affiliation(s)
- Joanna Tannous
- Unité de Technologie et Valorisation AlimentaireCentre d'Analyses et de RechercheUniversité Saint‐JosephCampus des Sciences et TechnologiesMar Roukos, Mkallès, P.O Box 11‐ 514, Riad El Solh1107 2050BeirutLebanon
- Research Centre in Food ToxicologyINRAUMR 1331 Toxalim180 Chemin de TournefeuilleF‐31027Toulouse CedexFrance
- Université de Toulouse IIIENVTINPUMR 1331ToxalimF‐31076ToulouseFrance
| | - Ali Atoui
- Laboratory of Microorganisms and Food IrradiationLebanese Atomic Energy Commission‐CNRSP.O. Box 11‐8281, Riad El Solh1107 2260BeirutLebanon
- Department of BiologyFaculty of SciencesLaboratory of MicrobiologyLebanese UniversityHadath CampusBeirutLebanon
| | - André El Khoury
- Unité de Technologie et Valorisation AlimentaireCentre d'Analyses et de RechercheUniversité Saint‐JosephCampus des Sciences et TechnologiesMar Roukos, Mkallès, P.O Box 11‐ 514, Riad El Solh1107 2050BeirutLebanon
| | - Ziad Francis
- Unité de Technologie et Valorisation AlimentaireCentre d'Analyses et de RechercheUniversité Saint‐JosephCampus des Sciences et TechnologiesMar Roukos, Mkallès, P.O Box 11‐ 514, Riad El Solh1107 2050BeirutLebanon
| | - Isabelle P. Oswald
- Research Centre in Food ToxicologyINRAUMR 1331 Toxalim180 Chemin de TournefeuilleF‐31027Toulouse CedexFrance
- Université de Toulouse IIIENVTINPUMR 1331ToxalimF‐31076ToulouseFrance
| | - Olivier Puel
- Research Centre in Food ToxicologyINRAUMR 1331 Toxalim180 Chemin de TournefeuilleF‐31027Toulouse CedexFrance
- Université de Toulouse IIIENVTINPUMR 1331ToxalimF‐31076ToulouseFrance
| | - Roger Lteif
- Unité de Technologie et Valorisation AlimentaireCentre d'Analyses et de RechercheUniversité Saint‐JosephCampus des Sciences et TechnologiesMar Roukos, Mkallès, P.O Box 11‐ 514, Riad El Solh1107 2050BeirutLebanon
| |
Collapse
|
17
|
De Clercq N, Vlaemynck G, Van Pamel E, Colman D, Heyndrickx M, Van Hove F, De Meulenaer B, Devlieghere F, Van Coillie E. Patulin production by Penicillium expansum isolates from apples during different steps of long-term storage. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Penicillium expansum is the principal cause of blue mould rot and associated production of patulin, a weak mycotoxin, in apples worldwide. P. expansum growth and patulin production is observed during improper or long-term storage of apples. We have investigated the extent to which each successive step during long-term storage contributes to patulin production in various P. expansum isolates. Fungal isolates collected on apples from several Belgian orchards/industries were identified to species level. Random amplification of polymorphic DNA (RAPD) analysis and β-tubulin gene sequencing identified P. expansum and Penicillium solitum as the most prevalent Penicillium species associated with Belgian apples. All 27 P. expansum isolates and eight reference strains were characterised for their patulin production capacity on apple puree agar medium for five days under classical constant temperature and atmosphere conditions. Under these conditions, a large range of patulin production levels was observed. Based on this phenotypic diversity, five P. expansum isolates and one reference strain were selected for in vitro investigation of patulin production under representative conditions in each step of long-term apple storage. Patulin accumulation seemed highly strain dependent and no significant differences between the storage steps were observed. The results also indicated that a high spore inoculum may lead to a strong patulin accumulation even at cold temperatures (1 °C) combined with controlled atmosphere (CA) (3% O2, 1% CO2), suggesting that future control strategies may benefit from considering the duration of storage under CA conditions as well as duration of deck storage.
Collapse
Affiliation(s)
- N. De Clercq
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - G. Vlaemynck
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E. Van Pamel
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - D. Colman
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Chemistry and Human Nutrition, Coupure Links 653, 9000 Gent, Belgium
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Coupure Links 653, 9000 Gent, Belgium
| | - M. Heyndrickx
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology, and Poultry Diseases, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F. Van Hove
- Université Catholique de Louvain, Earth and Life Institute (ELI), Applied Microbiology (ELIM), Mycothèque de l’ Université Catholique de Louvain (BCCM™/MUCL), Croix du Sud 2, bte L7.05.06, 1348 Louvain-la-Neuve, Belgium
| | - B. De Meulenaer
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Chemistry and Human Nutrition, Coupure Links 653, 9000 Gent, Belgium
| | - F. Devlieghere
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Coupure Links 653, 9000 Gent, Belgium
| | - E. Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
18
|
|
19
|
De Clercq N, Vlaemynck G, Van Pamel E, Van Weyenberg S, Herman L, Devlieghere F, De Meulenaer B, Van Coillie E. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere. Int J Food Microbiol 2016; 220:50-7. [PMID: 26788884 DOI: 10.1016/j.ijfoodmicro.2016.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022]
Abstract
Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in food.
Collapse
Affiliation(s)
- N De Clercq
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - G Vlaemynck
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E Van Pamel
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - S Van Weyenberg
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - L Herman
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - F Devlieghere
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, member of Food2Know, Coupure Links 653, 9000 Gent, Belgium
| | - B De Meulenaer
- Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), member of Food2Know, Coupure Links 653, 9000 Gent, Belgium
| | - E Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
20
|
Tannous J, Atoui A, El Khoury A, Kantar S, Chdid N, Oswald IP, Puel O, Lteif R. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiol 2015; 50:28-37. [PMID: 25998812 DOI: 10.1016/j.fm.2015.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/19/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a real-time PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R(2) = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control.
Collapse
Affiliation(s)
- Joanna Tannous
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon; INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Ali Atoui
- Laboratory of Microorganisms and Food Irradiation, Lebanese Atomic Energy Commission-CNRS, P.O. Box 11-8281, Riad El Solh, 1107 2260 Beirut, Lebanon.
| | - André El Khoury
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Sally Kantar
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Nader Chdid
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Isabelle P Oswald
- INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Olivier Puel
- INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Roger Lteif
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| |
Collapse
|
21
|
Effects of Aliphatic Aldehydes on the Growth and Patulin Production ofPenicillium expansumin Apple Juice. Biosci Biotechnol Biochem 2014; 77:138-44. [DOI: 10.1271/bbb.120629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
de Cássia Martins Salomão B, Muller C, do Amparo HC, de Aragão GMF. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process. Braz J Microbiol 2014; 45:49-58. [PMID: 24948913 PMCID: PMC4059325 DOI: 10.1590/s1517-83822014000100008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.
Collapse
Affiliation(s)
| | - Chalana Muller
- Núcleo de BiotecnologiaUniversidade do Oeste de Santa CatarinaVideiraSCBrazil
| | | | | |
Collapse
|
23
|
Yue T, Guo C, Yuan Y, Wang Z, Luo Y, Wang L. Adsorptive removal of patulin from apple juice using Ca-alginate-activated carbon beads. J Food Sci 2013; 78:T1629-T1635. [PMID: 24032606 DOI: 10.1111/1750-3841.12254] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the adsorption of patulin from apple juice by Ca-alginate-activated carbon (Ca-alginate-AC) beads. The capacity of patulin was determined by high-performance liquid chromatography. The results showed that Ca-alginate-AC beads have significant ability to reduce patulin from contaminated apple juice. Furthermore, the adsorption process did not affect the quality of apple juice. The effects of contact time, initial patulin concentration, adsorbent dose, and temperature were assessed. The removal percentage of patulin increased with contact time, adsorbent dose, and temperature. A reduction was also noted to bind patulin at increased levels of contamination. The equilibrium data were fitted to Langmuir, Freundlich, and Temkin isotherm models and the isotherm constants were calculated at different temperatures. The adsorption equilibrium was best described by the Freundlich isotherm (R(2) > 0.990). The pseudo 1st-order model was found to describe the kinetic data satisfactorily. Thermodynamic parameters such as standard Gibbs free energy (ΔG◦◦), standard enthalpy (ΔH◦), and standard entropy (ΔS◦) were evaluated. The results showed that the adsorption was spontaneous and endothermic nature.
Collapse
Affiliation(s)
- Tianli Yue
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Caixia Guo
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China.,Shanxi Univ., College of Life Science and Technology, Taiyuan 030006, China
| | - Yahong Yuan
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Zhouli Wang
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Ying Luo
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Ling Wang
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| |
Collapse
|
24
|
Assatarakul K, Churey JJ, Manns DC, Worobo RW. Patulin reduction in apple juice from concentrate by UV radiation and comparison of kinetic degradation models between apple juice and apple cider. J Food Prot 2012; 75:717-24. [PMID: 22488060 DOI: 10.4315/0362-028x.jfp-11-429] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patulin, a mycotoxin produced by several genera of fungi, including Byssochlamys, Aspergillus, and Penicillium, has been an important concern in apple cider and apple juice due to its toxicity and health consequences. In this study, the effects of UV on the patulin level, physical and chemical properties, and sensory attributes in apple juice from concentrate were investigated. Kinetic modeling of patulin reduction by UV radiation in apple juice from concentrate was calculated and compared with the degradation rate observed previously in apple cider. From an initial patulin contamination of approximately 1,000 ppb (μg/liter), the UV exposure, ranging from 14.2 mJ/cm(2) (one pass) to 99.4 mJ/cm(2) (seven passes), was successful in reducing patulin levels by 72.57% ± 2.76% to 5.14% ± 0.70%, respectively. Patulin reduction by UV radiation followed first-order kinetic modeling in a fashion similar to first-order microbial inactivation. An exponential correlation between UV exposure and the percentage of patulin remaining was observed, giving an r(2) value of 0.9950. Apple juice was repeatedly exposed to 14.2 mJ/cm(2) for each treatment, and patulin levels were significantly decreased when compared with the level obtained with the previous UV exposure treatment. While there were no significant differences in the percentages of titratable acidity and ascorbic acid (P > 0.05), there were minor yet random sampling differences in pH and degrees Brix (1 °Brix is 1 g of sucrose in 100 g of solution; the °Brix represents the soluble solids content of the solution as percentage by weight [%, wt/wt]) (P ≤ 0.05). A significant difference (P ≤ 0.05) in sensory perception for the finished apple juice was detected between the control and the full seven-pass UV radiation treatment using an experienced consumer panel and a triangle test. Patulin reduction by UV radiation from both the current study and a previous study involving apple cider was compared, which showed that both matrices strongly fit a first-order kinetic degradation model. However, the kinetic constant for degradation in apple juice was approximately 5.5 times greater than that observed in an apple cider matrix.
Collapse
Affiliation(s)
- Kitipong Assatarakul
- Department of Food Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
25
|
Konstantinou S, Karaoglanidis GS, Bardas GA, Minas IS, Doukas E, Markoglou AN. Postharvest Fruit Rots of Apple in Greece: Pathogen Incidence and Relationships Between Fruit Quality Parameters, Cultivar Susceptibility, and Patulin Production. PLANT DISEASE 2011; 95:666-672. [PMID: 30731903 DOI: 10.1094/pdis-11-10-0856] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The incidence of pathogens associated with postharvest fruit rots on the four most extensively cultivated apple cultivars (Red Delicious, Golden Delicious, Granny Smith, and Fuji) in Greece was surveyed during two consecutive storage periods (2008-09 and 2009-10) in five packinghouses located in northern Greece. The fungi isolated were identified based on their morphological characteristics and internal transcribed spacer gene sequencing. In the four cultivars sampled, Penicillium expansum and Botrytis cinerea were the predominant pathogens, accounting for averages of 44.2 and 23.6%, respectively, of the pathogens isolated from the sampled fruit. Two other important rot pathogens were Alternaria tenuissima and Mucor pyriformis, accounting for 16.1 and 6.6%, respectively, of the diseased apple fruit. Other pathogens such as Monilinia laxa, M. fructigena, Botryosphaeria obtusa, Geotrichum candidum, Fusarium avenaceum, and F. proliferatum were isolated at low frequencies and are considered of minor importance. Measurements of the resistance level of the four apple cultivars to fruit rot caused by P. expansum and Botrytis cinerea revealed that Golden Delicious was the most susceptible to blue mold while Fuji was the most susceptible to gray mold infections. Susceptibility to gray mold was negatively correlated with flavonoid and phenol concentration as well to fruit antioxidant activity, while susceptibility to blue mold was negatively correlated with fruit firmness and phenol concentration. Patulin production was significantly higher in Red Delicious and Golden Delicious fruit than in Granny Smith and Fuji fruit and was negatively correlated with the acidity of the fruit. The high incidence of P. expansum and A. tenuissima along with the presence of F. avenaceum and F. proliferatum, all of which are potentially mycotoxin producers, emphasize the risk for mycotoxin contamination of apple fruit juices and by-products. Furthermore, information on the distribution of the pathogens on the main cultivars may be useful for the implementation of strategies to control the diseases and minimize the threat of mycotoxin contamination on each cultivar.
Collapse
Affiliation(s)
| | | | | | - I S Minas
- Laboratory of Pomology, Aristotelian University of Thessaloniki, School of Agriculture, Thessaloniki, Greece
| | - E Doukas
- Agricultural University of Athens, Laboratory of Pesticide Science, Athens
| | - A N Markoglou
- Agricultural University of Athens, Laboratory of Pesticide Science, Athens
| |
Collapse
|
26
|
Welke JE, Hoeltz M, Dottori HA, Noll IB. Patulin accumulation in apples during storage by penicillium expansum and penicillium griseofulvum strains. Braz J Microbiol 2011; 42:172-80. [PMID: 24031618 PMCID: PMC3768942 DOI: 10.1590/s1517-83822011000100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 04/23/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022] Open
Abstract
A part of apples destined to juice production is generally of poor quality. Apples from cold storage or recently harvest (ground harvested or low quality apples) are stored under ambient conditions until they are processed. Since Penicillium expansum and P. griseofulvum are the principal fungal species isolated from stored apples in Brazil, the objective of this study was to investigate the ability of these strains to produce patulin in apples and report the consequences of this type of storage in loss of quality. The toxin was quantified using thin layer chromatography and charge-coupled device camera (TLC-CCD). The rate and quantities that P. expansum and P. griseofulvum can grow and produce patulin are highly dependent on the fungal strain and time. Lesion diameter resulted to be independent of the strain considered. The maximum period of time which apples were kept at cold storage (4 °C) without patulin accumulation was 27 days. When these apples were kept at 25 °C during 3 days, both factors lesion diameter and patulin production increased significantly. These results confirm that time in which apples are taken out from cold storage room before juice production is critical in order to prevent patulin accumulation.
Collapse
Affiliation(s)
- Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Michele Hoeltz
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | - Isa Beatriz Noll
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
27
|
Reddy KRN, Spadaro D, Gullino ML, Garibaldi A. Potential of two Metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin. J Food Prot 2011; 74:154-6. [PMID: 21219780 DOI: 10.4315/0362-028x.jfp-10-331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patulin contamination of apple and other fruit-based foods and beverages is an important food safety issue, as consumption of these commodities throughout the world is great. Studies are therefore necessary to reduce patulin levels to acceptable limits or undetectable levels to minimize toxicity. This study was undertaken to investigate the efficacy of two Metschnikowia pulcherrima strains (MACH1 and GS9) on biodegradation of patulin under in vitro conditions. These yeast strains were tested for their abilities to degrade patulin in liquid medium amended with 5, 7.5, 10, and 15 μg/ml patulin and a yeast cell concentration of 1 × 10(8) cells per ml at 25°C. Of the two strains tested, MACH1 completely (100%) reduced patulin levels within 48 h, and GS9 within 72 h, at all concentrations of patulin. MACH1 effectively degraded the patulin within 24 h by 83 to 87.4%, and GS9 by 73 to 75.6% at 48 h, regardless of concentration. Patulin was not detected in yeast cell walls. This indicates that yeast cell walls did not absorb patulin, and that they completely degraded the toxin. Patulin had no influence on yeast cell concentration during growth. Therefore, these yeast strains could potentially be used for the reduction of patulin in naturally contaminated fruit juices. To our knowledge, this is the first report regarding the potential of M. pulcherrima strains for patulin biodegradation.
Collapse
Affiliation(s)
- K R N Reddy
- Agroinnova, Centre of Competence for the Innovation in the Agro-Environmental Sector, Universita degli Studi di Torino, via L. da Vinci 44, 10095 Grugliasco, Torino, Italy.
| | | | | | | |
Collapse
|
28
|
Potential of patulin production by Penicillium expansum strains on various fruits. Mycotoxin Res 2010; 26:257-65. [PMID: 23605488 DOI: 10.1007/s12550-010-0064-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100-13,200 μg/kg and nine strains ranging from 100-12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.
Collapse
|
29
|
Sant'Ana AS, Simas RC, Almeida CAA, Cabral EC, Rauber RH, Mallmann CA, Eberlin MN, Rosenthal A, Massaguer PR. Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. Int J Food Microbiol 2010; 142:156-63. [PMID: 20633943 DOI: 10.1016/j.ijfoodmicro.2010.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/19/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
Although the production of patulin in apple fruits is mainly by Penicillium expansum, there is no information on the ability of heat resistant moulds that may survive pasteurization to produce this mycotoxin in juice packages during storage and distribution. In this study, the production of patulin by Byssochlamys spp (Byssochlamys nivea FRR 4421, B. nivea ATCC 24008 and Byssochlamys fulva IOC 4518) in cloudy and clarified apple juices packaged in laminated paperboard packages or in polyethylene terephthalate bottles (PET) and stored at both 21 degrees C and 30 degrees C, was investigated. The three Byssochlamys strains were able to produce patulin in both cloudy and clarified apple juices. Overall, the lower the storage temperature, the lower the patulin levels and mycelium dry weight in the apple juices (p<0.05). The greatest variations in pH and degrees Brix were observed in the juices from which the greatest mycelium dry weights were recovered. The maximum levels of patulin recovered from the juices were ca. 150 microg/kg at 21 degrees C and 220 microg/kg at 30 degrees C. HPLC-UV, HPCL-DAD and mass spectrometry analyses confirmed the ability of B. fulva IOC 4518 to produce patulin. Due to the heat resistance of B. nivea and B. fulva and their ability to produce patulin either in PET bottles or in laminated paperboard packages, the control of contamination and the incidence of these fungi should be a matter of concern for food safety. Control measures taken by juice industries must also focus on controlling the ascospores of heat resistant moulds.
Collapse
Affiliation(s)
- Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Salomão BCM, Churey JJ, Aragão GMF, Worobo RW. Modeling Penicillium expansum resistance to thermal and chlorine treatments. J Food Prot 2009; 72:2618-22. [PMID: 20003750 DOI: 10.4315/0362-028x-72.12.2618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apples and apple products are excellent substrates for Penicillium expansum to produce patulin. In an attempt to avoid excessive levels of patulin, limiting or reducing P. expansum contamination levels on apples designated for storage in packinghouses and/or during apple juice processing is critical. The aim of this work was (i) to determine the thermal resistance of P. expansum spores in apple juice, comparing the abilities of the Bigelow and Weibull models to describe the survival curves and (ii) to determine the inactivation of P. expansum spores in aqueous chlorine solutions at varying concentrations of chlorine solutions, comparing the abilities of the biphasic and Weibull models to fit the survival curves. The results showed that the Bigelow and Weibull models were similar for describing the heat inactivation data, because the survival curves were almost linear. In this case, the concept of D- and z-values could be used, and the D-values obtained were 10.68, 6.64, 3.32, 1.14, and 0.61 min at 50, 52, 54, 56, and 60 degrees C, respectively, while the z-value was determined to be 7.57 degrees C. For the chlorine treatments, although the biphasic model gave a slightly superior performance, the Weibull model was selected, considering the parsimony principle, because it has fewer parameters than the biphasic model has. In conclusion, the typical pasteurization regimen used for refrigerated apple juice (71 degrees C for 6 s) is capable of achieving a 6-log reduction of P. expansum spores.
Collapse
Affiliation(s)
- Beatriz C M Salomão
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | | | | | | |
Collapse
|