1
|
Tsuda T, Robinson BW. Beneficial Effects of Exercise on Hypertension-Induced Cardiac Hypertrophy in Adolescents and Young Adults. Curr Hypertens Rep 2024; 26:451-462. [PMID: 38888690 DOI: 10.1007/s11906-024-01313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Hypertension-induced cardiac hypertrophy is widely known as a major risk factor for increased cardiovascular morbidity and mortality. Although exercise is proven to exert overall beneficial effects on hypertension and hypertension-induced cardiac hypertrophy, there are some concerns among providers about potential adverse effects induced by intense exercise, especially in hypertensive athletes. We will overview the underlying mechanisms of physiological and pathological hypertrophy and delineate the beneficial effects of exercise in young people with hypertension and consequent hypertrophy. RECENT FINDINGS Multiple studies have demonstrated that exercise training, both endurance and resistance types, reduces blood pressure and ameliorates hypertrophy in hypertensives, but certain precautions are required for hypertensive athletes when allowing competitive sports: Elevated blood pressure should be controlled before allowing them to participate in high-intensity exercise. Non-vigorous and recreational exercise are always recommended to promote cardiovascular health. Exercise-induced cardiac adaptation is a benign and favorable response that reverses or attenuates pathological cardiovascular remodeling induced by persistent hypertension. Exercise is the most effective nonpharmacological treatment for hypertensive individuals. Distinction between recreational-level exercise and competitive sports should be recognized by medical providers when allowing sports participation for adolescents and young adults.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadephia, PA, 19107, USA.
| | - Bradley W Robinson
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadephia, PA, 19107, USA
| |
Collapse
|
2
|
Dalen H, Letnes JM, Hoydal MA, Wisløff U. Diastolic function and dysfunction in athletes. Eur Heart J Cardiovasc Imaging 2024; 25:1537-1545. [PMID: 39023211 PMCID: PMC11522865 DOI: 10.1093/ehjci/jeae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cardiac remodelling is often most profound in male athletes and in athletes with the greatest volumes of endurance training and is characterized by chamber enlargement and a mild-to-modest hypertrophy. The diastolic filling of the left ventricle (LV) is a complex process including the early recoil of the contracted LV, the active relaxation of the myocardium, the compliance of the myocardium, the filling pressures, and heart rate. Echocardiography is the cornerstone for the clinical assessment of LV diastolic function. LV diastolic function is usually enhanced in elite endurance athletes characterized by improved early filling of the ventricle, while it is preserved or enhanced in other athletes associated with the type of training being performed. This allows for the high performance of any endurance athlete. Typical findings when using resting echocardiography for the assessment of LV diastolic function in endurance athletes include a dilated LV with normal or mildly reduced LV ejection fraction (EF), significantly enlarged left atrium (LA) beyond the commonly used cut-off of 34 mL/m2, and a significantly elevated E/A ratio. The early-diastolic mitral annular velocity and the E-wave peak velocity are usually normal. Importantly, interpretation of the echocardiographic indices of LV diastolic function should always consider the clinical context and other parameters of systolic and diastolic functions. In the absence of an underlying pathology, single measurements outside the expected range for similar athletes will often not represent the pathology.
Collapse
Affiliation(s)
- Havard Dalen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Clinic of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Jon Magne Letnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten A Hoydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
3
|
Palermi S, Vecchiato M, Saglietto A, Niederseer D, Oxborough D, Ortega-Martorell S, Olier I, Castelletti S, Baggish A, Maffessanti F, Biffi A, D'Andrea A, Zorzi A, Cavarretta E, D'Ascenzi F. Unlocking the potential of artificial intelligence in sports cardiology: does it have a role in evaluating athlete's heart? Eur J Prev Cardiol 2024; 31:470-482. [PMID: 38198776 DOI: 10.1093/eurjpc/zwae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The integration of artificial intelligence (AI) technologies is evolving in different fields of cardiology and in particular in sports cardiology. Artificial intelligence offers significant opportunities to enhance risk assessment, diagnosis, treatment planning, and monitoring of athletes. This article explores the application of AI in various aspects of sports cardiology, including imaging techniques, genetic testing, and wearable devices. The use of machine learning and deep neural networks enables improved analysis and interpretation of complex datasets. However, ethical and legal dilemmas must be addressed, including informed consent, algorithmic fairness, data privacy, and intellectual property issues. The integration of AI technologies should complement the expertise of physicians, allowing for a balanced approach that optimizes patient care and outcomes. Ongoing research and collaborations are vital to harness the full potential of AI in sports cardiology and advance our management of cardiovascular health in athletes.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Marco Vecchiato
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Citta della Salute e della Scienza' Hospital, 10129 Turin, Italy
- Department of Medical Sciences, University of Turin, 10129 Turin, Italy
| | - David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sandra Ortega-Martorell
- Data Science Research Centre, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Silvia Castelletti
- Cardiology Department, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Alessandro Biffi
- Med-Ex, Medicine & Exercise, Medical Partner Scuderia Ferrari, 00187 Rome, Italy
| | - Antonello D'Andrea
- Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Lobo HM, Naves ÍG, Marçal SB, Canzi CC, Rodrigues ABS, Menezes Jr AS. Atrial Fibrillation in Endurance Training Athletes: Scoping Review. Rev Cardiovasc Med 2023; 24:155. [PMID: 39077536 PMCID: PMC11264108 DOI: 10.31083/j.rcm2406155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 07/31/2024] Open
Abstract
Background Moderate regular physical activity is indicated to avoid atrial fibrillation (AF), whereas athletes should be counseled that long-lasting vigorous sports engagement may cause AF, according to the 2016 European Society of Cardiology (ESC) recommendations for AF treatment. Exercise and AF are complex. Objectives To evaluate the relationship between Endurance training and AF, in addition to the starting point/trigger by which Endurance Training causes impairment of cardiac function and AF, considering the time and intensity of Endurance training. Materials and Methods We synthesized evidence from articles published in the PubMed, EMBASE, and SciELO databases using their respective Boolean operators. A total of 112 original articles related to AF and endurance athletes published up to the year 2023 were reviewed. Results Our study verified multiples aspects of the genesis of AF in athletes, such as cardiac adaptations to exercise, disturbances in cardiac injury biomarkers, sex differences in cardiac adaptations and their role in AF risk, and the relationship between body composition (height, weight, and physical fitness) and AF pathogenesis. Conclusions Variations in cardiac structure (increased atrial thickness and size in addition to myocardial fibrosis) and significant increases in vagal tone (sinus bradycardia and imbalances in sympathetic and parasympathetic activation) shorten the refractory period shortening in athletes, induce the onset of re-entrance mechanisms, and serve as ectopic triggers that can lead to AF.
Collapse
Affiliation(s)
- Henrique M. Lobo
- Medical and Life Sciences School, Pontifical Catholic University of Goiás, 74175-120 Goiânia, Goiás, Brazil
| | - Ícaro G. Naves
- Medical and Life Sciences School, Pontifical Catholic University of Goiás, 74175-120 Goiânia, Goiás, Brazil
| | - Silvia Botelho Marçal
- Internal Medicine Department, Medicine Faculty, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Camila Cassia Canzi
- Medical and Life Sciences School, Pontifical Catholic University of Goiás, 74175-120 Goiânia, Goiás, Brazil
| | | | - Antonio S. Menezes Jr
- Medical and Life Sciences School, Pontifical Catholic University of Goiás, 74175-120 Goiânia, Goiás, Brazil
- Internal Medicine Department, Medicine Faculty, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Popielarz-Grygalewicz A, Stelmachowska-Banaś M, Raczkiewicz D, Czajka-Oraniec I, Zieliński G, Kochman W, Dąbrowski M, Zgliczyński W. Effects of acromegaly treatment on left ventricular systolic function assessed by speckle tracking echocardiography in relation to sex differences: results from a prospective single center study. Front Endocrinol (Lausanne) 2023; 14:1154615. [PMID: 37223021 PMCID: PMC10200955 DOI: 10.3389/fendo.2023.1154615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Background Despite the preserved LVEF, patients with acromegaly are characterized by subclinical systolic dysfunction i.e., abnormal global longitudinal strain (GLS) assessed by speckle tracking echocardiography (STE). The effect of acromegaly treatment on LV systolic function assessed by STE, has not been evaluated so far. Patients and methods Thirty-two naïve acromegalic patients without detectable heart disease were enrolled in a prospective, single-center study. 2D-Echocardiography and STE were performed at diagnosis, 3&6 months on preoperative somatostatin receptor ligand (SRL) treatment and 3 months after transsphenoidal surgery (TSS). Results Treatment with SRL resulted in reduction in median (IQR) GH&IGF-1 levels after 3 months, from 9.1(3.2-21.9) to 1.8(0.9-5.2) ng/mL (p<0.001) and from 3.2(2.3-4.3) to 1.5(1.1-2.5) xULN (p<0.001), respectively. Biochemical control on SRL was achieved in 25.8% of patients after 6 months and complete surgical remission was achieved in 41.7% of patients. TSS resulted in decrease in median (IQR) IGF-1 compared to IGF-1 levels on SRL treatment: from 1.5(1.2-2.5) to 1.3(1.0-1.6) xULN (p=0.003). Females had lower IGF-1 levels at baseline, on SRL and after TSS compared to males. The median end diastolic and end systolic left ventricle volumes were normal. Almost half of the patients (46.9%) had increased LVMi, however the median value of LVMi was normal in both sex groups: 99g/m2 in males and 94g/m2 in females. Most patients (78.1%) had increased LAVi and the median value was 41.8mL/m2. At baseline 50% of patients, mostly men (62.5% vs. 37.5%) had GLS values higher than -20%. There was a positive correlation between baseline GLS and BMI r=0.446 (p=0.011) and BSA r=0.411 (p=0.019). The median GLS significantly improved after 3 months of SRL treatment compared to baseline: -20.4% vs. -20.0% (p=0.045). The median GLS was lower in patients with surgical remission compared to patients with elevated GH&IGF-1 levels: -22.5% vs. -19.8% (p=0.029). There was a positive correlation between GLS and IGF-1 levels after TSS r=0.570 (p=0.007). Conclusion The greatest beneficial effect of acromegaly treatment on LV systolic function is visible already after 3 months of preoperative SRL treatment, especially in women. Patients with surgical remission have better GLS compared to patients with persistent acromegaly.
Collapse
Affiliation(s)
| | | | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine, Warsaw, Poland
| | - Wacław Kochman
- Department of Cardiology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marek Dąbrowski
- Department of Cardiology, Bielanski Hospital, Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
6
|
Palermi S, Cavarretta E, D’Ascenzi F, Castelletti S, Ricci F, Vecchiato M, Serio A, Cavigli L, Bossone E, Limongelli G, Biffi A, Monda E, La Gerche A, Baggish A, D’Andrea A. Athlete's Heart: A Cardiovascular Step-By-Step Multimodality Approach. Rev Cardiovasc Med 2023; 24:151. [PMID: 39076743 PMCID: PMC11273059 DOI: 10.31083/j.rcm2405151] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 07/31/2024] Open
Abstract
"Athlete's heart" is a spectrum of morphological, functional, and regulatory changes that occur in people who practice regular and long-term intense physical activity. The morphological characteristics of the athlete's heart may overlap with some structural and electrical cardiac diseases that may predispose to sudden cardiac death, including inherited and acquired cardiomyopathies, aortopathies and channelopathies. Overdiagnosis should be avoided, while an early identification of underlying cardiac life-threatening disorders is essential to reduce the potential for sudden cardiac death. A step-by-step multimodality approach, including a first-line evaluation with personal and family history, clinical evaluation, 12-lead resting electrocardiography (ECG), followed by second and third-line investigations, as appropriate, including exercise testing, resting and exercise echocardiography, 24-hour ECG Holter monitoring, cardiac magnetic resonance, computed tomography, nuclear scintigraphy, or genetic testing, can be determinant to differentiate between extreme physiology adaptations and cardiac pathology. In this context, cardiovascular imaging plays a key role in detecting structural abnormalities in athletes who fall into the grey zone between physiological adaptations and a covert or early phenotype of cardiovascular disease.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy
| | - Silvia Castelletti
- Cardiology Department, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G.d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Vecchiato
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Alessandro Serio
- Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Luna Cavigli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy
| | - Eduardo Bossone
- Division of Cardiology, AORN A Cardarelli Hospital, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Alessandro Biffi
- Med-Ex, Medicine & Exercise, Medical Partner Scuderia Ferrari, 00187 Rome, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonello D’Andrea
- Unit of Cardiology and Intensive Coronary Care, Umberto I Hospital, 84014 Salerno, Italy
| |
Collapse
|
7
|
Marazziti D, Parra E, Arone A, Carbone MG, Del Prete L, Fantasia S, Palermo S, Dell’Osso L. Internet Use Amongst Professional Tennis Players. CLINICAL NEUROPSYCHIATRY 2023; 20:9-16. [PMID: 36936627 PMCID: PMC10016101 DOI: 10.36131/cnfioritieditore20230102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Objective Next to its well-known benefits, Internet may trigger harmful consequences due to its abuse, thus delineating clinical pictures that are similar to abuse disorders, such as Problematic Internet Use (PIU). The matter becomes more elusive for sportsmen, as data regarding PIU in this specific group are scarce, particularly for tennis players. Therefore, our aim was to assess the prevalence and the features of PIU in a sample of either in current activity or retired professional tennis players, as compared with healthy controls. Method Twenty-five professional tennis players were evaluated during two events held in two different European countries and were matched to an equal number of healthy subjects who were not performing any agonistic sport. The characteristics of Internet use were assessed by a specific instrument we developed (QUNT). Statistical analyses were carried out to evaluate both demographic and QUNT features and the possible intergroup differences. Results Retired athletes presented statistically significant lower scores compared to both athletes in current activity and control subjects in the "Time spent online" and in the "Addiction to pornography" domains. Athletes in current activity presented statistically significant higher scores compared to retired athletes in the "Ludopathy" and Total score domains. Male athletes had a statistically significant lower score in the "Addiction to pornography" domain compared to both female and male healthy controls. Conclusions Tennis players frequently indulge in the use of Internet facilities, particularly those in current activity, thus potentially being more vulnerable to PIU. Men and women seem to use Internet for different activities. The lifestyle that professional tennis players are obliged to follow might provide an explanation of our findings.
Collapse
Affiliation(s)
- Donatella Marazziti
- Saint Camillus International University of Health and Medical Sciences – Uni-Camillus, Rome, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
- Corresponding author Donatella Marazziti Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, 56100, Pisa, Italy Phone: +39 050 2219768 E-mail:
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Luca Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
8
|
LE Douairon Lahaye S, LE Cunuder A, Lachard T, Menard V, Lhuissier F, Dupont AC, Wurtz AS, Marblé C, Carré F, Schnell F. Cardiac Events in World-Class Athletes: An Internet-Based Study. Med Sci Sports Exerc 2022; 54:2064-2072. [PMID: 35881931 DOI: 10.1249/mss.0000000000003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed at assessing the prevalence of adverse cardiac events, as identified in the media, in world-class athletes according to their sex and sports discipline. METHODS All female and male athletes from 30 individual Olympic sports who ranked in the international yearly top 10 between 2006 and 2018 were included. The name of each of them was associated in a Google search with selected key terms related to heart disease and/or acute cardiac events after their inclusion date. Global and sex-specific adverse cardiac event hazard function λ were calculated for each sport. Global and sex-specific prevalences of cardiac events were calculated, then compared (Fisher's exact test) between all sports. RESULTS From the 2471 athletes included, 15 cases of cardiac events (prevalence of 0.61%) were reported; 2 sudden cardiac deaths (0.08%) occurred in male athletes. The other events were related to arrhythmic events ( n = 13), mainly supraventricular arrhythmias ( n = 9). All surviving athletes were able to continue their career, mostly after ablation procedure. Male endurance athletes accounted for seven events, among which three events occurred among short-distance triathletes. Events among women were comparatively rare ( n = 4), and all were observed among short-distance triathletes. CONCLUSIONS A relatively unexpected high prevalence of cardiac events in endurance elite athletes was observed as compared with other sports, mainly, in short-distance male and female triathletes. This raises the question of particular cardiovascular constraints in this discipline and underlines the urge of international longitudinal follow-up studies in these kinds of athletes.
Collapse
Affiliation(s)
| | - Anne LE Cunuder
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Thibault Lachard
- CHU Rennes, Department of Sports Medicine, University Hospital of Rennes, Rennes, FRANCE
| | - Vincent Menard
- M2S Laboratory, Ecole Normale Supérieure Rennes, University of Rennes 2, Rennes, FRANCE
| | | | | | | | | | | | | |
Collapse
|
9
|
D’Andrea A, Carbone A, Radmilovic J, Russo V, Fabiani D, Maio MD, Ilardi F, Giallauria F, Caputo A, Cirillo T, Bossone E, Picano E. Myocardial Work Efficiency in Physiologic Left Ventricular Hypertrophy of Power Athletes. J Cardiovasc Echogr 2022; 32:154-159. [PMID: 36619770 PMCID: PMC9819612 DOI: 10.4103/jcecho.jcecho_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023] Open
Abstract
AIMS The athlete's heart in power training is characterized by physiologic concentric remodeling. Our aim was to analyze left ventricular (LV) myocardial deformation and contractile reserve (CR) in top-level power athletes (PA) at rest and during exercise and their possible correlations with functional capacity. METHODS Standard echo, lung ultrasound, and LV 2D speckle-tracking strain were performed at rest and during exercise in PA and in age- and sex-comparable healthy controls. RESULTS 250 PA (male: 62%; 33.6 ± 4.8 years) and 180 age- and sex-comparable healthy controls were enrolled. LV ejection fraction (EF) at baseline was comparable between the two groups, while LV global longitudinal strain (GLS) was reduced in PA (GLS: -17.8 ± 2.4 in PA vs. -21.9 ± 3.8 in controls; P < 0.01). Conversely, myocardial work efficiency (MWE) did not show significant difference between the two groups (94.4 ± 3.2 in PA vs. 95.9 ± 4.6% in controls; P NS). At peak exertion during exercise stress echocardiography (ESE), PA showed better exercise capacity and peak VO2 consumption (51.6 ± 10.2 in EA vs. 39.8 ± 8.2 mL/Kg/min in controls, P < 0.0001), associated with augmented pulmonary artery systolic pressure (PASP). By multivariable analysis, MWE at rest was the most predictive factor of maximal watts (P < 0.0001), peak VO2, (P < 0.0001), PASP (P < 0.001), and number of B-lines (P < 0.001), all measured at peak effort. CONCLUSIONS In power athletes, MWE showed less load dependency than GLS. Normal resting values of MWE in PA suggest a physiological LV remodeling, associated with a better exercise capacity and preserved CR during physical stress.
Collapse
Affiliation(s)
- Antonello D’Andrea
- Department of Cardiology, Unit of Cardiology and Intensive Coronary Care, “Umberto I” Hospital, Nocera Inferiore, Naples, Italy
- Department of Traslational Medical Sciences, Unit of Cardiology, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Andreina Carbone
- Department of Traslational Medical Sciences, Unit of Cardiology, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Juri Radmilovic
- Department of Cardiology, Unit of Cardiology and Intensive Coronary Care, “Umberto I” Hospital, Nocera Inferiore, Naples, Italy
| | - Vincenzo Russo
- Department of Traslational Medical Sciences, Unit of Cardiology, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Dario Fabiani
- Department of Traslational Medical Sciences, Unit of Cardiology, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Marco Di Maio
- Department of Cardiology, Unit of Cardiology, “Hospital, Eboli (ASL Salerno), Salerno, Italy
| | - Federica Ilardi
- Department of Cardiology, University of Naples Federico II, Naples, Italy
| | - Francesco Giallauria
- Department of Internal Medicine, University of Naples Federico II, Naples, Italy
| | - Adriano Caputo
- Department of Traslational Medical Sciences, Unit of Cardiology, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Teresa Cirillo
- Department of Cardiology, Unit of Cardiology and Intensive Coronary Care, “Umberto I” Hospital, Nocera Inferiore, Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, UOC Cardiologia Riabilitativa, Cardarelli Hospital, Naples, Italy
| | - Eugenio Picano
- Department of Cardiology, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
10
|
Cha MJ, Kim C, Park CH, Hong YJ, Shin JM, Kim TH, Cha YJ, Park CH. Differential Diagnosis of Thick Myocardium according to Histologic Features Revealed by Multiparametric Cardiac Magnetic Resonance Imaging. Korean J Radiol 2022; 23:581-597. [PMID: 35555885 PMCID: PMC9174501 DOI: 10.3348/kjr.2021.0815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete's heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct. This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Aimo A, Vergaro G, González A, Barison A, Lupón J, Delgado V, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MYY, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund P, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Emdin M, Bayes-Genis A. Cardiac remodelling - Part 2: Clinical, imaging and laboratory findings. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:944-958. [PMID: 35488811 DOI: 10.1002/ejhf.2522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/06/2022] Open
Abstract
In patients with heart failure, the beneficial effects of drug and device therapies counteract to some extent ongoing cardiac damage. According to the net balance between these two factors, cardiac geometry and function may improve (reverse remodelling, RR) and even completely normalize (remission), or vice versa progressively deteriorate (adverse remodelling, AR). RR or remission predict a better prognosis, while AR has been associated with worsening clinical status and outcomes. The remodelling process ultimately involves all cardiac chambers, but has been traditionally evaluated in terms of left ventricular volumes and ejection fraction. This is the second part of a review paper by the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology dedicated to ventricular remodelling. This document examines the proposed criteria to diagnose RR and AR, their prevalence and prognostic value, and the variables predicting remodelling in patients managed according to current guidelines. Much attention will be devoted to RR in patients with heart failure with reduced ejection fraction because most studies on cardiac remodelling focused on this setting.
Collapse
Affiliation(s)
- Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Arantxa González
- CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Andrea Barison
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Josep Lupón
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thomas Thum
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Javier Díez
- Center for Applied Medical Research, Pamplona, Spain
| | - Roger S Y Foo
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | - Mark Yan Yee Chan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | - Chukwuemeka G Anene-Nzelu
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapy (BCRT), German Center for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- University of the Saarland, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Ewa A Jankowska
- Institute of Heart Disases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Heart Centre, Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | | | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | | | | | - Julio Núñez
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques-Plurithématique 1433 and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie van Linthout
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Buja LM, Zhao B, Segura A, Lelenwa L, McDonald M, Michaud K. Cardiovascular pathology: guide to practice and training. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Palmisano A, Darvizeh F, Cundari G, Rovere G, Ferrandino G, Nicoletti V, Cilia F, De Vizio S, Palumbo R, Esposito A, Francone M. Advanced cardiac imaging in athlete's heart: unravelling the grey zone between physiologic adaptation and pathology. LA RADIOLOGIA MEDICA 2021; 126:1518-1531. [PMID: 34420142 PMCID: PMC8380417 DOI: 10.1007/s11547-021-01411-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Over the last decades, interest toward athlete's heart has progressively increased, leading to improve the knowledge on exercise-induced heart modifications. Sport may act as a trigger for life-threatening arrhythmias in patients with structural or electrical abnormalities, hence requiring to improve the diagnostic capability to differentiate physiological from pathological remodeling. Pathological alterations are often subtle at the initial stages; therefore, the challenge is to promptly identify athletes at risk of sudden cardiac death during the pre-participation screening protocols. Advanced imaging modalities such as coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) can non-invasively depict coronary vessels and provide a deep morpho-functional and structural characterization of the myocardium, in order to rule out pathological life threatening alterations, which may overlap with athletes' heart remodeling. The purpose of the present narrative review is to provide an overview of most frequent diagnostic challenges, defining the boundaries between athlete's heart remodeling and pathological structural alteration with a focus on the role and importance of CCTA and CMR.
Collapse
Affiliation(s)
- Anna Palmisano
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Fatemeh Darvizeh
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Rovere
- Department of Radiological and Hematological Sciences -Section of Radiology, Università Cattolica Sacro Cuore, Fondazione, Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Valeria Nicoletti
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Cilia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia De Vizio
- Department of Radiological and Hematological Sciences -Section of Radiology, Università Cattolica Sacro Cuore, Fondazione, Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Roberto Palumbo
- School of Radiology, Campus BioMedico Univerisity, Rome, Italy
| | - Antonio Esposito
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
14
|
Palermi S, Serio A, Vecchiato M, Sirico F, Gambardella F, Ricci F, Iodice F, Radmilovic J, Russo V, D'Andrea A. Potential role of an athlete-focused echocardiogram in sports eligibility. World J Cardiol 2021; 13:271-297. [PMID: 34589165 PMCID: PMC8436685 DOI: 10.4330/wjc.v13.i8.271] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) of an athlete is a rare but tragic event and sport activity might play a trigger role in athletes with underlying structural or electrical heart diseases. Preparticipation screenings (PPs) have been conceived for the potential to prevent SCD in young athletes by early identification of cardiac diseases. The European Society of Cardiology protocol for PPs includes history collection, physical examination and baseline electrocardiogram, while further examinations are reserved to individuals with abnormalities at first-line evaluation. Nevertheless, transthoracic echocardiography has been hypothesized to have a primary role in the PPs. This review aims to describe how to approach an athlete-focused echocardiogram, highlighting what is crucial to focus on for the different diseases (cardiomyopathies, valvulopathies, congenital heart disease, myocarditis and pericarditis) and when is needed to pay attention to overlap diagnostic zone ("grey zone") with the athlete's heart. Once properly tested, focused echocardiography by sports medicine physicians may become standard practice in larger screening practices, potentially available during first-line evaluation.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | - Alessandro Serio
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | - Marco Vecchiato
- Sport and Exercise Medicine Division, Department of Medicine, University Hospital of Padova, Padova 35128, Italy
| | - Felice Sirico
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | | | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti 66100, Italy
| | - Franco Iodice
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy
| | - Juri Radmilovic
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore 84014, Italy
| | - Vincenzo Russo
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy
| | - Antonello D'Andrea
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy.
| |
Collapse
|
15
|
Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D’Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9424. [PMID: 33339141 PMCID: PMC7765667 DOI: 10.3390/ijerph17249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | | | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
16
|
Torrisi M, Pennisi G, Russo I, Amico F, Esposito M, Liberto A, Cocimano G, Salerno M, Li Rosi G, Di Nunno N, Montana A. Sudden Cardiac Death in Anabolic-Androgenic Steroid Users: A Literature Review. ACTA ACUST UNITED AC 2020; 56:medicina56110587. [PMID: 33158202 PMCID: PMC7694262 DOI: 10.3390/medicina56110587] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Background and objectives: Anabolic-androgenic steroids (AASs) are a group of synthetic molecules derived from testosterone and its related precursors. AASs are widely used illicitly by adolescents and athletes, especially by bodybuilders, both for aesthetic uses and as performance enhancers to increase muscle growth and lean body mass. When used illicitly they can damage health and cause disorders affecting several functions. Sudden cardiac death (SCD) is the most common medical cause of death in athletes. SCD in athletes has also been associated with the use of performance-enhancing drugs. This review aimed to focus on deaths related to AAS abuse to investigate the cardiac pathophysiological mechanism that underlies this type of death, which still needs to be fully investigated. Materials and Methods: This review was conducted using PubMed Central and Google Scholar databases, until 21 July 2020, using the following key terms: “((Sudden cardiac death) OR (Sudden death)) AND ((androgenic anabolic steroid) OR (androgenic anabolic steroids) OR (anabolic-androgenic steroids) OR (anabolic-androgenic steroid))”. Thirteen articles met the inclusion and exclusion criteria, for a total of 33 reported cases. Results: Of the 33 cases, 31 (93.9%) were males while only 2 (61%) were females. Mean age was 29.79 and, among sportsmen, the most represented sports activity was bodybuilding. In all cases there was a history of AAS abuse or a physical phenotype suggesting AAS use; the total usage period was unspecified in most cases. In 24 cases the results of the toxicological analysis were reported. The most detected AASs were nandrolone, testosterone, and stanozolol. The most frequently reported macroscopic alterations were cardiomegaly and left ventricular hypertrophy, while the histological alterations were foci of fibrosis and necrosis of the myocardial tissue. Conclusions: Four principal mechanisms responsible for SCD have been proposed in AAS abusers: the atherogenic model, the thrombosis model, the model of vasospasm induced by the release of nitric oxide, and the direct myocardial injury model. Hypertrophy, fibrosis, and necrosis represent a substrate for arrhythmias, especially when combined with exercise. Indeed, AAS use has been shown to change physiological cardiac remodeling of athletes to pathophysiological cardiac hypertrophy with an increased risk of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Marco Torrisi
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuliana Pennisi
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Ilenia Russo
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Francesco Amico
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Massimiliano Esposito
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Aldo Liberto
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuseppe Cocimano
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Monica Salerno
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuseppe Li Rosi
- Department of Law, Criminology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 73100 Lecce, Italy;
| | - Angelo Montana
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
- Correspondence: ; Tel.: +39-3287655428
| |
Collapse
|
17
|
Groenendyk J, Wang Q, Wagg C, Lee D, Robinson A, Barr A, Light PE, Lopaschuk GD, Agellon LB, Michalak M. Selective enhancement of cardiomyocyte efficiency results in a pernicious heart condition. PLoS One 2020; 15:e0236457. [PMID: 32790682 PMCID: PMC7425937 DOI: 10.1371/journal.pone.0236457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
Transgenic mice with selective induction of calreticulin transgene expression in cardiomyocytes (CardiacCRT+) were analyzed. CardiacCRT+ cardiomyocytes showed increased contractility and Ca2+ transients. Yet, in vivo assessment of cardiac performance, and ischemic tolerance of CardiacCRT+ mice demonstrated right ventricle dilation and reduced cardiac output, increased QT interval and decreased P amplitude. Paradoxically, ex vivo working hearts from CardiacCRT+ mice showed enhanced ischemic cardio-protection and cardiac efficiency. Under aerobic conditions, CardiacCRT+ hearts showed less efficient cardiac function than sham control hearts due to an increased ATP production from glycolysis relative to glucose oxidation. During reperfusion, this inefficiency was reversed, with CardiacCRT+ hearts exhibiting better functional recovery and increased cardiac efficiency compared to sham control hearts. On the other hand, mechanical stretching of isolated cardiac fibroblasts activated the IRE1α branch of the unfolded protein response pathway as well as induction of Col1A2 and TGFβ gene expression ex vivo, which were all suppressed by tauroursodeoxycholic acid.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Wagg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Dukgyu Lee
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barr
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Peter E. Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- * E-mail: (MM); (LBA)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MM); (LBA)
| |
Collapse
|
18
|
Sabater-Molina M, Navarro-Peñalver M, Muñoz-Esparza C, Esteban-Gil Á, Santos-Mateo JJ, Gimeno JR. Genetic Factors Involved in Cardiomyopathies and in Cancer. J Clin Med 2020; 9:E1702. [PMID: 32498335 PMCID: PMC7356401 DOI: 10.3390/jcm9061702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer therapy-induced cardiomyopathy (CCM) manifests as left ventricular (LV) dysfunction and heart failure (HF). It is associated withparticular pharmacological agents and it is typically dose dependent, but significant individual variability has been observed. History of prior cardiac disease, abuse of toxics, cardiac overload conditions, age, and genetic predisposing factors modulate the degree of the cardiac reserve and the response to the injury. Genetic/familial cardiomyopathies (CMY) are increasingly recognized in general populations with an estimated prevalence of 1:250. Association between cardiac and oncologic diseases regarding genetics involves not only the toxicity process, but pathogenicity. Genetic variants in germinal cells that cause CMY (LMNA, RAS/MAPK) can increase susceptibility for certain types of cancer. The study of mutations found in cancer cells (somatic) has revealed the implication of genes commonly associated with the development of CMY. In particular, desmosomal mutations have been related to increased undifferentiation and invasiveness of cancer. In this article, the authors review the knowledge on the relevance of environmental and genetic background in CCM and give insights into the shared genetic role in the pathogenicity of the cancer process and development of CMY.
Collapse
Affiliation(s)
- María Sabater-Molina
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Navarro-Peñalver
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
| | - Carmen Muñoz-Esparza
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángel Esteban-Gil
- Biomedical Informatics & Bioinformatics Platform, Institute for Biomedical Research of Murcia (IMIB)/Foundation for Healthcare Training & Research of the Region of Murcia (FFIS), 30003 Murcia, Spain;
| | - Juan Jose Santos-Mateo
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
| | - Juan R. Gimeno
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Sharykin AS, Badtieva VA, Trunina II, Osmanov IM. Myocardial fibrosis — a new component of heart remodeling in athletes? КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-6-126-135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- A. S. Sharykin
- Pirogov Russian National Research Medical University; Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine; Children City Clinical Hospital
| | - V. A. Badtieva
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine; I.M. Sechenov First Moscow State Medical University
| | - I. I. Trunina
- Pirogov Russian National Research Medical University; Children City Clinical Hospital
| | - I. M. Osmanov
- Pirogov Russian National Research Medical University; Children City Clinical Hospital
| |
Collapse
|
20
|
Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC-HEART FAILURE 2019; 7:782-794. [PMID: 31401101 DOI: 10.1016/j.jchf.2019.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022]
Abstract
In response to injury, hemodynamic changes, or neurohormonal activation, the heart undergoes a series of structural and functional changes that have been termed cardiac remodeling. Remodeling is defined as changes in cardiac geometry and/or function over time and can be measured in terms of changes in cardiac chamber dimensions, wall thickness, volumes, mass, and ejection fraction at serial imaging examinations. As to cardiac chambers, left ventricular (LV) remodeling has been best studied in patients with heart failure with reduced ejection fraction. Although LV remodeling may compensate for abnormal hemodynamic parameters and function in the short term, left unchecked, it is associated with worsening cardiac function and poor prognosis. On the other hand, reversing LV geometry and/or function closer to that of a normal heart (also known as reverse remodeling) is associated with improved cardiac function and better prognosis. Because of its close relationship with clinical outcomes, remodeling may potentially be targeted in clinical management and used in trials as a surrogate endpoint. Standardized definition of remodeling and reliable tools to predict and monitor the presence, direction, and magnitude of cardiac remodeling are needed. Together with clinical and imaging findings, circulating biomarkers (most notably N-terminal pro-B-type natriuretic peptide, high-sensitivity troponin, and soluble suppression of tumorigenesis-2) may be helpful in this respect.
Collapse
|
21
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Ghorayeb N, Stein R, Daher DJ, Silveira ADD, Ritt LEF, Santos DFPD, Sierra APR, Herdy AH, Araújo CGSD, Colombo CSSDS, Kopiler DA, Lacerda FFRD, Lazzoli JK, Matos LDNJD, Leitão MB, Francisco RC, Alô ROB, Timerman S, Carvalho TD, Garcia TG. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019. Arq Bras Cardiol 2019; 112:326-368. [PMID: 30916199 PMCID: PMC6424031 DOI: 10.5935/abc.20190048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nabil Ghorayeb
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Programa de Pós-Graduação em Medicina do Esporte da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brazil
- Instituto de Assistência Médica ao Servidor Público Estadual (IAMSPE), São Paulo, SP - Brazil
| | - Ricardo Stein
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Daniel Jogaib Daher
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Anderson Donelli da Silveira
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Luiz Eduardo Fonteles Ritt
- Hospital Cárdio Pulmonar, Salvador, BA - Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brazil
| | | | | | - Artur Haddad Herdy
- Instituto de Cardiologia de Santa Catarina, Florianópolis, SC - Brazil
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
| | | | - Cléa Simone Sabino de Souza Colombo
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Sports Cardiology, Cardiology Clinical Academic Group - St George's University of London,14 London - UK
| | - Daniel Arkader Kopiler
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brazil
| | - Filipe Ferrari Ribeiro de Lacerda
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
| | - José Kawazoe Lazzoli
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Federação Internacional de Medicina do Esporte (FIMS), Lausanne - Switzerland
| | | | - Marcelo Bichels Leitão
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
| | - Ricardo Contesini Francisco
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Rodrigo Otávio Bougleux Alô
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital Geral de São Mateus, São Paulo, SP - Brazil
| | - Sérgio Timerman
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor-FMUSP), São Paulo, SP - Brazil
- Universidade Anhembi Morumbi, Laureate International Universities, São Paulo, SP - Brazil
| | - Tales de Carvalho
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
- Departamento de Ergometria e Reabilitação Cardiovascular da Sociedade Brasileira de Cardiologia (DERC/SBC), Rio de Janeiro, RJ - Brazil
- Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC - Brazil
| | - Thiago Ghorayeb Garcia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| |
Collapse
|
23
|
Androulakis E, Swoboda PP. The Role of Cardiovascular Magnetic Resonance in Sports Cardiology; Current Utility and Future Perspectives. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:86. [PMID: 30167977 PMCID: PMC6132733 DOI: 10.1007/s11936-018-0679-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose of review Cardiovascular magnetic resonance (CMR) is frequently used in the investigation of suspected cardiac disease in athletes. In this review, we discuss how CMR can be used in athletes with suspected cardiomyopathy with particular reference to volumetric analysis and tissue characterization. We also discuss the finding of non-ischaemic fibrosis in athletes describing its prevalence, distribution and clinical importance. Recent findings The strengths of CMR include high spatial resolution, unrestricted imaging planes and lack of ionizing radiation. Regular physical exercise leads to cardiac remodeling that in certain situations can be clinically challenging to differentiate from various cardiomyopathies. Thorough morphological assessment by CMR is fundamental to ensuring accurate diagnosis. Developments in tissue characterization by late gadolinium enhancement and T1 mapping have the potential to be powerful additional tools in this challenging clinical situation. Using late gadolinium enhancement, it is also possible to detect non-ischaemic fibrosis in athletes who do not have overt cardiomyopathy. The mechanisms of this fibrosis are unclear; however, it does appear to be clinically important. We also review data on the prevalence of non-ischaemic fibrosis in athletes. Summary CMR is a powerful tool to aid in the diagnosis of cardiomyopathy in athletes. It may also have a future role in assessing fibrosis related to long-term participation in sport.
Collapse
Affiliation(s)
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
| |
Collapse
|
24
|
Gabrielli L, Herrera S, Contreras-Briceño F, Vega J, Ocaranza MP, Yáñez F, Fernández R, Saavedra R, Sitges M, García L, Chiong M, Lavandero S, Castro PF. Increased active phase atrial contraction is related to marathon runner performance. Eur J Appl Physiol 2018; 118:1931-1939. [DOI: 10.1007/s00421-018-3927-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023]
|
25
|
Yılmaz M, Kayançiçek H. Elevated LV Mass and LV Mass Index Sign on the Athlete's ECG: Athletes' Hearts are Prone to Ventricular Arrhythmia. J Clin Med 2018; 7:E122. [PMID: 29843381 PMCID: PMC6024950 DOI: 10.3390/jcm7060122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Intense exercise elevates all heart chambers' dimensions, left ventricular mass (LV mass), and left ventricular mass index (LV mass index). The relationship between increased ventricular arrhythmias and sudden cardiac death with LV dilatation and elevated LV mass has been previously demonstrated. We investigated whether sports-related LV dilatation and elevated LV mass and LV mass index cause an increase in ventricular repolarization heterogeneity. PATIENTS AND METHODS This prospective observational study recruited 565 participants. There were 226 (female: 28) athletes and 339 (female: 45) healthy controls between 17 and 42 years of age. They were evaluated using 12-lead-electrocardiography and transthoracic echocardiography. Electrocardiograms were obtained at a rate of 50 mm/s and an amplitude of 10 mV, including at least 3 QRS complexes for each derivation. They were taken with 12 standard deviations. Transmural dispersion of repolarization indexes (TDR) (Tp-Te interval, Tp-Te/QT ratio and Tp-Te/QTc ratio, Tp-Te(d)) were measured from precordial derivations. Measurements weretakenwith a program which was generated with MATLAB codes. RESULTS Tp-Te interval, Tp-Te/QT ratio, Tp-Te/QTc ratio, Tp-Te(d), PW (posterior wall thickness), IVS (interventricular septal thickness), LVEDD (left ventricular end-diastolic diameter), LV mass (left ventricular mass), and LV mass index (left ventricular mass index) for the athlete group were significantly higher than for the control group. Correlation analyses revealed that TDR indexes significantly correlated with PW, IVS, LVEDD, LV mass, and LV mass index. CONCLUSION LV mass and LV mass index increase in well-trained athletes, and this increase leads to an increase in TDR indexes. The increased frequency of ventricular arrhythmia and sudden cardiac death may be explained with increasing ventricular repolarization heterogeneity in these individuals.
Collapse
Affiliation(s)
- Mücahid Yılmaz
- Department of Cardiology, Elazığ Education and Research Hospital, Elazığ-23200, Turkey.
| | - Hidayet Kayançiçek
- Department of Cardiology, Elazığ Medical Park Hospital (Affiliated to Istinye University), Elazığ-23040, Turkey.
| |
Collapse
|
26
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2017; 10:9-27. [DOI: 10.1002/dta.2336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|