1
|
Zhang X, Chen W, Wang C. Regulation of citrinin biosynthesis in Monascus purpureus: Impacts on growth, morphology, and pigments production. Food Microbiol 2025; 127:104698. [PMID: 39667860 DOI: 10.1016/j.fm.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Fungal hyphae self-assemble a variety of cellular macrostates, ranging from suspended mycelium to dense pellets, all inextricably linked to their productivity. In this study, using CRISPR/Cas technology, we constructed a ctnA knockout strain (ΔctnA) and an overexpression strain (A2) so as to investigate the effects of interfering with citrinin biosynthesis on the growth, morphology and pigmentation of M.purpureus. Results indicated that deletion of ctnA in M. purpureus RP2 led to increased mycelium length, delayed conidium formation, and a citrinin content of 22% of the wild-type strain. Conversely, ctnA overexpression in strain A2 resulted in delayed mycelial growth, normal conidium formation, and a citrinin content of 120% compared to the wild-type strain, with minimal effects on pigments content. Notably, the ΔctnA strain formed small, tightly structured pellets (mean diameter 1.2 ± 0.06 mm) and exhibited low citrinin content, promoting pigments production. Our findings suggest a complex interplay between citrinin biosynthesis and morphological development, providing insights for optimizing metabolite production in industrial applications.
Collapse
Affiliation(s)
- Xizi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Wei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
2
|
Gao YP, Shi DX, Li YH, He XZ, Wang XY, Lin K, Zheng XL. Development of Biphasic Culture System for an Entomopathogenic Fungus Beauveria bassiana PfBb Strain and Its Virulence on a Defoliating Moth Phauda flammans (Walker). J Fungi (Basel) 2025; 11:202. [PMID: 40137240 PMCID: PMC11943346 DOI: 10.3390/jof11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Beauveria bassiana PfBb is a new strain with high host specificity to the target pest Phauda flammans. We conducted a series of experiments to optimize the biphasic fermentation system of B. bassiana PfBb by screening the medium compositions and fermentation environmental conditions in both liquid and solid fermentations. In the liquid fermentation, glucose and yeast extract with a C:N ratio of 17:1 were the optimal carbon and nitrogen sources, respectively, for B. bassiana PfBb mycelium growth and blastospore production, and liquid fermentation with an inoculation concentration of 1 × 108/mL and an inoculum content of 50 mL conidial suspension, at 180 rpm/min rotation speed, pH 7 and 26 °C, favored mycelium growth. However, additional trace elements did not significantly improve liquid fermentation. In the solid fermentation, wheat bran and chaff at a ratio of 8:2 were identified as the best substrates that facilitated B. bassiana PfBb sporulation and conidial germination, and optimal substrates with 20% inoculum content, 50% water content, and 3-day fermentation in darkness had the highest conidia yield. The resulting conidia, stored at -20, 4, and 20 °C for one year, did not significantly change the water content, and with prolonged storage duration, conidial germination was significantly higher at -20 and 4 °C. Moreover, conidia stored at 4 °C for one year maintained its validity and virulence, which were toxic to all instar larvae of P. flammans. Our results provide essential support for the commercial production of B. bassiana PfBb-based biopesticides.
Collapse
Affiliation(s)
- Yi-Ping Gao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - De-Xiang Shi
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Yuan-Hao Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4410, New Zealand;
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Kai Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| |
Collapse
|
3
|
Monteiro LMO, Del Cerro C, Kijpornyongpan T, Yaguchi A, Bennett A, Donohoe BS, Ramirez KJ, Benson AF, Mitchell HD, Purvine SO, Markillie LM, Burnet MC, Bloodsworth KJ, Bowen BP, Harwood TV, Louie K, Northen T, Salvachúa D. Metabolic profiling of two white-rot fungi during 4-hydroxybenzoate conversion reveals biotechnologically relevant biosynthetic pathways. Commun Biol 2025; 8:224. [PMID: 39939400 PMCID: PMC11822028 DOI: 10.1038/s42003-025-07640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
White-rot fungi are efficient organisms for the mineralization of lignin and polysaccharides into CO2 and H2O. Despite their biotechnological potential, WRF metabolism remains underexplored. Building on recent findings regarding the utilization of lignin-related aromatic compounds as carbon sources by WRF, we aimed to gain further insights into these catabolic processes. For this purpose, Trametes versicolor and Gelatoporia subvermispora were incubated in varying conditions - in static and agitation modes and different antioxidant levels - during the conversion of 4-hydroxybenzoic acid (a lignin-related compound) and cellobiose. Their metabolic responses were assessed via transcriptomics, proteomics, lipidomics, metabolomics, and microscopy analyses. These analyses reveal the significant impact of cultivation conditions on sugar and aromatic catabolic pathways, as well as lipid composition of the fungal mycelia. Additionally, this study identifies biosynthetic pathways for the production of extracellular fatty acids and phenylpropanoids - both products with relevance in biotechnological applications - and provides insights into carbon fate in nature.
Collapse
Affiliation(s)
| | - Carlos Del Cerro
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Teeratas Kijpornyongpan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Allison Yaguchi
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Anna Bennett
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Alex F Benson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan C Burnet
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kent J Bloodsworth
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin P Bowen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas V Harwood
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
4
|
Li B, Ge Y, Liang J, Zhu Z, Chen B, Li D, Zhuang Y, Wang Z. Precise regulating the specific oxygen consumption rate to strengthen the CoQ 10 biosynthesis by Rhodobater sphaeroides. BIORESOUR BIOPROCESS 2024; 11:106. [PMID: 39496909 PMCID: PMC11534906 DOI: 10.1186/s40643-024-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is the most consumed dietary supplement and mainly biosynthesized by aerobic fermentation of Rhodobacter sphaeroides (R. sphaeroides). Oxygen supply was identified as a bottleneck for improving CoQ10 yield in R. sphaeroides. In this study, a precise regulation strategy based on dielectric spectroscopy (DS) was applied to further improve CoQ10 biosynthesis by R. sphaeroide. First, a quantitative response model among viable cells, cell morphology, and oxygen uptake rate (OUR) was established. DS could be used to detect viable R. sphaeroides cells, and the relationship among cell morphology, CoQ10 biosynthesis, and OUR was found to be significant. Based on this model, the online specific oxygen consumption rate (QO2) control strategy was successfully applied to the CoQ10 fermentation process. QO2 controlled at 0.07 ± 0.01 × 10- 7mmol/cell/h was most favorable for CoQ10 biosynthesis, resulting in a 28.3% increase in CoQ10 production. Based on the multi-parameters analysis and online QO2 control, a precise online nutrient feeding strategy was established using conductivity detected by DS. CoQ10 production was improved by 35%, reaching 3384 mg/L in 50 L bioreactors. This online control strategy would be effectively applied for improving industrial CoQ10 production, and the precise fermentation control strategy could also be applied to other fermentation process.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China
| | - Yan Ge
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Jianguang Liang
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| |
Collapse
|
5
|
Li P, Zhou Y, Wu Y, Jiang X, Wang X, Shi X, Wang W. The effects of environmental factors on the synthesis of water-soluble Monascus red pigments via submerged fermentation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7754-7764. [PMID: 38591364 DOI: 10.1002/jsfa.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Monascus pigments (MPs) have been used as natural food pigments for many years. There is a high demand for Monascus red pigments (MRPs) to enhance color and for antibacterial and cancer prevention therapies in food and medicine. Most MRPs are not water soluble, and the yield of water-soluble MRPs is naturally low. On the other hand, water-soluble MRP is more cost effective for application in industrial mass production. Therefore, it is important to improve the yield of water-soluble MRPs. Environmental factors have a significant influence on the synthesis of water-soluble MRPs, which is crucial for the development of industrial production of water-soluble MRPs. This review introduces the biosynthetic pathways of water-soluble MRPs and summarizes the effects of environmental factors on the yield of water-soluble MRPs. Acetyl coenzyme A (acetyl-CoA) is a precursor for MPs synthesis. Carbon and nitrogen sources and the carbon/nitrogen ratio can impact MP production by regulating the metabolic pathway of acetyl-CoA. Optimization of fermentation conditions to change the morphology of Monascus can stimulate the synthesis of MPs. The appropriate choice of nitrogen sources and pH values can promote the synthesis of MRPs from MPs. Additives such as metal ions and non-ionic surfactants can affect the fluidity of Monascus cell membrane and promote the transformation of MRPs into water-soluble MRPs. This review will lay the foundation for the industrial production of water-soluble MRPs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yin Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yingying Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xiao Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xuan Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xinyun Shi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Weiping Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
6
|
Lim TC, Ilham Z, Wan-Mohtar WAAQI. Production of Ganodiesel from the biomass of Ganoderma lucidum in air-L-shaped bioreactor (ALSB). Heliyon 2024; 10:e35170. [PMID: 39165931 PMCID: PMC11334811 DOI: 10.1016/j.heliyon.2024.e35170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
The increasing need for alternative and sustainable energy sources, prompted by the depletion of fossil fuels and the rise in greenhouse gas emissions, has generated attention towards exploring fast-growing filamentous fungi as a potential bioenergy source. This study aimed to optimize Ganoderma lucidum production for elevated biomass and lipid yields in submerged liquid fermentation. The optimization involved varying initial pH, glucose concentration, and agitation rate using response surface methodology (RSM) with central composite design (CCD). Glucose concentration and initial pH significantly influenced biomass production, while agitation rate had an insignificant effect. For lipid production, glucose concentration, initial medium pH, and agitation rate were identified as significant factors. The optimized conditions (initial pH 6, 50 g/L glucose concentration, and 113.42 rpm) were validated in 500 mL shake flasks and a 3 L Air-L-Shaped Bioreactor (ALSB). Shake flask results showed 8.33 g/L of biomass and 2.17 % of lipid, while the ALSB system produced 5.32 g/L of biomass and 2.35 % lipid. The obtained Ganoderma lucidum mycelial lipid underwent acid-catalysed transesterification to produce biodiesel, which was subjected to several tests to comply ASTM and EN standards. This study serves as a valuable reference for future biodiesel applications through the optimization of Ganoderma lucidum biomass and lipid production.
Collapse
Affiliation(s)
- Teik Chee Lim
- Biomass Energy Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zul Ilham
- Biomass Energy Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C, UNAIR Mulyorejo, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
7
|
Devanthi PVP, Pratama F, Pramanda IT, Bani MD, Kadar AD, Kho K. Exploring the Potential of Aspergillus oryzae for Sustainable Mycoprotein Production Using Okara and Soy Whey as Cost-Effective Substrates. J Fungi (Basel) 2024; 10:555. [PMID: 39194881 DOI: 10.3390/jof10080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoprotein is an alternative protein produced through fungal fermentation. However, it typically relies on refined glucose syrup derived from starch, which can be costly and unsustainable. This study investigates the potential of soybean processing by-products (okara and soy whey) as alternative substrates for producing mycoprotein using Aspergillus oryzae. A. oryzae was cultured for 7 days at 30 °C in diluted okara (1:50) and soy whey (1:1) with or without agitation (100 rpm). Soy whey produced higher biomass yields (369.2-408.8 mg dry biomass/g dry substrate), but had a lower biomass concentration (0.783-0.867 g dry weight/L). Conversely, okara produced a higher biomass concentration (2.02 g dry weight/L) with a yield of 114.7 mg dry biomass/g dry substrate. However, biomass formation in okara was only observed in static conditions, as agitation caused biomass to entangle with soy pulp, hampering its production. Additionally, okara tended to release protein into the media, while soy whey accumulated protein within the biomass, reaching up to 53% w/w protein content. The results of this study provide a promising approach to addressing both soybean processing waste reduction and food security concerns.
Collapse
Affiliation(s)
| | - Ferren Pratama
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Adinda Darwati Kadar
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Katherine Kho
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
8
|
Deshmukh N, Bhaskaran L. Optimization of cultural and nutritional conditions to enhance mycelial biomass of Cordyceps militaris using statistical approach. Braz J Microbiol 2024; 55:235-244. [PMID: 38150151 PMCID: PMC10920581 DOI: 10.1007/s42770-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
Cordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass. The initial optimization was done by the conventional single-factor approach, followed by Plackett-Burman design to screen the most significant variables, with yeast extract, temperature, and glucose being the most significant, contributing 11.58%, 49.74%, and 27.98%, respectively, in mycelial biomass production. These variables were then optimized using response surface methodology (RSM) based on central composite design (CCD). The study observed that temperature and glucose had the highest impact on mycelial biomass, with p-values of 0.0128 and 0.0191, respectively. Under the optimized conditions, temperature 20 °C, glucose 2.5% (w/v), and yeast extract 0.8% (w/v), the maximal yield of mycelial biomass reached 547 ± 2.09 mg/100 mL, which was 1.95-fold higher than the yield in the basal medium. These findings suggest that optimizing the cultural and nutritional conditions can enhance mycelial biomass production of Cordyceps militaris, offering a sustainable and cost-effective source of this valuable fungus.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, 382210, India.
| | - Lakshmi Bhaskaran
- L J School of Applied Sciences, L J University, Ahmedabad, 382210, India
| |
Collapse
|
9
|
Kizilay HK, Küçükçetin A, Demir M. Optimization of carotenoid production by Umbelopsis ramanniana. Biotechnol Prog 2023; 39:e3369. [PMID: 37343233 DOI: 10.1002/btpr.3369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023]
Abstract
Umbelopsis ramanniana was investigated to increase carotenoid production. Nine different carbon sources and six different nitrogen sources were evaluated for the maximum carotenoid production. The most effective nitrogen and carbon sources were KNO3 and lactose, respectively. Then, the optimization of medium components for enhancement of carotenoid production by Umbelopsis ramanniana was achieved using Plackett-Burman design. Box-Behnken response surface methodology was applied to further optimize carotenoid and biomass production. Carbon to nitrogen ratio, lactose concentration, and shaking speed were studied as variables in Box-Behnken design. The optimum conditions for carotenoid and biomass production were determined as 32.42 g/L of lactose concentration, 20:1 of carbon to nitrogen ratio, and shaking speed of 130 rpm. The maximum carotenoid and biomass production under optimized conditions were 1141 μg/L (β-carotene-Eq) and 13.14 g/L, respectively. When compared to the control fermentation, carotenoid, and biomass production were increased by about 2 and 1.3 folds, respectively.
Collapse
Affiliation(s)
- Hatice Kübra Kizilay
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Ahmet Küçükçetin
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Muammer Demir
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
10
|
Correia J, Borges A, Simões M, Simões LC. Beyond Penicillin: The Potential of Filamentous Fungi for Drug Discovery in the Age of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1250. [PMID: 37627670 PMCID: PMC10451904 DOI: 10.3390/antibiotics12081250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics are a staple in current medicine for the therapy of infectious diseases. However, their extensive use and misuse, combined with the high adaptability of bacteria, has dangerously increased the incidence of multi-drug-resistant (MDR) bacteria. This makes the treatment of infections challenging, especially when MDR bacteria form biofilms. The most recent antibiotics entering the market have very similar modes of action to the existing ones, so bacteria rapidly catch up to those as well. As such, it is very important to adopt effective measures to avoid the development of antibiotic resistance by pathogenic bacteria, but also to perform bioprospecting of new molecules from diverse sources to expand the arsenal of drugs that are available to fight these infectious bacteria. Filamentous fungi have a large and vastly unexplored secondary metabolome and are rich in bioactive molecules that can be potential novel antimicrobial drugs. Their production can be challenging, as the associated biosynthetic pathways may not be active under standard culture conditions. New techniques involving metabolic and genetic engineering can help boost antibiotic production. This study aims to review the bioprospection of fungi to produce new drugs to face the growing problem of MDR bacteria and biofilm-associated infections.
Collapse
Affiliation(s)
- João Correia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Mat Jalil MT, Zakaria NA, Salikin NH, Ibrahim D. Assessment of cultivation parameters influencing pectinase production by Aspergillus niger LFP-1 in submerged fermentation. J Genet Eng Biotechnol 2023; 21:45. [PMID: 37093363 PMCID: PMC10126171 DOI: 10.1186/s43141-023-00510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Pectinase is helpful in food and beverage industries, particularly in the preparation of fruit juice, the extraction of vegetable oil, and the fermentation of coffee. The current work aimed to screen Aspergillus niger LFP-1, a recently identified fungal strain, for its ability to produce pectinase and to ascertain the contribution of various physicochemical factors to pectinase production. RESULTS The primary and secondary pectinase activity screenings by Aspergillus niger LFP-1 were performed using pectin screening agar and shake flask system, respectively. The finding revealed that the locally isolated strain is able to secrete favourable pectinase production. Before improvement, the pectinase production was 0.88 ± 0.09 U/mL. However, the improved conditions such as 6 days of the cultivation period, agitation speed of 150 rpm, inoculum size of 1 × 106 spores/mL, 2.5% (w/v) citrus pectin, and 0.4% (w/v) ammonium nitrate could significantly increase pectinase production up to 7.41 ± 0.24 U/mL, representing an 88% increase. In this study, supplementing 2.5% (w/v) citrus pectin to the culture medium as a carbon source increased enzyme production by up to 3.07 ± 0.17 U/mL. Meanwhile, 0.4% (w/v) ammonium nitrate was used as a nitrogen source yielding the highest enzyme activity with a value of 6.86 ± 0.07 U/mL. CONCLUSION Thus, the locally isolated fungal strain, A. niger LFP-1 has outstanding pectinase-producing capability and can be utilized for the commercial production of pectinase. The improved cultural conditions significantly increase pectinase production and shorten the incubation period from 8 days (before improvement) to 6 days (after improvement).
Collapse
Affiliation(s)
- Mohd Taufiq Mat Jalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Nurul Aili Zakaria
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Darah Ibrahim
- Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
12
|
Satpati GG, Dikshit PK, Mal N, Pal R, Sherpa KC, Rajak RC, Rather SU, Raghunathan S, Davoodbasha M. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161828. [PMID: 36707000 DOI: 10.1016/j.scitotenv.2023.161828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The microalgae have a great potential as the fourth generation biofuel feedstock to deal with energy crisis, but the cost of production and biomass harvest are the major hurdles in terms of large scale production and applications. Using filamentous fungi to culture targeted alga for biomass accumulation and eventually harvesting is a sustainable way to mitigate environmental impacts. Microalgal co-culture method could be an alternative to overcome limitations and increase biomass yield and lipid accumulation. It was found to be the high feasibility for the production of biofuels from fungi and microalgae using wastewater. This article aimed to state the synergistic approaches, their culture protocols, harvesting procedure and their potential biotechnological applications. Additionally, algal-fungal consortia could digest cellulosic biomass, potentially reducing operating costs as part of industrial need. As a result of co-cultivation, biofuel production could be economically feasible owing to its excellent ability to treat wastewater and be eco-friendly. The implications of the innovative co-cultivation technology have demonstrated the potential for further development based on the policies that have been supported and implemented.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal, India.
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, Andhra Pradesh, India
| | - Navonil Mal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Ruma Pal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Knawang Chhunji Sherpa
- Microbial Process and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi, Jharkhand, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box, 80204, Jeddah 21589, Saudi Arabia
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India.
| |
Collapse
|
13
|
Mooralitharan S, Mohd Hanafiah Z, Abd Manan TSB, Muhammad-Sukki F, Wan-Mohtar WAAQI, Wan Mohtar WHM. Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. SUSTAINABILITY 2023; 15:3819. [DOI: 10.3390/su15043819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Mycoremediation, a fungal-based technology, has seen tremendous growth as an effective alternative to treat industrial wastewater due to its ability to oxidise pollutant loadings. Considering the non-toxic properties and high potential degradation performance of Ganoderma lucidum, this research aims to study the performance of a Malaysian G. lucidum strain, the effect of agitation speed, and different carbon-to-nitrogen (C/N) ratio concentrations of synthetic wastewater in degrading chemical oxygen demand (COD) and ammonia. Different agitation speeds (25 rpm, 50 rpm and 100 rpm) and C/N ratios (C10N1, C13.3N1 and C16.7N1) were chosen as parameters to be analysed in this study. The best degradation of COD and ammonia with a percentage removal in the range of 95% to 100% within 30 h of treatment. ANOVA analysis was done using the response surface methodology to verify the obtained results, and it was found that mycoremediation using 100 rpm agitation provided the best results, removing more than 95% of COD and ammonia from synthetic wastewater. The microscopic analysis also showed that the structure of G. lucidum changed after wastewater treatment. This result proved that the Malaysian G. lucidum strain has a good potential in treating synthetic domestic wastewater, especially with high organic content, as a naturally sustainable bioremediation system.
Collapse
Affiliation(s)
- Silambarasi Mooralitharan
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Firdaus Muhammad-Sukki
- School of Computing, Engineering & the Built Environment, Merchiston Campus, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
- Solar Research Institute (SRI), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Solar Research Institute (SRI), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
14
|
Alkas TR, Ediati R, Ersam T, Nawfa R, Purnomo AS. Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Dhaver P, Pletschke B, Sithole B, Govinden R. Isolation, screening, preliminary optimisation and characterisation of thermostable xylanase production under submerged fermentation by fungi in Durban, South Africa. Mycology 2022; 13:271-292. [DOI: 10.1080/21501203.2022.2079745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Priyashini Dhaver
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Brett Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Eastern Cape, South Africa
| | - Bruce Sithole
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing. PLoS One 2022; 17:e0263905. [PMID: 35648754 PMCID: PMC9159588 DOI: 10.1371/journal.pone.0263905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Monascus is a filamentous fungus that is widely used for producing Monascus pigments in the food industry in Southeast Asia. While the development of bioinformatics has helped elucidate the molecular mechanism underlying metabolic engineering of secondary metabolite biosynthesis, the biological information on the metabolic engineering of the morphology of Monascus remains unclear. In this study, the whole genome of M. purpureus CSU-M183 strain was sequenced using combined single-molecule real-time DNA sequencing and next-generation sequencing platforms. The length of the genome assembly was 23.75 Mb in size with a GC content of 49.13%, 69 genomic contigs and encoded 7305 putative predicted genes. In addition, we identified the secondary metabolite biosynthetic gene clusters and the chitin synthesis pathway in the genome of the high pigment-producing M. purpureus CSU-M183 strain. Furthermore, it is shown that the expression levels of most Monascus pigment and citrinin clusters located genes were significantly enhanced via atmospheric room temperature plasma mutagenesis. The results provide a basis for understanding the secondary metabolite biosynthesis, and constructing the metabolic engineering of the morphology of Monascus.
Collapse
|
17
|
Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100086] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Batista RD, Melo FG, do Amaral Santos CCA, de Paula-Elias FC, Perna RF, Xavier MCA, Villalba Morales SA, de Almeida AF. Optimization of β-Fructofuranosidase Production from Agrowaste by Aspergillus carbonarius and Its Application in the Production of Inverted Sugar. Food Technol Biotechnol 2021; 59:306-313. [PMID: 34759762 PMCID: PMC8542183 DOI: 10.17113/ftb.59.03.21.6934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 07/14/2021] [Indexed: 11/12/2022] Open
Abstract
Research background Microbial β-fructofuranosidases are widely employed in food industry to produce inverted sugar or fructooligosaccharides. In this study, a newly isolated Aspergillus carbonarius PC-4 strain was used to optimize the β-fructofuranosidase production in a cost-effective process and the sucrose hydrolysis was evaluated to produce inverted sugars. Experimental approach Optimization of nutritional components of culture medium was carried out using simplex lattice mixture design for 72 and 120 h at 28 °C. One-factor-at-a-time methodology was used to optimize the physicochemical parameters. Crude enzyme was used for sucrose hydrolysis at different concentrations. Results and conclusions The optimized conditions of enzyme production were achieved from cultivations containing pineapple crown waste (1.3%, m/V) and yeast extract (0.3%, m/V) after 72 h with an enzyme activity of 9.4 U/mL, obtaining R2=91.85%, R2 adjusted=85.06%, highest F-value (13.52) and low p-value (0.003). One-factor-at-a-time used for optimizing the physicochemical conditions showed optimum temperature (20 °C), pH (5.5), agitation (180 rpm) and time course (72 h) with a 3-fold increase of enzyme production. The invertase-induced sucrose hydrolysis showed the maximum yield (3.45 mmol of reducing sugars) using 10% of initial sucrose concentration. Higher sucrose concentrations caused the inhibition of invertase activity, possibly due to the saturation of substrate or formation of sucrose aggregates, making it difficult for the enzyme to access sucrose molecules within the created clusters. Therefore, a cost-effective method was developed for the invertase production using agroindustrial waste and the produced enzyme can be used efficiently for inverted sugar production at high sucrose concentration. Novelty and scientific contribution This study presents an efficient utilization of pineapple crown waste to produce invertase by a newly isolated Aspergillus carbonarius PC-4 strain. This enzyme exhibited a good potential for inverted sugar production at high initial sucrose concentration, which is interesting for industrial applications.
Collapse
Affiliation(s)
- Ryhára Dias Batista
- Graduate Program in Food Science and Technology, Federal University of Tocantins, 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brazil
| | - Fernanda Guimarães Melo
- Graduate Program in Food Science and Technology, Federal University of Tocantins, 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brazil
| | - Claudia Cristina Auler do Amaral Santos
- Graduate Program in Food Science and Technology, Federal University of Tocantins, 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brazil
| | - Fabrício Coutinho de Paula-Elias
- Graduate Program in Food Science and Technology, Federal University of Tocantins, 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brazil
| | - Rafael Firmani Perna
- Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, José Aurélio Vilela Road 11999, Km 533, Zip Code 37715-400, Poços de Caldas, MG, Brazil
| | - Michelle Cunha Abreu Xavier
- Federal University of Tocantins (UFT), Department of Bioprocess Engineering and Biotechnology, Badejos Street 69-72, Jardim Cervilha, Zip Code 77404-970, Gurupi, TO, Brazil
| | - Sergio Andres Villalba Morales
- Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, José Aurélio Vilela Road 11999, Km 533, Zip Code 37715-400, Poços de Caldas, MG, Brazil
| | - Alex Fernando de Almeida
- Graduate Program in Food Science and Technology, Federal University of Tocantins, 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brazil
| |
Collapse
|
19
|
Jin S, Sun F, Hu Z, Liu L, Li J, Du G, Li Y, Shi G, Chen J. Improving Aspergillus niger seed preparation and citric acid production by morphology controlling-based semicontinuous cultivation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Intasit R, Cheirsilp B, Suyotha W, Boonsawang P. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Krumova E, Abrashev R, Dishliyska V, Stoyancheva G, Kostadinova N, Miteva-Staleva J, Spasova B, Angelova M. Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J Basic Microbiol 2021; 61:782-794. [PMID: 34309887 DOI: 10.1002/jobm.202100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Stoyancheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nedelina Kostadinova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
22
|
Leng L, Li W, Chen J, Leng S, Chen J, Wei L, Peng H, Li J, Zhou W, Huang H. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2021; 330:125008. [PMID: 33773267 DOI: 10.1016/j.biortech.2021.125008] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wenting Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jie Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Songqi Leng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jiefeng Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liang Wei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
23
|
Otero DM, Cavalcante Braga AR, Kalil SJ. Diversification of nitrogen sources as a tool to improve endo-xylanase enzyme activity produced by Cryptococcus laurentii. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Abrashev R, Krumova E, Petrova P, Eneva R, Kostadinova N, Miteva-Staleva J, Engibarov S, Stoyancheva G, Gocheva Y, Kolyovska V, Dishliyska V, Spassova B, Angelova M. Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol 2021; 125:412-425. [PMID: 33910682 DOI: 10.1016/j.funbio.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. . Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.
Collapse
Affiliation(s)
- Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Penka Petrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Nedelina Kostadinova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Jeni Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Stephan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Galina Stoyancheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Academician G. Bonchev 25, 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Boryana Spassova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria.
| |
Collapse
|
25
|
John J, Kaimal KS, Smith ML, Rahman PK, Chellam PV. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int J Biol Macromol 2020; 162:1086-1099. [DOI: 10.1016/j.ijbiomac.2020.06.224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
|
26
|
Sun W, Liu L, Yu Y, Yu B, Liang C, Ying H, Liu D, Chen Y. Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1. ACS OMEGA 2020; 5:19737-19746. [PMID: 32803069 PMCID: PMC7424707 DOI: 10.1021/acsomega.0c02501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 05/15/2023]
Abstract
In this study, we found that biofilm formation is a critical factor affecting the activity of Aspergillus niger SJ1 xylanase. Xylanase activity increased 8.8% from 1046.88 to 1147.74 U/mL during A. niger SJ1 immobilized fermentation with biofilm formation. Therefore, we carried out the work of genomic analysis and biofilm-related time-series transcriptome analysis of A. niger SJ1 for better understanding of the ability of A. niger SJ to produce xylanase and biofilm formation. Genome annotation results revealed a complete biofilm polysaccharide component synthesis pathway in A. niger SJ1 and five proteins regarding xylanase synthesis. In addition, results of transcriptome analysis revealed that the genes involved in the synthesis of cell wall polysaccharides and amino acid anabolism were highly expressed in the biofilm. Furthermore, the expression levels of major genes in the gluconeogenesis pathway and mitogen-activated protein kinase pathway were examined.
Collapse
Affiliation(s)
- Wenjun Sun
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Li Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Ying Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Bin Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Caice Liang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Hanjie Ying
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Dong Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Yong Chen
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- . Phone: +86 25 86990001. Fax: +86 25 58139389
| |
Collapse
|
27
|
Chan LG, Dias FFG, Saarni A, Cohen J, Block D, Taha AY, Moura Bell JMLN. Scaling up the Bioconversion of Cheese Whey Permeate into Fungal Oil by
Mucor circinelloides. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lauryn G. Chan
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Fernanda F. G. Dias
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Andrew Saarni
- Department of Chemical EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Joshua Cohen
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - David Block
- Department of Chemical EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
- Department of Viticulture and EnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Juliana M. L. N. Moura Bell
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
- Department of Biological and Agricultural EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
28
|
Sharma E, Gulati A, Gulati A. Statistical optimization of culture conditions of mesophillic gamma-glutamyl transpeptidase from Bacillus altitudinis IHB B1644. 3 Biotech 2020; 10:262. [PMID: 32477849 DOI: 10.1007/s13205-020-02252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 11/30/2022] Open
Abstract
Microbial gamma-glutamyl transpeptidase (GGT) is a key enzyme in production of several γ-glutamyl compounds with food and pharmaceutical applications. Bacterial GGTs are not commercially available in the market owing to their low production from various sources. Thus, the study was focused on achieving the higher GGT production from B. altitudinis IHB B1644 by optimizing the culture conditions using one-variable-at-a-time (OVAT) strategy. A mesophillic temperature of 28 °C, agitation 200 rpm and neutral pH 7 were found to be optimal for higher GGT titre. Among the medium components, the monosaccharide glucose served as the best carbon source over disaccharides, and yeast extract was the preferred organic nitrogen source over inorganic nitrogen sources. The statistical approaches (Plakett-Burman and response surface methodology) were further employed for the optimization of medium components. Medium composition: 0.1% w/v glucose, 0.3% w/v yeast extract, 0.03% w/v magnesium sulphate, 0.20% w/v potassium dihydrogen phosphate and 2.5% w/v sodium chloride with inoculum size (1% v/v) was suitable for higher GGT titres (449 U ml-1). Time kinetics showed the stability of enzyme up to 96 h of incubation suggesting its application in the industrial use. The proposed strategy resulted in 2.6-fold increase in the GGT production compared to that obtained in the unoptimized medium. The results demonstrated that RSM was fitting to identify the optimum production conditions and this finding should be of great importance for commercial GGT production.
Collapse
Affiliation(s)
- Eshita Sharma
- 1Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research (CSIR), PO Box 6, Palampur, Himachal Pradesh 176061 India
- 2Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab India
| | - Arvind Gulati
- 3Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, PO Box 6, Palampur, Himachal Pradesh 176061 India
| | - Ashu Gulati
- 1Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research (CSIR), PO Box 6, Palampur, Himachal Pradesh 176061 India
| |
Collapse
|
29
|
Chai X, Ai Z, Liu J, Guo T, Wu J, Bai J, Lin Q. Effects of pigment and citrinin biosynthesis on the metabolism and morphology of Monascus purpureus in submerged fermentation. Food Sci Biotechnol 2020; 29:927-937. [PMID: 32582455 DOI: 10.1007/s10068-020-00745-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/29/2022] Open
Abstract
The effects of the secondary metabolite biosynthesis on the metabolism and morphology of the Monascus purpureus were investigated in this study. Hypha and septum length became longer after deletion of genes pigR and pksCT in M. purpureus LQ-6 by Agrobacterium tumefaciens-mediated transformation technology, highly branched hyphae, much smaller and freely dispersed mycelial pellets were observed in M. purpureus. Compared with that in the wild-type, the level of intracellular NADH and NADPH was almost constant in M. purpureus ΔpigR at 4 days, but the NADH and NADPH levels decreased by 1.58-fold and 3.71-fold in M. purpureus ΔpksCT. The present study can not only provide a kind of strategy to improve the Monascus pigments production, but also provide theoretical support for the further study of relationship between the secondary metabolites, metabolism and morphological change.
Collapse
Affiliation(s)
- Xueying Chai
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002 Henan China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| | - Zhilu Ai
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002 Henan China
| | - Jun Liu
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002 Henan China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| | - Ting Guo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| | - Jingyan Wu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 41004 Hunan China
| |
Collapse
|
30
|
Du L, Gao B, Liang J, Wang Y, Xiao Y, Zhu D. Microparticle-enhanced Chaetomium globosum DX-THS3 β-d-glucuronidase production by controlled fungal morphology in submerged fermentation. 3 Biotech 2020; 10:100. [PMID: 32099741 PMCID: PMC7005231 DOI: 10.1007/s13205-020-2068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Glycyrrhetinic acid monoglucuronide (GAMG) is a novel and low-calorie sweetener that is widely applied in the food industry. This study aimed to enhance the production of fungal β-d-glucuronidase (GUS) via a novel fermentation technique by evaluating the effects of the various microparticles on Chaetomium globosum DX-THS3 GUS production. Results showed that the silica microparticle greatly affected the morphology of DX-THS3 strain relative to the other microparticles. Microbial structure imaging results showed that the smallest average diameter of fungal pellets was achieved (0.7 ± 0.1 mm) by adding 10 g/L (600 mesh) of silica. The diameter of the control was 3.0 ± 0.5 mm in shake flask fermentation. The GUS activity and biomass of DX-THS3 reached 680 U/mL and 4.2 g/L, respectively, with the use of 10 g/L of silica microparticles, whereas those of the control were 210 U/mL and 2.8 g/L via shake flask fermentation. The findings in this study may provide a potential strategy for designing the morphology of filamentous fungi using microparticles in the industrial production of GAMG.
Collapse
Affiliation(s)
- Liangqing Du
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Boliang Gao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - JinFeng Liang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Ya Wang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Yiwen Xiao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
31
|
Effects of Cultural Conditions in Enhancing the Production of Anti-MRSA Activity of Lasiodiplodia pseudotheobromae IBRL OS-64, an Endophytic Fungus Isolated from Leaf of Ocimum sanctum L. in Submerged Fermentation System. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A. Subtopic: Advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109373. [PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Nurfarahana Mohd Nasir
- School of Ocean Engineering, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| | | | | | - Aqilah Mohammad
- School of Marine and Environment Science, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| | - Ahmad Jusoh
- School of Ocean Engineering, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| |
Collapse
|
33
|
Modulation of fungal biofilm physiology and secondary product formation based on physico-chemical surface properties. Bioprocess Biosyst Eng 2019; 42:1935-1946. [DOI: 10.1007/s00449-019-02187-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/29/2022]
|
34
|
Mustafa SM, Chua LS, El-Enshasy HA. Effects of Agitation Speed and Kinetic Studies on Probiotication of Pomegranate Juice with Lactobacillus casei. Molecules 2019; 24:E2357. [PMID: 31247970 PMCID: PMC6651325 DOI: 10.3390/molecules24132357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The issues of lactose intolerance and vegetarianism have encouraged the introduction of non-dairy fermented food into the market. Therefore, this study aims to evaluate the effect of agitation speed on the bioactive compounds and functional characteristics of probioticated pomegranate juice. Pomegranate juice was fermented with Lactobacillus casei at different agitation speeds ranging from 0 (microaerophilic) to 150 rpm at 37 °C. The functional properties of probioticated pomegranate juice were evaluated in terms of growth (biomass), lactic acid production, antioxidant activity, total phenolic content, and key metabolites using LC-MS/MS. The growth kinetics of fermentation was monitored at the optimal condition using one factor at a time method. High cell growth (3.58 × 1010 cfu/mL or 7.9 gL-1) was observed for L. casei probioticated pomegranate juice agitated at 0 rpm. The findings of this study reveal the potential of pomegranate juice as a medium for L. casei cultivation without nutrient supplementation. The improvement of antioxidant activity in the probioticated juice could be due to the increment of quercetin-3-glucoside. Therefore, L. casei grew well in pomegranate juice with a high cell viability and antioxidant activity at a non-agitated condition. Probioticated pomegranate juice is a potentially functional drink.
Collapse
Affiliation(s)
- Siti Marhaida Mustafa
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia.
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia.
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
35
|
Optimization of Diverse Carbon Sources and Cultivation Conditions for Enhanced Growth and Lipid and Medium-Chain Fatty Acid (MCFA) Production by Mucor circinelloides. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Keywords: Mucor circinelloides; microbial lipids; medium-chain fatty acids; culture optimization
Collapse
|
36
|
Marine psychrophile-derived cold-active polygalacturonase: Enhancement of productivity in Thalassospira frigidphilosprofundus S3BA12 by whole cell immobilization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Cai LN, Xu SN, Lu T, Lin DQ, Yao SJ. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol 2019; 292:12-22. [DOI: 10.1016/j.jbiotec.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/31/2023]
|
38
|
Lueangjaroenkit P, Teerapatsakul C, Chitradon L. Morphological Characteristic Regulation of Ligninolytic Enzyme Produced by Trametes polyzona. MYCOBIOLOGY 2018; 46:396-406. [PMID: 30637148 PMCID: PMC6319472 DOI: 10.1080/12298093.2018.1537586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 05/31/2023]
Abstract
A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.
Collapse
Affiliation(s)
| | - Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
39
|
Sirohi R, Singh A, Tarafdar A, Shahi NC. Application of genetic algorithm in modelling and optimization of cellulase production. BIORESOURCE TECHNOLOGY 2018; 270:751-754. [PMID: 30270051 DOI: 10.1016/j.biortech.2018.09.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to study the application of genetic algorithm (GA) in modelling and optimization of cellulose production by Trichoderma reesei from pea hull. Enzyme activity of cellulase was determined using Filter Paper Activity (FPA) assay. Optimization of process parameters was performed using mathematical (MO) and genetic optimizers to obtain combination of variables for highest possible enzyme activity. GA generated a higher value of cellulase activity (0.353 U/mL) as compared to MO (0.302 U/mL). The values of independent variables in set (GA, MO) were: agitation speed (127, 120 rpm), %H2O2 concentration (10.36, 5.0), cultivation time (112, 91 h). The investigation highlights that GA could be used as a potential optimizer for processes involving waste utilization.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Postharvest Process and Food Engineering, College of Technology, G.B. Pant, University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India.
| | - Anupama Singh
- Department of Postharvest Process and Food Engineering, College of Technology, G.B. Pant, University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - Ayon Tarafdar
- Department of Postharvest Process and Food Engineering, College of Technology, G.B. Pant, University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - N C Shahi
- Department of Postharvest Process and Food Engineering, College of Technology, G.B. Pant, University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| |
Collapse
|
40
|
Karahalil E, Coban HB, Turhan I. A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique. Crit Rev Biotechnol 2018; 39:192-201. [DOI: 10.1080/07388551.2018.1531821] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ercan Karahalil
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
41
|
Sperb JGC, Costa TM, Bertoli SL, Tavares LBB. SIMULTANEOUS PRODUCTION OF BIOSURFACTANTS AND LIPASES FROM Aspergillus niger AND OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY AND DESIRABILITY FUNCTIONS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180353s20160400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Massonnet M, Morales-Cruz A, Minio A, Figueroa-Balderas R, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. Whole-Genome Resequencing and Pan-Transcriptome Reconstruction Highlight the Impact of Genomic Structural Variation on Secondary Metabolite Gene Clusters in the Grapevine Esca Pathogen Phaeoacremonium minimum. Front Microbiol 2018; 9:1784. [PMID: 30150972 PMCID: PMC6099105 DOI: 10.3389/fmicb.2018.01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
The Ascomycete fungus Phaeoacremonium minimum is one of the primary causal agents of Esca, a widespread and damaging grapevine trunk disease. Variation in virulence among Pm. minimum isolates has been reported, but the underlying genetic basis of the phenotypic variability remains unknown. The goal of this study was to characterize intraspecific genetic diversity and explore its potential impact on virulence functions associated with secondary metabolism, cellular transport, and cell wall decomposition. We generated a chromosome-scale genome assembly, using single molecule real-time sequencing, and resequenced the genomes and transcriptomes of multiple isolates to identify sequence and structural polymorphisms. Numerous insertion and deletion events were found for a total of about 1 Mbp in each isolate. Structural variation in this extremely gene dense genome frequently caused presence/absence polymorphisms of multiple adjacent genes, mostly belonging to biosynthetic clusters associated with secondary metabolism. Because of the observed intraspecific diversity in gene content due to structural variation we concluded that a transcriptome reference developed from a single isolate is insufficient to represent the virulence factor repertoire of the species. We therefore compiled a pan-transcriptome reference of Pm. minimum comprising a non-redundant set of 15,245 protein-coding sequences. Using naturally infected field samples expressing Esca symptoms, we demonstrated that mapping of meta-transcriptomics data on a multi-species reference that included the Pm. minimum pan-transcriptome allows the profiling of an expanded set of virulence factors, including variable genes associated with secondary metabolism and cellular transport.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
43
|
Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 2018; 102:5827-5839. [PMID: 29766241 DOI: 10.1007/s00253-018-9072-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
White-rot basidiomycetous (WRB) fungi are a group of wood-decaying fungi that are known to be endowed with the ability to secrete enzymes that can catalyze decomposition of a range of plant cell wall polysaccharides, including cellulose and lignin. Expression of these enzymes is induced by the substrate and the enzyme yields obtained depend on the growth of the fungi and thus the mode of cultivation. In order to exploit WRB fungi for local enzyme production for converting lignocellulosic materials in biorefinery processes, the fungi can principally be cultivated in either solid-state (SSC) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates on the substrate used. However, the cultivation method also affects the enzyme activity profile obtained, and the resulting enzyme titers and significant dilution of the enzymes usually occurs in SmC. The review also highlights some future approaches, including sequential cultivations and co-cultivation of WRB fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production.
Collapse
|
44
|
A process for simultaneously achieving phenol biodegradation and polyhydroxybutyrate accumulation using Cupriavidus taiwanesis 187. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Mohapatra S, Padhy S, Das Mohapatra PK, Thatoi HN. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. BIORESOURCE TECHNOLOGY 2018; 253:262-272. [PMID: 29353755 DOI: 10.1016/j.biortech.2018.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
A cellulose degrading fungus Aspergillus fumigatus (CWSF-7) isolated from decomposed lignocellulosic waste containing soil was found to produce high titer of cellulases. The optimum activity of CMCase and FPase were 1.9 U/mL and 0.9 U/mL respectively while the highest protein concentration was found to be 1.2 mg/mL. Saccharification of two Pennisetum grass varieties [dennanath (DG) and hybrid napier grass (HNG)] were optimized using partially purified CMCase and FPase in equal concentration, i.e. a ratios of 1:1 and further with addition of commercial xylanase using response surface methodology (RSM). The production of total reducing sugar (TRS) using isolated cellulase were 396.6 and 355.8 (mg/g), whereas further addition of xylanase had higher TRS titers of 478.7 and 483.3 (mg/g) for DG and HNG respectively as evident from HPLC analysis. Further, characterization of the enzyme saccharified DG and HNG by SEM and ATR-FTIR revealed efficient hydrolysis of cellulose and partially hydrolysis of hemicellulose.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engineering and Technology, Biju Pattnaik University of Technology, Bhubaneswar 751003, India
| | - Sameer Padhy
- Department of Biotechnology, College of Engineering and Technology, Biju Pattnaik University of Technology, Bhubaneswar 751003, India
| | | | - H N Thatoi
- Department of Biotechnology, North Orissa University, Sriram Chandra vihar, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
46
|
Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Gorret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8870-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121305] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Wang ZJ, Shi HL, Wang P. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate. Appl Biochem Biotechnol 2016; 179:1115-27. [PMID: 27022751 DOI: 10.1007/s12010-016-2053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell's length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation.
Collapse
Affiliation(s)
- Ze-Jian Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Institute of Biomanufacturing Technology & Collaborative Innovation Center, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, China. .,Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC, Delft, The Netherlands.
| | - Hui-Lin Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Institute of Biomanufacturing Technology & Collaborative Innovation Center, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, China
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Institute of Biomanufacturing Technology & Collaborative Innovation Center, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|