1
|
Agyemang EF. A Gaussian Process Regression and Wavelet Transform Time Series approaches to modeling Influenza A. Comput Biol Med 2025; 184:109367. [PMID: 39549528 DOI: 10.1016/j.compbiomed.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The global spread of Influenza A viruses is worsening economic and social challenges. Various mechanistic models have been developed to understand the virus's spread and evaluate intervention effectiveness. This study aimed to model the temporal dynamics of Influenza A using Gaussian Process Regression (GPR) and wavelet transform approaches. The study employed Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and Wavelet Power Spectrum to analyze time-series data from 2009 to 2023. The GPR model, known for its non-parametric Bayesian nature, effectively captured non-linear trends in the Influenza A data, while wavelet transforms provided insights into frequency and time-localized characteristics. The integration of GPR with DWT denoising techniques demonstrated superior performance in forecasting Influenza A cases compared to traditional models like Auto Regressive Integrated Moving Averages (ARIMA) and Exponential Smoothing (ETS) using Holt-Winter method. The study identified significant anomalies in Influenza A cases, corresponding to known pandemic events and seasonal variations. These findings highlight the effectiveness of combining wavelet transform analysis with GPR in understanding and predicting infectious disease patterns, offering valuable insights for public health planning and intervention strategies. The research recommends extending this approach to other respiratory viruses to assess its broader applicability.
Collapse
Affiliation(s)
- Edmund Fosu Agyemang
- School of Mathematical and Statistical Science, College of Sciences, University of Texas Rio Grande Valley, USA; Department of Statistics and Actuarial Science, College of Basic and Applied Sciences, University of Ghana, Ghana; Department of Computer Science, Ashesi University, No. 1 University Avenue, Berekuso, Eastern Region, Ghana.
| |
Collapse
|
2
|
Jiang M, Jia M, Wang Q, Sun Y, Xu Y, Dai P, Yang W, Feng L. Changes in the Epidemiological Features of Influenza After the COVID-19 Pandemic in China, the United States, and Australia: Updated Surveillance Data for Influenza Activity. Interact J Med Res 2024; 13:e47370. [PMID: 39382955 PMCID: PMC11499725 DOI: 10.2196/47370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/28/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND There has been a global decrease in seasonal influenza activity since the onset of the COVID-19 pandemic. OBJECTIVE We aimed to describe influenza activity during the 2021/2022 season and compare it to the trends from 2012 to 2023. We also explored the influence of social and public health prevention measures during the COVID-19 pandemic on influenza activity. METHODS We obtained influenza data from January 1, 2012, to February 5, 2023, from publicly available platforms for China, the United States, and Australia. Mitigation measures were evaluated per the stringency index, a composite index with 9 measures. A general additive model was used to assess the stringency index and the influenza positivity rate correlation, and the deviance explained was calculated. RESULTS We used over 200,000 influenza surveillance data. Influenza activity remained low in the United States and Australia during the 2021/2022 season. However, it increased in the United States with a positive rate of 26.2% in the 49th week of 2022. During the 2021/2022 season, influenza activity significantly increased compared with the previous year in southern and northern China, with peak positivity rates of 28.1% and 35.1% in the second week of 2022, respectively. After the COVID-19 pandemic, the dominant influenza virus genotype in China was type B/Victoria, during the 2021/2022 season, and accounted for >98% (24,541/24,908 in the South and 20,543/20,634 in the North) of all cases. Influenza virus type B/Yamagata was not detected in all these areas after the COVID-19 pandemic. Several measures individually significantly influence local influenza activity, except for influenza type B in Australia. When combined with all the measures, the deviance explained values for influenza A and B were 87.4% (P<.05 for measures of close public transport and restrictions on international travel) and 77.6% in southern China and 83.4% (P<.05 for measures of school closing and close public transport) and 81.4% in northern China, respectively. In the United States, the association was relatively stronger, with deviance-explained values of 98.6% for influenza A and 99.1% (P<.05 for measures of restrictions on international travel and public information campaign) for influenza B. There were no discernible effects on influenza B activity in Australia between 2020 and 2022 due to the incredibly low positive rate of influenza B. Additionally, the deviance explained values were 95.8% (P<.05 for measures of restrictions on gathering size and restrictions on international travel) for influenza A and 72.7% for influenza B. CONCLUSIONS Influenza activity has increased gradually since 2021. Mitigation measures for COVID-19 showed correlations with influenza activity, mainly driven by the early stage of the pandemic. During late 2021 and 2022, the influence of mitigation management for COVID-19 seemingly decreased gradually, as the activity of influenza increased compared to the 2020/2021 season.
Collapse
Affiliation(s)
- Mingyue Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengmeng Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanxia Sun
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunshao Xu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixi Dai
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liu J, Wong G, Li H, Yang Y, Cao Y, Li Y, Wu Y, Zhang Z, Jin C, Wang X, Chen Y, Su B, Wang Z, Wang Q, Cao Y, Chen G, Qian Z, Zhao J, Wu G. Biosafety and immunology: An interdisciplinary field for health priority. BIOSAFETY AND HEALTH 2024; 6:310-318. [PMID: 40078733 PMCID: PMC11894974 DOI: 10.1016/j.bsheal.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 03/14/2025] Open
Abstract
Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively. Emerging and re-emerging infectious diseases, such as the current coronavirus disease 2019 (COVID-19) pandemic, have raised concerns regarding both biosafety and immunology worldwide. Interdisciplinary studies involved in biosafety and immunology are relevant in many fields, including the development of vaccines and other immune interventions such as monoclonal antibodies and T-cells, herd immunity (or population-level barrier immunity), immunopathology, and multispecies immunity, i.e., animals and even plants. Meanwhile, advances in immunological science and technology are occurring rapidly, resulting in important research achievements that may contribute to the recognition of emerging biosafety hazards, as well as early warning, prevention, and defense systems. This review provides an overview of the interdisciplinary field of biosafety and immunology. Close collaboration and innovative application of immunology in the field of biosafety is becoming essential for human health.
Collapse
Affiliation(s)
- Jun Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Gary Wong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12000, Cambodia
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Yang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuxi Cao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Yan Wu
- Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, and School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 200025, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | | | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guobing Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Wu Y, Wang X, Huang Y, Chen R, Xu Y, Wei W, Qin F, Yuan Z, Su J, Chen X, Liu J, Wen L, Shi M, Qin T, Liao Y, Lu B, Tao X, Wang C, Chen S, Li J, Liu WJ, Ye L, Liang H, Jiang J. Immunogenicity of an Inactivated COVID-19 Vaccine in People Living with HIV in Guangxi, China: A Prospective Cohort Study. Viruses 2024; 16:1481. [PMID: 39339957 PMCID: PMC11437430 DOI: 10.3390/v16091481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/30/2024] Open
Abstract
The inactivated COVID-19 vaccine has demonstrated high efficacy in the general population through extensive clinical and real-world studies. However, its effectiveness in immunocompromised individuals, particularly those living with HIV (PLWH), remains limited. In this study, 20 PLWH and 15 HIV-seronegative individuals were recruited to evaluate the immunogenicity of an inactivated COVID-19 vaccine in PLWH through a prospective cohort study. The median age of the 20 PLWH and 15 HIV-seronegative individuals was 42 years and 31 years, respectively. Of the PLWH, nine had been on ART for over five years. The median anti-SARS-CoV-2 S-RBD IgG antibody level on d224 was higher than that on d42 (8188.7 ng/mL vs. 3200.9 ng/mL, P < 0.05). Following COVID-19 infection, the antibody level increased to 29,872.5 ng/mL on dre+90, 12.19 times higher than that on d300. Compared with HIV-seronegative individuals, the antibody level in PLWH was lower on d210 (183.3 ng/mL vs. 509.3 ng/mL, P < 0.01), while there was no difference after d224. The symptoms of COVID-19 infection in PLWH were comparable to those in HIV-seronegative individuals. In this study, the inactivated COVID-19 vaccine demonstrated good immunogenicity in PLWH. The protective benefit of booster vaccinations for PLWH cannot be ignored. Implementing a booster vaccination policy for PLWH is an effective approach to providing better protection against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuting Wu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunxuan Huang
- Guigang Center for Disease Control and Prevention, Guigang 537100, China
| | - Rongfeng Chen
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Yuexiang Xu
- Guigang Center for Disease Control and Prevention, Guigang 537100, China
| | - Wudi Wei
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Fengxiang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liufang Wen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Minjuan Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Tongxue Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yinlu Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Beibei Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Cuixiao Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shanshan Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jinmiao Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
6
|
Liu WJ, Liu S. A Tale of Two Cities: From Influenza HxNy to SARS-CoV-z. China CDC Wkly 2021; 3:1052-1056. [PMID: 34934515 PMCID: PMC8668405 DOI: 10.46234/ccdcw2021.256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- William J Liu
- Chinese National Influenza Center (CNIC), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|