1
|
Khalid N, Khan MU, Rehman R, Kanwal S, Zahid T, Ghani MU, Iftikhar A, Ali Q, Javed MA. Unraveling the genetic connections for mitochondrial DNA control region and breast cancer susceptibility. Sci Rep 2025; 15:4821. [PMID: 39924515 PMCID: PMC11808112 DOI: 10.1038/s41598-025-89115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer, a complex global health concern, has predominantly been studied for nuclear DNA variations. However, the role of mitochondrial DNA (mtDNA) haplogroups in breast cancer susceptibility, especially in Pakistan, remains underexplored. This case-control study investigates the association between mtDNA haplogroups and breast cancer in Pakistan. The study reveals a significant abundance of haplogroup M in breast cancer cases by analyzing breast cancer patients and healthy controls through mitochondrial control region genome sequencing (p < 0.001). Increased frequencies of haplogroups M, H, and R in patients compared to controls suggest their potential role in breast cancer susceptibility. Triple-Negative Breast Cancer (TNBC) cases are also linked to haplogroup M, showing a statistically significant association with a p-value of 0.002. This suggests a potential meaningful association between haplogroup M and the occurrence of TNBC in the studied population. These findings emphasize the importance of mitochondrial genetics in breast cancer risk among the Pakistani population, offering insights for biomarker discovery and targeted interventions. Recognizing mitochondrial genetics in breast cancer risk assessment holds promise for tailored medicine strategies and may impact global breast cancer research and prevention efforts.
Collapse
Affiliation(s)
- Namra Khalid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Raima Rehman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shamsa Kanwal
- Muhammad Ali Jinnah University Karachi, Karachi, Pakistan
| | - Tazeen Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Iftikhar
- Lahore Business School, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, The University of Lahore, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Zhang A, Liu W, Qiu S. Mitochondrial genetic variations in leukemia: a comprehensive overview. BLOOD SCIENCE 2024; 6:e00205. [PMID: 39247535 PMCID: PMC11379488 DOI: 10.1097/bs9.0000000000000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Leukemias are a group of heterogeneous hematological malignancies driven by diverse genetic variations, and the advent of genomic sequencing technologies facilitates the investigation of genetic abnormalities in leukemia. However, these sequencing-based studies mainly focus on nuclear DNAs. Increasing evidence indicates that mitochondrial dysfunction is an important mechanism of leukemia pathogenesis, which is closely related to the mitochondrial genome variations. Here, we provide an overview of current research progress concerning mitochondrial genetic variations in leukemia, encompassing gene mutations and copy number variations. We also summarize currently accessible mitochondrial DNA (mtDNA) sequencing methods. Notably, somatic mtDNA mutations may serve as natural genetic barcodes for lineage tracing and longitudinal assessment of clonal dynamics. Collectively, these findings enhance our understanding of leukemia pathogenesis and foster the identification of novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
3
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
4
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Lee YE, Park JH, Lim HJ, Kim HR, Shin JH, Shin MG. Comparative evaluation of the developed targeted RNA sequencing system and a commercialized test panel. Blood Res 2022; 57:235-238. [PMID: 35880497 PMCID: PMC9492530 DOI: 10.5045/br.2022.2022095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ju Heon Park
- Department of Laboratory Medicine, Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hye Ran Kim
- College of Korean Medicine, Dongshin University, Naju, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
6
|
Cavalcante GC, Ribeiro-Dos-Santos Â, de Araújo GS. Mitochondria in tumour progression: a network of mtDNA variants in different types of cancer. BMC Genom Data 2022; 23:16. [PMID: 35183124 PMCID: PMC8857862 DOI: 10.1186/s12863-022-01032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondrial participation in tumorigenesis and metastasis has been studied for many years, but several aspects of this mechanism remain unclear, such as the association of mitochondrial DNA (mtDNA) with different cancers. Here, based on two independent datasets, we modelled an mtDNA mutation-cancer network by systematic integrative analysis including 37 cancer types to identify the mitochondrial variants found in common among them. Results Our network showed mtDNA associations between gastric cancer and other cancer types, particularly kidney, liver, and prostate cancers, which is suggestive of a potential role of such variants in the metastatic processes among these cancer types. A graph-based interactive web tool was made available at www2.lghm.ufpa.br/mtdna. We also highlighted that most shared variants were in the MT-ND4, MT-ND5 and D-loop, and that some of these variants were nonsynonymous, indicating a special importance of these variants and regions regarding cancer progression, involving genomic and epigenomic alterations. Conclusions This study reinforces the importance of studying mtDNA in cancer and offers new perspectives on the potential involvement of different mitochondrial variants in cancer development and metastasis.
Collapse
Affiliation(s)
- Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.,Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Rua dos Mundurucus, Belém, PA, 4487, 66073-005, Brazil
| | - Gilderlanio S de Araújo
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
7
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Chaudhary S, Ganguly S, Palanichamy JK, Singh A, Bakhshi R, Jain A, Chopra A, Bakhshi S. PGC1A driven enhanced mitochondrial DNA copy number predicts outcome in pediatric acute myeloid leukemia. Mitochondrion 2021; 58:246-254. [PMID: 33812061 DOI: 10.1016/j.mito.2021.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA (mtDNA) copy number alterations occur in acute myeloid leukemia (AML). We evaluated regulation and biological significance of mtDNA copy number in pediatric AML patients (n = 123) by qRT-PCR, and in-vitro studies. MtDNA copy number was significantly higher (p < 0.001) and an independent predictor of aggressive disease (p = 0.006), lower event free survival (p = 0.033), and overall survival (p = 0.007). Expression of TFAM, POLG, POLRMT, MYC and ND3 were significantly upregulated. In cell lines, PGC1A inhibition decreased mtDNA copy number while MYC inhibition had no effect. PGC1A may contribute to enhanced mtDNA copy number, which predicts disease aggressiveness and inferior survival outcome.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Bakhshi
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Sun D, Wei Y, Zheng HX, Jin L, Wang J. Contribution of Mitochondrial DNA Variation to Chronic Disease in East Asian Populations. Front Mol Biosci 2019; 6:128. [PMID: 31803756 PMCID: PMC6873657 DOI: 10.3389/fmolb.2019.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main producers of energy in eukaryotic cells. Mitochondrial dysfunction is associated with specific mitochondrial DNA (mtDNA) variations (haplogroups), and these variations can contribute to human disease. East Asian populations show enrichment of many mitochondrial haplogroups, including A, B, D, G, M7, M8, M9, N9, R9, and exhibit half of the known haplogroups of worldwide. In this review, we summarize the current research in the field of mtDNA variation and associated disease in East Asian populations and discuss the physiological and pathological relevance of mitochondrial biology. mtDNA haplogroups are associated with various metabolic disorders ascribed to altered oxidative phosphorylation. The same mitochondrial haplogroup can show either a negative or positive association with different diseases. Mitochondrial dynamics, mitophagy, and mitochondrial oxidative stress, ultimately influence susceptibility to various diseases. In addition, mitochondrial retrograde signaling pathways may have profound effects on nuclear-mitochondrial interactions, affecting cellular morphology, and function. Other complex networks including proteostasis, mitochondrial unfolded protein response and reactive oxygen species signaling may also play pivotal roles in metabolic performance.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep 2019; 9:15716. [PMID: 31673122 PMCID: PMC6823544 DOI: 10.1038/s41598-019-51951-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are organelles that perform major roles in cellular operation. Thus, alterations in mitochondrial genome (mtGenome) may lead to mitochondrial dysfunction and cellular deregulation, influencing carcinogenesis. Gastric cancer (GC) is one of the most incident and mortal types of cancer in Brazil, particularly in the Amazon region. Here, we sequenced and compared the whole mtGenome extracted from FFPE tissue samples of GC patients (tumor and internal control – IC) and cancer-free individuals (external control – EC) from this region. We found 3-fold more variants and up to 9-fold more heteroplasmic regions in tumor when compared to paired IC samples. Moreover, tumor presented more heteroplasmic variants when compared to EC, while IC and EC showed no significant difference when compared to each other. Tumor also presented substantially more variants in the following regions: MT-RNR1, MT-ND5, MT-ND4, MT-ND2, MT-DLOOP1 and MT-CO1. In addition, our haplogroup results indicate an association of Native American ancestry (particularly haplogroup C) to gastric cancer development. To the best of our knowledge, this is the first study to sequence the whole mtGenome from FFPE samples and to apply mtGenome analysis in association to GC in Brazil.
Collapse
|
12
|
Sachdeva A, Rajguru JP, Sohi K, Sachdeva SS, Kaur K, Devi R, Rana V. Association of leukemia and mitochondrial diseases-A review. J Family Med Prim Care 2019; 8:3120-3124. [PMID: 31742129 PMCID: PMC6857401 DOI: 10.4103/jfmpc.jfmpc_679_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 11/04/2022] Open
Abstract
Mitochondria play an important role in various metabolic pathways like oxidative phosphorylation free radical generation and apoptosis. Defects in mitochondrial function are responsible for a number of heterogenous clinical presentations along with development and progression of cancer. Decrease in cellular energy (ATP) production because of impaired oxidative phosphorylation is the most important cause for these underlying disorders. The present review article aims to provide current understanding of mitochondrial genetics and biology and relates the mt-DNA alterations in leukemia patients.
Collapse
Affiliation(s)
- Ashwani Sachdeva
- Department of Prosthodontics, J.C.D Dental College, Sirsa, Haryana, India
| | - Jagadish Prasad Rajguru
- Department of Oral and Maxillofacial Pathology, Hi-Tech Dental College and Hospital, Bhubaneswar, Odisha, India
| | - Kanwardeep Sohi
- Department of Prosthodontics, Shaheed Kartar Singh Sarabha Dental College and Hospital, Sarabha, Ludhiana, Punjab, India
| | | | - Kirandeep Kaur
- Department of Public Health Dentistry, Shaheed Kartar Singh Sarabha Dental College and Hospital, Sarabha, Ludhiana, Punjab, India
| | - Rani Devi
- Department of Public Health Dentistry, Shaheed Kartar Singh Sarabha Dental College and Hospital, Sarabha, Ludhiana, Punjab, India
| | - Vivek Rana
- Department of Oral Medicine, Private Practitioner, New Delhi, India
| |
Collapse
|