1
|
Golpasand T, Keshvari M, Behzadi P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol 2024; 24:344. [PMID: 39271999 PMCID: PMC11401301 DOI: 10.1186/s12866-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.
Collapse
Affiliation(s)
- Taha Golpasand
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Mohammad Keshvari
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| |
Collapse
|
2
|
Nejad MK, Hasani A, Soofiyani SR, Nahandi MZ, Hasani A. Aptitude of Uropathogenic Escherichia coli in Renal Transplant Recipients: A Comprehensive Review on Characteristic Features, and Production of Extended Spectrum β-Lactamase. Curr Microbiol 2023; 80:382. [PMID: 37864769 DOI: 10.1007/s00284-023-03476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/05/2023] [Indexed: 10/23/2023]
Abstract
Urinary tract infection is the most common infection in almost half of the renal transplant patients. The development of UTI in these patients may progress to bacteremia, acute T cell-mediated rejection, impaired allograft function, or allograft loss, along with the increased risk of hospitalization and death. Among various pathogens implicated, Uropathogenic E. coli (UPEC), especially sequence type 131 (ST131), is the most virulent and multidrug-resistant pathogen. High antimicrobial resistance to most β-lactam antibiotics, mediated by extended spectrum β-lactamases (ESBLs) produced by UPEC, is a challenge in the clinical management of UTIs in kidney transplant recipients. Indeed, multidrug resistance to β-lactam antibiotics is a direct consequence of ESBL production. Resistance to other antibiotics such as aminoglycosides, fluoroquinolones, and trimethoprim-sulphamethoxazole has also been reported in ESBLs-producing UPEC, which reduces the therapeutic options, rising healthcare-associated costs and subsequently leads to renal failure or even graft loss. In this review, we aimed to discuss the post-transplant risk factors of UTI, UPEC virulence factors (VF), and the related factors including quorum sensing, and stress resistance genes. Furthermore, we searched for the current treatment strategies and some of the alternate approaches proposed as therapeutic options that may affirm the treatment of ESBL-producing UPEC.
Collapse
Affiliation(s)
- Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zaare Nahandi
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Fatima S, Akbar A, Irfan M, Shafee M, Ali A, Ishaq Z, Raza SK, Samad A, Alshahrani MY, Hassan SS. Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7278070. [PMID: 37727279 PMCID: PMC10506881 DOI: 10.1155/2023/7278070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 μg), cefixime (5 μg), ceftriaxone (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), and ofloxacin (5 μg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.
Collapse
Affiliation(s)
- Sareen Fatima
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, 19120 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Muhammad Shafee
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), University of Balochistan, Quetta, Balochistan, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Abdul Samad
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), University of Balochistan, Quetta, Balochistan, Pakistan
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Syed Shah Hassan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Maniam L, Vellasamy KM, Ong TA, Teh CSJ, Jabar KA, Mariappan V, Narayanan V, Vadivelu J, Pallath V. Genotypic characteristics of Uropathogenic Escherichia coli isolated from complicated urinary tract infection (cUTI) and asymptomatic bacteriuria-a relational analysis. PeerJ 2023; 11:e15305. [PMID: 37361034 PMCID: PMC10289082 DOI: 10.7717/peerj.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 06/28/2023] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is the predominant agent causing various categories of complicated urinary tract infections (cUTI). Although existing data reveals that UPEC harboured numerous virulence determinants to aid its survival in the urinary tract, the reason behind the occurrence of differences in the clinical severity of uninary tract infections (UTI) demonstrated by the UPEC infection is poorly understood. Therefore, the present study aims to determine the distribution of virulence determinants and antimicrobial resistance among different phylogroups of UPEC isolated from various clinical categories of cUTI and asymptomatic bacteriuria (ASB) E. coli isolates. The study will also attempt a relational analysis of the genotypic characteristics of cUTI UPEC and ASB E. coli isolates. Methods A total of 141 UPEC isolates from cUTI and 160 ASB E. coli isolates were obtained from Universiti Malaya Medical Centre (UMMC). Phylogrouping and the occurrence of virulence genes were investigated using polymerase chain reaction (PCR). Antimicrobial susceptibility of the isolates to different classes of antibiotics was determined using the Kirby Bauer Disc Diffusion method. Results The cUTI isolates were distributed differentially among both Extraintestinal Pathogenic E. coli (ExPEC) and non-ExPEC phylogroups. Phylogroup B2 isolates were observed to possess the highest average aggregative virulence score (7.17), a probable representation of the capability to cause severe disease. Approximately 50% of the cUTI isolates tested in this study were multidrug resistant against common antibiotics used to treat UTI. Analysis of the occurrence of virulence genes among different cUTI categories demonstrated that UPEC isolates of pyelonephritis and urosepsis were highly virulent and had the highest average aggregative virulence scores of 7.80 and 6.89 respectively, compared to other clinical categories. Relational analysis of the occurrence of phylogroups and virulence determinants of UPEC and ASB E. coli isolates showed that 46.1% of UPEC and 34.3% of ASB E. coli from both categories were distributed in phylogroup B2 and had the highest average aggregative virulence score of 7.17 and 5.37, respectively. The data suggest that UPEC isolates which carry virulence genes from all four virulence genes groups studied (adhesions, iron uptake systems, toxins and capsule synthesis) and isolates from phylogroup B2 specifically could predispose to severe UTI involving the upper urinary tract. Therefore, specific analysis of the genotypic characteristics of UPEC could be further explored by incorporating the combination of virulence genes as a prognostic marker for predicting disease severity, in an attempt to propose a more evidence driven treatment decision-making for all UTI patients. This will go a long way in enhancing favourable therapeutic outcomes and reducing the antimicrobial resistance burden among UTI patients.
Collapse
Affiliation(s)
- Lalitha Maniam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Teng Aik Ong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vallikkannu Narayanan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vinod Pallath
- Medical Education Research and Development Unit (MERDU), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Radera S, Agarwal J, Srivastava S, Gupta P, Pandey A. Association of Virulence Markers With Resistance to Oral Antibiotics in Escherichia coli Isolates Causing Uncomplicated Community-Acquired Cystitis. Cureus 2023; 15:e39458. [PMID: 37362452 PMCID: PMC10290217 DOI: 10.7759/cureus.39458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
INTRODUCTION Uropathogenic Escherichia coli (UPEC) strains equipped with putative virulence factors (VFs) are known to cause approximately 90% of lower urinary tract infections (UTIs) or cystitis affecting individuals of all age groups. Only limited laboratory-based data on the correlation of antimicrobial resistant patterns and VFs of UPEC are available. MATERIALS AND METHODS A total of 100 non-duplicate E. coli isolates associated with community-acquired UTIs in sexually active women were analysed for antimicrobial susceptibility patterns and putative virulence-associated genes. Antimicrobial susceptibility testing (AST) was carried out by the Kirby-Bauer disk diffusion method, and results were interpreted as per Clinical and Laboratory Standards Institute (CLSI) guidelines. The isolates non-susceptible to ≥1 agent in ≥3 different antimicrobial categories were considered multidrug-resistant (MDR). Multiplex polymerase chain reaction assay was performed on each E. coli isolate to characterize putative virulence genes (VGs) such as papA, malX, PAI, ibeA, fimH, fyuA, sfa/focDE, papGIII, iutA, papGI, kpsMTII, hlyA, papGII, traT, afa/draBC, cnf1, vat, and yfcV. Results: Capsule synthesis gene kpsMTII (59%)was the most predominant VG present, followed by serum resistance-associated transfer protein gene traT (58%) and adhesin gene fimH (57%); however, adhesin gene papGI (2%) was the least present. The prevalence of antimicrobial resistance was relatively high for commonly used oral antimicrobials of UTI treatment, such as trimethoprim-sulfamethoxazole (68%) and fluoroquinolones (63%). The majority of isolates were MDR (78%) and resistant to extended-spectrum cephalosporins (63.5%). Isolates resistant to norfloxacin and trimethoprim-sulfamethoxazole were also resistant to almost all available oral antimicrobials. Isolates resistant to extended-spectrum cephalosporins showed increased resistance to aztreonam and trimethoprim-sulfamethoxazole (84.6% each) and fluoroquinolones (ciprofloxacin and norfloxacin; 81.5% each). Fosfomycin and nitrofurantoin were the most sensitive antimicrobials for all these resistant isolates. In a multivariate analysis, it was found that MDR isolates were associated with many of the VGs; fimH (65.4%) being the most frequent followed by traT (64.1%). traT (66.2%) and iutA (60.3%) were most commonly present in E. coli isolates resistant to trimethoprim-sulfamethoxazole, while66.7% norfloxacin-resistant isolates have them. Isolates resistant to extended-spectrum cephalosporins were most commonly associated with fimH and traT (66.2% each). However, E. coli isolates positive for sfa/focDE and vat were more sensitive to norfloxacin and trimethoprim-sulfamethoxazole and were non-MDR strains predominantly (p < 0.05). Only two VGs (fimH and traT) were significantly associated with MDR strains. DISCUSSION The results of the present study clearly show the association of VFs with some of the commonly used oral antibiotics emphasizing the need for further molecular studies and surveillance programs to monitor drug-resistant UPEC so as to form optimized diagnostic stewardship and appropriate regimen for patient treatment. The reason behind this phenomenon of association has not been studied in much detail here but it can be assumed that genes responsible for drug resistance may share neighbouring loci with VGs on the mobile genetic elements (e.g., plasmid), which transfer together from one bacterium to another.
Collapse
Affiliation(s)
- Shruti Radera
- Microbiology, King George's Medical University, Lucknow, IND
| | - Jyotsna Agarwal
- Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Sugandha Srivastava
- Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Prashant Gupta
- Microbiology, King George's Medical University, Lucknow, IND
| | - Amita Pandey
- Obstetrics and Gynecology, King George's Medical University, Lucknow, IND
| |
Collapse
|
6
|
Ashwath P, Somanath D, Sannejal AD. CRISPR and Antisense RNA Technology: Exploiting Nature's Tool to Restrain Virulence in Tenacious Pathogens. Mol Biotechnol 2023; 65:17-27. [PMID: 35980592 DOI: 10.1007/s12033-022-00539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
Pathogenic bacteria constitute a significant threat to mankind and at the same time represent a huge reservoir of abeyant therapeutics to prevent and treat various diseases. The concept of virulence determinants has been a compelling tool in driving research in the field of bacterial pathogenesis and infectious diseases. In this review, we highlight a few virulence elements forged by the pathogens from the viewpoint of the damage-response scaffold, vandalizing the susceptible host. Seeking an alternative to target the virulence determinants heads a road map toward the exemplary molecular approach. Hence, here we explore some of the exceptional applications of the clustered regulatory interspaced short palindromic repeat (CRISPR)- based therapy and antisense RNA (asRNA) approach, which could be exploited to selectively dismantle adamant components of the pathogen's virulence machinery. To the best of our knowledge, this is the first review paper involving both CRISPR and antisense RNA technology, as an alternative strategy to evade virulence mechanisms in bacterial pathogens.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018, India
| | - Disha Somanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018, India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
7
|
Mills EG, Martin MJ, Luo TL, Ong AC, Maybank R, Corey BW, Harless C, Preston LN, Rosado-Mendez JA, Preston SB, Kwak YI, Backlund MG, Bennett JW, Mc Gann PT, Lebreton F. A one-year genomic investigation of Escherichia coli epidemiology and nosocomial spread at a large US healthcare network. Genome Med 2022; 14:147. [PMID: 36585742 PMCID: PMC9801656 DOI: 10.1186/s13073-022-01150-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Extra-intestinal pathogenic Escherichia coli (ExPEC) are a leading cause of bloodstream and urinary tract infections worldwide. Over the last two decades, increased rates of antibiotic resistance in E. coli have been reported, further complicating treatment. Worryingly, specific lineages expressing extended-spectrum β-lactamases (ESBLs) and fluoroquinolone resistance have proliferated and are now considered a serious threat. Obtaining contemporary information on the epidemiology and prevalence of these circulating lineages is critical for containing their spread globally and within the clinic. METHODS Whole-genome sequencing (WGS), phylogenetic analysis, and antibiotic susceptibility testing were performed for a complete set of 2075 E. coli clinical isolates collected from 1776 patients at a large tertiary healthcare network in the USA between October 2019 and September 2020. RESULTS The isolates represented two main phylogenetic groups, B2 and D, with six lineages accounting for 53% of strains: ST-69, ST-73, ST-95, ST-131, ST-127, and ST-1193. Twenty-seven percent of the primary isolates were multidrug resistant (MDR) and 5% carried an ESBL gene. Importantly, 74% of the ESBL-E.coli were co-resistant to fluoroquinolones and mostly belonged to pandemic ST-131 and emerging ST-1193. SNP-based detection of possible outbreaks identified 95 potential transmission clusters totaling 258 isolates (12% of the whole population) from ≥ 2 patients. While the proportion of MDR isolates was enriched in the set of putative transmission isolates compared to sporadic infections (35 vs 27%, p = 0.007), a large fraction (61%) of the predicted outbreaks (including the largest cluster grouping isolates from 12 patients) were caused by the transmission of non-MDR clones. CONCLUSION By coupling in-depth genomic characterization with a complete sampling of clinical isolates for a full year, this study provides a rare and contemporary survey on the epidemiology and spread of E. coli in a large US healthcare network. While surveillance and infection control efforts often focus on ESBL and MDR lineages, our findings reveal that non-MDR isolates represent a large burden of infections, including those of predicted nosocomial origins. This increased awareness is key for implementing effective WGS-based surveillance as a routine technology for infection control.
Collapse
Affiliation(s)
- Emma G. Mills
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Melissa J. Martin
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ting L. Luo
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ana C. Ong
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rosslyn Maybank
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Brendan W. Corey
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Casey Harless
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Lan N. Preston
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Joshua A. Rosado-Mendez
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Scott B. Preston
- grid.414467.40000 0001 0560 6544Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Yoon I. Kwak
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Michael G. Backlund
- grid.414467.40000 0001 0560 6544Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Jason W. Bennett
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Patrick T. Mc Gann
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Francois Lebreton
- grid.507680.c0000 0001 2230 3166Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD USA
| |
Collapse
|
8
|
Arafa SH, Alshehri WA, Organji SR, Elbanna K, Obaid NA, Aldosari MS, Asiri FH, Ahmad I, Abulreesh HH. Antimicrobial Resistance, Virulence Factor-Encoding Genes, and Biofilm-Forming Ability of Community-Associated Uropathogenic Escherichia coli in Western Saudi Arabia. Pol J Microbiol 2022; 71:325-339. [PMID: 36048880 DOI: 10.33073/pjm-2022-029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022] Open
Abstract
To explore the prevalence of multidrug-resistant community-associated uropathogenic Escherichia coli (UPEC) and their virulence factors in Western Saudi Arabia. A total of 1,000 urine samples were examined for the presence of E. coli by selective plating on MacConkey, CLED, and sheep blood agar. Antimicrobial susceptibility patterns were determined using Vitek® 2 Compact (MIC) and the disc diffusion method with Mueller-Hinton agar. Genes encoding virulence factors (kpsMTII, traT, sat, csgA, vat, and iutA) were detected by PCR. The overall prevalence of UTI-associated E. coli was low, and a higher prevalence was detected in samples of female origin. Many of the isolates exhibited resistance to norfloxacin, and 60% of the isolates showed resistance to ampicillin. No resistance to imipenem, meropenem, or ertapenem was detected. In general, half of the isolates showed multiple resistance patterns. UPEC exhibited a weak ability to form biofilms, where no correlation was observed between multidrug resistance and biofilm-forming ability. All uropathogenic E. coli isolates carried the kpsMTII, iutA, traT, and csgA genes, whereas the low number of the isolates harbored the sat and vat genes. The diversity of virulence factors harbored by community-associated UPEC may render them more virulent and further explain the recurrence/relapse cases among community-associated UITs. To the best of our knowledge, this study constitutes the first exploration of virulence, biofilm-forming ability, and its association with multidrug resistance among UPEC isolates in Saudi Arabia. Further investigations are needed to elucidate the epidemiology of community-associated UPEC in Saudi Arabia.
Collapse
Affiliation(s)
- Sara H Arafa
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sameer R Organji
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Najla A Obaid
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fatimah H Asiri
- King Abdulaziz Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Hussein H Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
10
|
Chang Z, Zhang J, Lei M, Jiang Z, Wu X, Huang Y, He Z, Zhang Y, Li S, Duan X, Wu W. Dissecting and Evaluating the Therapeutic Targets of Coptis Chinensis Franch in the Treatment of Urinary Tract Infections Induced by Escherichia coli. Front Pharmacol 2022; 12:794869. [PMID: 35095505 PMCID: PMC8790249 DOI: 10.3389/fphar.2021.794869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Coptis chinensis Franch (CCF) is extensively used in the treatment of inflammatory-related diseases. Accumulating studies have previously demonstrated the anti-inflammatory properties of CCF, yet data on its exact targets against urinary tract infections (UTIs) remain largely unknown. Therefore, the present study decodes the potential targets of action of CCF against UTIs by network pharmacology combined with experiment evaluations. Based on the pharmacology network analysis, the current study yielded six core ingredients: quercetin, palmatine (R)-canadine, berlambine, berberine, and berberrubine. The protein–protein interaction network (PPI) was generated by the string database, and then, four targets (IL6, FOS, MYC, and EGFR) were perceived as the major CCF targets using the CytoNCA plug-in. The results of molecular docking showed that the six core constituents of CCF had strong binding affinities toward the four key targets of UTIs after docking into the crystal structure. The enrichment analysis indicated that the possible regulatory mechanisms of CCF against UTIs were based on the modules of inflammation, immune responses, and apoptosis among others. Experimentally, the Escherichia coli (E. coli) strain CFT073 was applied to establish in vivo and in vitro models. In vivo results revealed that the key targets, IL6 and FOS, are significantly upregulated in rat bladder tissues of UTIs, whereas the expression of MYC and EGFR remained steady. Last, in vitro results further confirmed the therapeutic potential of CCF by reducing the expression of IL6 and FOS. In conclusion, IL6 and FOS were generally upregulated in the progression of E. coli–induced UTIs, whereas the CCF intervention exerted a preventive role in host cells stimulated by E. coli, partially due to inhibiting the expression of IL6 and FOS.
Collapse
Affiliation(s)
- Zhenglin Chang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinhu Zhang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Lei
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Jiang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yapeng Huang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhican He
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Shujue Li
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). METHODS AND MATERIALS To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. RESULTS Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. CONCLUSION TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Herney Andrés García-Perdomo
- Division of Urology. Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
12
|
Ranjbar R, Nazari S, Farahani O. Phylogenetic Analysis and Antimicrobial Resistance Profiles of Escherichia coli Strains Isolated from UTI-Suspected Patients. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1743-1749. [PMID: 33643950 PMCID: PMC7898090 DOI: 10.18502/ijph.v49i9.4094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background: Escherichia coli as one of the most predominant pathogens is the major cause of urinary tract infections (UTI) worldwide. E. coli strains could be classified into distinct phylo-groups based on PCR method. Additionally, studying the antimicrobial resistance profiles of these strains is essential for finding the effective selection of treatment and evaluating the differences among resistance patterns of particular phylogenetic groups. This study aimed to determine the phylogroups of E. coli isolated from patients with UTI in Tehran, Iran. Methods: The urine samples were collected from patients suspected to UTI from four hospitals in Tehran, Iran; Mofid, Vali-Asr, Bu-Ali and Tehran Heart Center (THC) Hospitals during 2014–2016. Assessing the antimicrobial resistance profile of the identified strains was accomplished using ampicillin, ceftriaxone, cefotaxime, and ceftazidime among β-lactam group; gentamicin, and streptomycin among aminoglycosides; nalidixic acid and norfloxacin from quinolones; and chloramphenicol disks. The phylogenetic characterization of 60 E. coli isolates obtained from patients with UTI was done by triplex PCR method. Results: E. coli strains showed high resistance toward streptomycin (93.33%), ampicillin (86.6%) and nalidixic acid (73.33%) while resistance against chloramphenicol showed the lowest (10%). The prevalent groups were B2 (n=50/60, 83%), followed by D (n=6/60, 10%), B1 (n=3/60, 5%), and A (n=1, 1.6%). Conclusion: The most predominant phylogenetic group was B2 with the major frequent detected with the major drug resistant (48%) compared to other Phylogenetic groups.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sedigheh Nazari
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Omid Farahani
- Department of Microbiology, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics (Basel) 2020; 9:E397. [PMID: 32664222 PMCID: PMC7400442 DOI: 10.3390/antibiotics9070397] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| |
Collapse
|
14
|
Behzadi P, Urbán E, Gajdács M. Association between Biofilm-Production and Antibiotic Resistance in Uropathogenic Escherichia coli (UPEC): An In Vitro Study. Diseases 2020; 8:E17. [PMID: 32517335 PMCID: PMC7348726 DOI: 10.3390/diseases8020017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infections requiring medical attention worldwide. The production of biofilms is an important step in UTIs, not only from a mechanistic point of view, but this may also confer additional resistance, distinct from other aspects of multidrug resistance (MDR). A total of two hundred and fifty (n = 250) Escherichia coli isolates, originating from clean-catch urine samples, were included in this study. The isolates were classified into five groups: wild-type, ciprofloxacin-resistant, fosfomycin-resistant, trimethoprim-sulfamethoxazole-resistant and extended spectrum β-lactamase (ESBL)-producing strains. The bacterial specimens were cultured using eosine methylene blue agar and the colony morphology of isolates were recorded. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method and E-tests. Biofilm-formation of the isolates was carried out with the crystal violet tube-adherence method. n = 76 isolates (30.4%) produced large colonies (>3 mm), mucoid variant colonies were produced in n = 135 cases (54.0%), and n = 119 (47.6%) were positive for biofilm formation. The agreement (i.e., predictive value) of mucoid variant colonies in regard to biofilm production in the tube-adherence assay was 0.881 overall. Significant variation was seen in the case of the group of ESBL-producers in the ratio of biofilm-producing isolates. The relationship between biofilm-production and other resistance determinants has been extensively studied. However, no definite conclusion can be reached from the currently available data.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Edit Urbán
- Department of Public Health, Faculty of Medicine, University of Szeged, 6720 Szeged, Dóm tér 10, Hungary;
- Institute of Translational Medicine, University of Pécs Medical School, 7624 Pécs, Szigeti utca 12, Hungary
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Eötvös utca 6, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Nagyvárad tér 4, Hungary
| |
Collapse
|
15
|
RANJBAR R, SAFARPOOR DEHKORDI F, HEIAT M. The Frequency of Resistance Genes in Salmonella enteritidis Strains Isolated from Cattle. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:968-974. [PMID: 32953685 PMCID: PMC7475613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Salmonella enteritidis causes infections in humans and animals. Antibiotics are used to eliminate bacterial infections, which become resistant to antibiotics after a while. This study aimed to isolate S. enteritidis from cattle feces samples and also to evaluate the frequency of genes associated with multi-drug resistance (MDR). METHODS One hundred ten fecal samples of cattle were collected from Jul to Dec, 2017 in Khuzestan Province, southern Iran. Bacterial culture and molecular methods were used to isolate and identify S. enteritidis. Disk diffusion method was used to assess antibiotic susceptibility. Then Polymerase chain reaction (PCR), assay was used for definitive diagnosis of S. enteritidis and resistance genes. RESULTS Overall, 101 (91.81%) samples were detected to be contaminated with Salmonella genus and 86 samples (85.14%) were identified as S. enteritidis. The highest and lowest antibiotic resistance were belonged to gentamicin (n=70, 81.39%), and tetracycline (n=6, 6.97%). Besides, 64 samples (74.42%) had 2-10 drugs resistance patterns. Moreover, the highest and the least resistance were related to blaIMP-1 (n=73, 84.88%) and tet(B) (n=49, 56.97%) genes respectively. CONCLUSION The drug-induced genes in S. enteritidis have a high frequency. Therefore, antibiotic resistance and high MDR to antibiotics can be due to the incorrect use of antibiotics and the lack of health monitoring in Cattle farms.
Collapse
Affiliation(s)
- Reza RANJBAR
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | | | - Mohammad HEIAT
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Characterization of Resistance in Gram-Negative Urinary Isolates Using Existing and Novel Indicators of Clinical Relevance: A 10-Year Data Analysis. Life (Basel) 2020; 10:life10020016. [PMID: 32054054 PMCID: PMC7175163 DOI: 10.3390/life10020016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Classical resistance classifications (multidrug resistance [MDR], extensive drug resistance [XDR], pan-drug resistance [PDR]) are very useful for epidemiological purposes, however, they may not correlate well with clinical outcomes, therefore, several novel classification criteria (e.g., usual drug resistance [UDR], difficult-to-treat resistance [DTR]) were introduced for Gram-negative bacteria in recent years. Microbiological and resistance data was collected for urinary tract infections (UTIs) retrospectively, corresponding to the 2008.01.01–2017.12.31. period. Isolates were classified into various resistance categories (wild type/susceptible, UDR, MDR, XDR, DTR and PDR), in addition, two new indicators (modified DTR; mDTR and mcDTR) and a predictive composite score (pMAR) were introduced. Results: n = 16,240 (76.8%) outpatient and n = 13,386 (69.3%) inpatient UTI isolates were relevant to our analysis. Citrobacter-Enterobacter-Serratia had the highest level of UDR isolates (88.9%), the Proteus-Providencia-Morganella group had the highest mDTR levels. MDR levels were highest in Acinetobacter spp. (9.7%) and Proteus-Providencia-Morganella (9.1%). XDR- and DTR-levels were higher in non-fermenters (XDR: 1.7%–4.7%. DTR: 7.3%–7.9%) than in Enterobacterales isolates (XDR: 0%–0.1%. DTR: 0.02%–1.5%). Conclusions: The introduction of DTR (and its’ modifications detailed in this study) to the bedside and in clinical practice will definitely lead to substantial benefits in the assessment of the significance of bacterial resistance in human therapeutics.
Collapse
|
17
|
Clinical cases, drug resistance, and virulence genes profiling in Uropathogenic Escherichia coli. J Appl Genet 2020; 61:265-273. [PMID: 31950434 DOI: 10.1007/s13353-020-00542-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) as the most important bacterial agent of urinary tract infections (UTIs) encompasses a wide treasure of virulence genes and factors. In due to this default, the aim of this research was to detect and identify some important virulence genes including cnf1, upaH, hlyA, ibeA, and cdtB in isolated UPEC pathotypes. In this research, clinical samples of urine were collected in Shahr-e-Qods, Tehran, Iran. The UPEC pathotypes were confirmed by standard biochemical tests. The DNAs of isolated bacteria were extracted. The genes of cnf1, upaH, hlyA, ibeA, and cdtB were run for multiplex PCR and gel electrophoresis. Furthermore, the antibiogram was done for the isolated UPEC strains by 11 common antibiotics. In accordance with the results, the virulence genes of cnf1, upaH, hlyA, ibeA, and cdtB were respectively recognized in 100%, 51.2%, 38.4%, 9.3%, and 0% of isolated UPEC pathotypes. In consequence, the final virulence gene profiling of the isolated UPEC strains was patterned as cnf1, cnf1-upaH, cnf1-upaH-hlyA, and cnf1-upaH-hlyA-ibeA. The chi-square tests showed no significant correlations between virulence gene profile and UTIs, between virulence gene profile and antibiotic resistance, and between virulence genes and different types of UTIs. The cnf1 virulence gene contributes in the occurrence of all types of UTIs. In contrast to cnf1, the cdtB gene was absent in the isolated UPEC strains in this investigation. The most ineffective antibiotics were recognized as Penicillin, Tetracycline, and Nalidixic acid, respectively, while Streptomycin, Chloramphenicol, and Ciprofloxacin are the best options for UTIs treatment.
Collapse
|
18
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
19
|
Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha) 2019; 65:45-65. [DOI: 10.1007/s12223-019-00719-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
|
20
|
Behzadi P, Behzadi E, Pawlak-Adamska EA. Urinary tract infections (UTIs) or genital tract infections (GTIs)? It's the diagnostics that count. GMS HYGIENE AND INFECTION CONTROL 2019; 14:Doc14. [PMID: 30993060 PMCID: PMC6449866 DOI: 10.3205/dgkh000320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) and genital tract infections (GTIs) are both very common infectious diseases. Thus, accuracy and rapidity in recognition and treatment of sexually transmitted urogenital tract infections (ST-UGTIs) is a major concern in global public health systems. The application of reliable, accurate diagnostic tools is the key to definite detection, identification and treatment. This literature review focused on different characteristics of UGTIs in patients and the importance of diagnostic methodologies. The articles published and indexed from 1980 through October 2018 in the databases of PubMed and MEDLINE, as well as the Google Scholar web search engine, were collected and studied. MeSH keywords of “Sexual intercourse”, “Urinary Tract Infections”, “Genital Tract Infections” and “Toll-Like Receptors” were used for searching articles. Then, the proper articles (original and review articles) were subjected to a very rigorous selection process. The clinical symptoms and signs or asymptomatic properties of UTIs and GTIs are similar and often overlap. In many cases, the lack of suitable diagnostic techniques leads to misdiagnosed/undignosed GTIs and overdiagnosed UTIs. The outcome of poor diagnostics is failure of definite identification and treatment. The application of advanced techniques comprising PCR, microarray and next-generation sequencing promises to be more effective, together with the use of the microbial pattern of the individual’s UGT to provide reliable detection, identification and definite treatment. This will be an option in the near future.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
21
|
Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control 2018; 7:118. [PMID: 30305891 PMCID: PMC6171155 DOI: 10.1186/s13756-018-0411-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
Background The way of treating different types of infectious diseases is really important. Using genotyping method, we can determine the genetic relatedness between the organisms with different resistance profile from different sources. The aim of this study was to determine antibiotic resistance and genotyping of uropathogenic Escherichia coli (UPEC) strains using pulsed field gel electrophoresis (PFGE). Method Escherichia coli (E. coli) strains were recovered from the patients with urinary tract infections (UTI) whom admitted in several major hospitals in Tehran. Antibiotic susceptibility testing was done according to CLSI guideline. The present of some virulence factor have been detected using PCR assay. Genotyping of the strains was performed by PFGE and all PFGE profiles were subjected to data processing. Result In total, 60 E. coli strains were subjected to the study. Most of E. coli isolates were resistant to cefepime (100%) and cephalothin (74%) and susceptible to imipenem (100%), vancomycin (100%) and doxycycline (100%). Among the UPEC isolates the prevalence of fimbriae type I (fimH), hemolysin (hlyA) and aerobactin (aer) genes were 89%, 60% and 90%, respectively. The PFGE differentiated E. coli strains into 33 different genetic clusters. Majority (30%) of them including PFGE type 11 generated 15 bands, while PFGE type 2 was the lowest (2%) prevalent group with 9 bands. Conclusion The result showed that the antibiotic resistance is escalating rapidly. UPEC strains causing infections are more likely to harbor certain virulence genes. Our finding also showed E. coli strains isolated under the study were belonged to the diverse clones.
Collapse
Affiliation(s)
- Maryam Raeispour
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Ranjbar R, Tolon SS, Sami M, Golmohammadi R. Detection of Plasmid-Mediated qnr Genes Among the Clinical Quinolone-Resistant Escherichia coli Strains Isolated in Tehran, Iran. Open Microbiol J 2018; 12:248-253. [PMID: 30197698 PMCID: PMC6110078 DOI: 10.2174/1874285801812010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Background Escherichia coli is one of the most important bacterial agents to cause urinary tract infections. Inappropriate and unnecessary administration of antibiotics has led to an increase in the appearance of multidrug-resistant E. coli isolates, limiting treatment options. The increase in a number of resistant strains of bacteria is a major concern of health authorities worldwide. Objective The purpose of this study was to determine the presence of the qnr genes among E. coli isolated from UTIs of patients in Baqiyatallah hospital in Tehran province, Iran. Method Clinical urine samples of patients with suspected urinary tract infection were collected by standard methods in sterile disposable containers. After analysis of urine, microscopic observations and culture analysis, the bacterial genome was extracted by boiling method. PCR for detection of qnr genes including qnrA, qnrB and qnrS was done by specific primers, then PCR products were run using gel electrophoresis and visualized by gel documentation system. Results In the present study among the 95 isolates, 60 strains were resistant to nalidixic acid. PCR showed that 92 strains were positive for qnrS. The qnrA and qnrB genes were not found among the clinical isolates. Conclusion Our finding indicates a high level of resistance against nalidixic acid among E. coli isolates recovered from the patients with UTI. Also, the high frequency of qnrS imposes the importance of survey of molecular and genetic analysis of mechanisms of quinolone resistance in E. coli strains.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad S Tolon
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Sami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Golmohammadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA. Inhibition and Inactivation of Uropathogenic Escherichia coli Biofilms on Urinary Catheters by Sodium Selenite. Int J Mol Sci 2018; 19:ijms19061703. [PMID: 29880781 PMCID: PMC6032314 DOI: 10.3390/ijms19061703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Urinary tract infections (UTI) are the most common hospital-acquired infections in humans and are caused primarily by uropathogenic Escherichia coli (UPEC). Indwelling urinary catheters become encrusted with UPEC biofilms that are resistant to common antibiotics, resulting in chronic infections. Therefore, it is important to control UPEC biofilms on catheters to reduce the risk for UTIs. This study investigated the efficacy of selenium for inhibiting and inactivating UPEC biofilms on urinary catheters. Urinary catheters were inoculated with UPEC and treated with 0 and 35 mM selenium at 37 °C for 5 days for the biofilm inhibition assay. In addition, catheters with preformed UPEC biofilms were treated with 0, 45, 60, and 85 mM selenium and incubated at 37 °C. Biofilm-associated UPEC counts on catheters were enumerated on days 0, 1, 3, and 5 of incubation. Additionally, the effect of selenium on exopolysacchride (EPS) production and expression of UPEC biofilm-associated genes was evaluated. Selenium at 35 mM concentration was effective in preventing UPEC biofilm formation on catheters compared to controls (p < 0.05). Further, this inhibitory effect was associated with a reduction in EPS production and UPEC gene expression. Moreover, at higher concentrations, selenium was effective in inactivating preformed UPEC biofilms on catheters as early as day 3 of incubation. Results suggest that selenium could be potentially used in the control of UPEC biofilms on urinary catheters.
Collapse
Affiliation(s)
- Amoolya Narayanan
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Meera S Nair
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
24
|
RANJBAR R, FARAHANI O. The Prevalence of Virulence Genes and Virulotypes of Escherichia coli Strains Isolated from Hospital Wastewaters in Tehran, Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:713-719. [PMID: 29922614 PMCID: PMC6005981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Due to the widespread different pathogenic strains, Escherichia coli lead many severe to normal diseases worldwide. Finding the relation of clones with genomic content and clinical features is a key point to recognize the high potential-invasive strains. Specific virulence factors include adhesions, invasions, toxins, and capsule are the main determinants of pathogenic factors of E. coli strains. METHODS From Jun 2014 to Jun 2016, E. coli isolates recovered using standard bacteriological methods from wastewater sources in different hospitals in Tehran, Iran, were monitored to recognize the virulence genes by polymerase chain reaction (PCR) assay. RESULTS The high and low presences of virulence factors were fimH, 76% and afa, 13%, respectively. CONCLUSION The results indicated the potential pathogenicity of E. coli strains circulating in hospital wastewaters in Tehran, Iran.
Collapse
Affiliation(s)
- Reza RANJBAR
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Omid FARAHANI
- Dept. of Microbiology, Islamic Azad University, Varamin-Pishva Branch, Tehran, Iran
| |
Collapse
|
25
|
Karimi Z, Ahmadi A, Najafi A, Ranjbar R. Bacterial CRISPR Regions: General Features and their Potential for Epidemiological Molecular Typing Studies. Open Microbiol J 2018; 12:59-70. [PMID: 29755603 PMCID: PMC5925864 DOI: 10.2174/1874285801812010059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023] Open
Abstract
Introduction CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci as novel and applicable regions in prokaryotic genomes have gained great attraction in the post genomics era. Methods These unique regions are diverse in number and sequence composition in different pathogenic bacteria and thereby can be a suitable candidate for molecular epidemiology and genotyping studies. Results:Furthermore, the arrayed structure of CRISPR loci (several unique repeats spaced with the variable sequence) and associated cas genes act as an active prokaryotic immune system against viral replication and conjugative elements. This property can be used as a tool for RNA editing in bioengineering studies. Conclusion The aim of this review was to survey some details about the history, nature, and potential applications of CRISPR arrays in both genetic engineering and bacterial genotyping studies.
Collapse
Affiliation(s)
- Zahra Karimi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ranjbar R, Safarpoor Dehkordi F, Sakhaei Shahreza MH, Rahimi E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob Resist Infect Control 2018; 7:53. [PMID: 29686859 PMCID: PMC5902837 DOI: 10.1186/s13756-018-0345-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
Background Shiga-toxigenic Escherichia coli strains are one of the most important foodborne bacteria with an emergence of antibiotic resistance. Foodborne STEC strains are mainly associated with presence of certain virulence factors and O-seogroups. The present investigation was done to study the distribution of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxigenic Escherichia coli isolated from milk and dairy products. Methods Six-hundred samples were randomly collected and immediately transferred to laboratory. All samples were cultured and E. coli strains were isolated. STEC strains were identified based on the presence of putative virulence factors and subtypes. STEC isolates were subjected to multiplex PCR and disk diffusion methods. Results One-hundred and eighty-one out of 600 samples (30.16%) harbored E. coli. Prevalence of STEC strains was 10.66%. O157 (43.75%) and O26 (37.50%) were the most frequently identified serogroups. Aac(3)-IV (100%), CITM (96.87%) and tetA (76.56%) were the most commonly detected antibiotic resistance genes. STEC strains had the highest prevalence of resistance against ampicillin (100%), gentamicin (100%) and tetracycline (96.87%). Conclusions Kashk and dough were negative for presence of E. coli strains. High prevalence of resistant-O157 strains and simultaneous presence of multiple virulence factors pose an important public health problem regarding the consumption of raw milk and dairy products.
Collapse
Affiliation(s)
- Reza Ranjbar
- 1Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Ebrahim Rahimi
- Department of Food Hygiene and Public health, Faculty of Veterinary Medicine, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
27
|
Ranjbar R, Behzadi P, Najafi A, Roudi R. DNA Microarray for Rapid Detection and Identification of Food and Water Borne Bacteria: From Dry to Wet Lab. Open Microbiol J 2017; 11:330-338. [PMID: 29290845 PMCID: PMC5737027 DOI: 10.2174/1874285801711010330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Background: A rapid, accurate, flexible and reliable diagnostic method may significantly decrease the costs of diagnosis and treatment. Designing an appropriate microarray chip reduces noises and probable biases in the final result. Objective: The aim of this study was to design and construct a DNA Microarray Chip for a rapid detection and identification of 10 important bacterial agents. Method: In the present survey, 10 unique genomic regions relating to 10 pathogenic bacterial agents including Escherichia coli (E.coli), Shigella boydii, Sh.dysenteriae, Sh.flexneri, Sh.sonnei, Salmonella typhi, S.typhimurium, Brucella sp., Legionella pneumophila, and Vibrio cholera were selected for designing specific long oligo microarray probes. For this reason, the in-silico operations including utilization of the NCBI RefSeq database, Servers of PanSeq and Gview, AlleleID 7.7 and Oligo Analyzer 3.1 was done. On the other hand, the in-vitro part of the study comprised stages of robotic microarray chip probe spotting, bacterial DNAs extraction and DNA labeling, hybridization and microarray chip scanning. In wet lab section, different tools and apparatus such as Nexterion® Slide E, Qarraymini spotter, NimbleGen kit, TrayMixTM S4, and Innoscan 710 were used. Results: A DNA microarray chip including 10 long oligo microarray probes was designed and constructed for detection and identification of 10 pathogenic bacteria. Conclusion: The DNA microarray chip was capable to identify all 10 bacterial agents tested simultaneously. The presence of a professional bioinformatician as a probe designer is needed to design appropriate multifunctional microarray probes to increase the accuracy of the outcomes.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ranjbar R, Sami M. Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. Open Microbiol J 2017; 11:203-210. [PMID: 29151997 PMCID: PMC5678241 DOI: 10.2174/1874285801711010203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. Objective: The aim of this study was to investigate the prevalence of blaTEM, blaCTX, blaSHV, blaOXA and blaVEB associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. Methods: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including blaTEM, blaCTX, blaSHV, blaOXA and blaVEB in ESBL producing isolates were studied by PCR. Results: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for blaTEM, blaCTX, blaSHV, and blaOXA, respectively. The blaVEB wasn’t found in any isolates. Conclusion: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Sami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
29
|
Abbasi H, Ranjbar R. The prevalence of quinolone resistance genes of A, B, S in Escherichia coli strains isolated from three major hospitals in Tehran, Iran. Cent European J Urol 2017; 71:129-133. [PMID: 29732219 PMCID: PMC5926638 DOI: 10.5173/ceju.2018.1539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/16/2017] [Accepted: 01/14/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction Escherichia coli (E.coli) as an opportunistic pathogen is a major cause of the hospital infections. The main goal of this research was to determine the frequency of quinolone resistance genes (qnr) among E.coli pathotypes isolated from patients with urinary tract infections (UTIs). Material and methods Urine samples were obtained from patients with UTIs in three major hospitals of Mofid, Bu Ali, and Vali-Asr during the year of 2015 in Tehran, Iran. The antibiogram was done for isolated bacterial isolates using nalidixic acid, norfloxacin, gentamicin, streptomycin, and chloramphenicol. Then the plasmids of the bacterial samples were extracted. PCR was used to detect qnr genes. Finally, the PCR products were run on a 1% agarose gel electrophoresis and the results were analyzed by the program SPSS version 22. Results Overall, 100 E.coli strains were isolated from patients with UTIs. The highest resistance rate was against Streptomycin. The frequency of the genes of qnrA, qnrB and qnrS were 0%, 25% and 36%, respectively. Moreover, the presence of the both genes of qnrB and qnrS was recognized in 10% of isolated bacterial strains. Conclusions Our results indicated increasing rates of quinolone resistant E.coli strains circulating in hospitals under the study. Dissemination of these strains harboring qnr determinants is of particular concern.
Collapse
Affiliation(s)
- Hadis Abbasi
- MSC Microbiology Department, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ranjbar R, Tabatabaee A, Behzadi P, Kheiri R. Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Escherichia coli Strains Isolated from Different Animal Stool Specimens. IRANIAN JOURNAL OF PATHOLOGY 2017; 12:25-34. [PMID: 29760750 PMCID: PMC5938721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/29/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Escherichia coli is a commensal-pathogenic organism, which includes a wide range of strains. Despite several advanced molecular-genomic technologies for detecting and identifying different strains of E. coli, Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) technique is a quick, sharp and cost effective fingerprint method. The major purpose of the present study was to determine the distribution of ERICs within E. coli strains isolated from different healthy animal stool specimens including hens, sheep, and cows, as an appropriate and quick molecular-genomic tool. METHODS The animal stool samples were obtained during 1 year (October 2012 to October 2013), from animal husbandries around Tehran and Alborz provinces, Iran. After screening processes, the E. coli bacteria were isolated and cultured via standard microbiological methods. The DNA molecules of E. coli bacteria were harvested and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) was applied for bacterial molecular genotyping. The ERIC-PCR products were run on 1% gel electrophoresis. The final images regarding gel electrophoresis banding patterns were used for dendrogram generation via the GelClust software. RESULTS Of 120 isolated samples, 115 different strains were recognized as E. coli. The fingerprint patterns involved 380 to 3280 bp bands. The predominant bands included 2900 bp, 1200 bp, and 1200 bp in stool samples of hens, sheep, and cows, respectively. The highest frequencies and diversities were seen among E. coli strains isolated from hens and sheep stool samples. CONCLUSION The DNA profiles were clearly detectable via specific fingerprint patterns. The ERIC-PCR seemed to be a good approach for molecular typing of E. coli strains isolated from different animal sources.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Information: Dr. Reza Ranjbar. Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Tel: +982188039883
| | - Afsar Tabatabaee
- Dept. of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Payam Behzadi
- Dept. of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Rohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| |
Collapse
|
31
|
Maghsoudi O, Ranjbar R, Mirjalili SH, Fasihi-Ramandi M. Inhibitory Activities of Platelet-Rich and Platelet-Poor Plasma on the Growth of Pathogenic Bacteria. IRANIAN JOURNAL OF PATHOLOGY 2017; 12:79-87. [PMID: 29760757 PMCID: PMC5938728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND The utility and efficacy of novel materials in tissue regeneration and antimicrobial therapy are contingent upon the employment of either blood derivatives rich in platelets or platelet-poor-plasma (PPP). This effect is largely mediated by the increased or decreased concentration of platelets in the plasma. The current study aimed to analyze and evaluate the impact of platelet-rich (PRP) or PPP on inhibiting the growth of human pathogenic bacteria and compare their effects with those of chloramphenicol and penicillin. METHODS In the current comparative study, PRP-1 was generated using 1-step blood centrifugation method; whereas, for PRP-2 and PPP the 2-step centrifugation protocol was used. The antimicrobial activity of PRP-1, 2, and PPP were tested on Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Streptococcus agalactiae, Staphylococcus epidermidis, Shigella sp. and Serratia sp. Well diffusion and serial micro-dilution methods were used for this purpose. Chloramphenicol and penicillin susceptibility were tested using the disk diffusion method. RESULTS While whole blood (WB) and PPP had no discernible impact on the growth parameters of any of the bacteria tested in the current study, PRP-1 reduced the growth rate of a few selected strains. In addition, while PRP-2 clearly inhibited the growth of Shigella sp., E. coli, S. aureus, S. agalactiae, and S. epidermidis, it had no impact on the growth of K. pneumoniae, P. aeruginosa, and Serratia sp. CONCLUSION It can be claimed that there is a strong correlation between the concentration of platelets and the antibacterial activity of PRP.
Collapse
Affiliation(s)
- Omid Maghsoudi
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
32
|
Ranjbar R, Behzadi P, Mammina C. Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing. Open Microbiol J 2016; 10:176-182. [PMID: 28077973 PMCID: PMC5204066 DOI: 10.2174/1874285801610010176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Francisella tularensis (F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. OBJECTIVE The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis. METHOD For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica, F. tularensis subsp. novicida (F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. RESULTS In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis. Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. CONCLUSION Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Caterina Mammina
- Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro, University of Palermo, Palermo, Italy
| |
Collapse
|
33
|
Behzadi E, Behzadi P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent European J Urol 2016; 69:404-410. [PMID: 28127459 PMCID: PMC5260452 DOI: 10.5173/ceju.2016.871] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/01/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Urinary Tract Infections (UTIs) are caused by different types of microbial agents such as uropathogenic Escherichia coli (UPEC) and Candida albicans. The presence of strong physical barriers may prevent the breach of pathogens into the urinary tract. However, sometimes the pathogenic microorganisms may pass through the barriers and stimulate the innate and adaptive responses. Among a variety of innate immune responses, Toll-Like Receptors (TLRs) are one of the most unique and interesting molecules regarding UTIs. Thus, the authors have focused their attention on the role of TLRs in urinary tract defense against pathogenic microbial agents such as UPEC and C.albicans through this literature review. Material and methods Several papers regarding UTIs and TLRs including original and review articles were searched by PubMed and Google Scholar. They were studied and the most important aspects in association with the role of TLRs in UTIs were extracted. Additionally, this paper was prepared using the experience of the authors. Results The TLRs 2, 4 and 5 are the most functional molecules that contribute to urinary tract defense system and UTIs. It is incredible that TLRs are able to detect and recognize different parts of microbial components relating to the same pathogen. Besides, the flexibility of the TLR molecules may lead to identification of different types of microorganisms with different signaling pathways. Conclusions Our knowledge associated with TLRs and their activities against microbial causative agents of UTIs may help us to prevent, control and treat UTIs at a higher quality level.
Collapse
Affiliation(s)
- Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
Ardakani MA, Ranjbar R. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method. Electron Physician 2016; 8:2291-6. [PMID: 27280007 PMCID: PMC4886573 DOI: 10.19082/2291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. Methods In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. Results The method used in this research proliferated numerous bands (4–17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1–E6) with 70% similarity between them. Conclusion In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study.
Collapse
Affiliation(s)
- Maryam Afkhami Ardakani
- M.Sc. of Microbiology, Department of Microbiology, Faculty of Advanced Science & Technology, pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Ph.D. of Medical Bacteriology, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Behzadi P, Najafi A, Behzadi E, Ranjbar R. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction. Cent European J Urol 2016; 69:105-11. [PMID: 27123336 PMCID: PMC4846717 DOI: 10.5173/ceju.2016.654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). MATERIAL AND METHODS E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. RESULTS In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. CONCLUSIONS The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique.
Collapse
Affiliation(s)
- Payam Behzadi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|