1
|
Mitra A, Araga M, Aher A, Xu J, Shanga G, Franks B, Petruschke R. Relationship of Reduced Pain Intensity and Improved Quality-of-Life with Menstrual Migraine with Aspirin, Acetaminophen, and Caffeine Combination. Healthcare (Basel) 2025; 13:1032. [PMID: 40361810 PMCID: PMC12071909 DOI: 10.3390/healthcare13091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Objective: The objective of the current post hoc analysis is to evaluate whether the combination of acetaminophen, aspirin, and caffeine (AAC) is more effective than placebo in relieving the pain intensity for and improving the quality-of-life (QoL) of subjects with menstrual migraine (MM). Methods: This analysis evaluated the impact of AAC (n = 85) versus placebo (n = 100) in relieving the pain intensity for and improving the QoL of subjects with MM during baseline and at 0.5, 1, 2, 3, 4, and 6 h post treatment. Subjects reported their pain intensity using a 4-point scale and QoL using a 5-point scale. A lower score indicates reduced pain intensity and improved QoL. Results: A statistically significant difference between the AAC and placebo groups (p ≤ 0.001) was observed in pain relief after 1 h (40% vs. 14%), 2 h (56.5% vs. 24%), 3 h (63.5% vs. 31%), 4 h (65.9% vs. 34%), and 6 h (64.7% vs. 31%) post treatment. Similarly, a significantly higher proportion of subjects reported improved QoL at 1 h (48.2% vs. 28.0%; p ≤ 0.005), 2 h (61.2% vs. 40.0%; p ≤ 0.005), 3 h (68.2% vs. 44.0%; p ≤ 0.001), 4 h (67.9% vs. 39.0%; p ≤ 0.001), and 6 h (64.3% vs. 37.0%; p ≤ 0.001) post treatment. The mean pain intensity and QoL scores reduced, while the relative pain intensity and QoL (difference between the AAC and placebo groups) increased with time and was sustained for 6 h. Conclusions: The rapid onset and sustained effect of AAC make it a potential option for managing headaches and other symptoms, and to improve the QoL of subjects with MM.
Collapse
Affiliation(s)
- Ashoke Mitra
- Haleon, Warren, NJ 07059, USA; (M.A.); (A.A.); (J.X.); (G.S.); (R.P.)
| | - Mako Araga
- Haleon, Warren, NJ 07059, USA; (M.A.); (A.A.); (J.X.); (G.S.); (R.P.)
| | - Abhay Aher
- Haleon, Warren, NJ 07059, USA; (M.A.); (A.A.); (J.X.); (G.S.); (R.P.)
| | - Jay Xu
- Haleon, Warren, NJ 07059, USA; (M.A.); (A.A.); (J.X.); (G.S.); (R.P.)
| | - Gilbert Shanga
- Haleon, Warren, NJ 07059, USA; (M.A.); (A.A.); (J.X.); (G.S.); (R.P.)
| | | | | |
Collapse
|
2
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Edvinsson JCA, Grubor I, Maddahi A, Edvinsson L. Male-female comparison of vasomotor effects of circulating hormones in human intracranial arteries. J Headache Pain 2024; 25:216. [PMID: 39663536 PMCID: PMC11633024 DOI: 10.1186/s10194-024-01933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND The purpose of this study was to examine whether there are sex differences in vasomotor responses and receptor localization of hormones and neuropeptides with relevance to migraine (vasopressin, oxytocin, estrogen, progesterone, testosterone, amylin, adrenomedullin and calcitonin gene-related peptide (CGRP)) in human intracranial arteries. METHODS Human cortical cerebral and middle meningeal arteries were used in this study. The tissues were removed in conjunction with neurosurgery and donated with consent. Vasomotor responses of arteries, after exposure to hormones or neuropeptides, were recorded using a wire myograph. Immunohistochemistry was performed to examine the expression and localization of their receptors within human intracranial arteries. RESULTS Vasopressin showed the strongest contractile responses, followed by oxytocin and progesterone. CGRP displayed the strongest vasodilatory response when compared to adrenomedullin, amylin, testosterone and estrogen. No significant differences were observed in vasomotor responses between male and female arteries. The vasomotor effects were supported by the presence of corresponding receptors in the vascular smooth muscle cells. Estrogen receptors (ERα and ERβ), progesterone receptor (PR), vasopressin 1a receptor (V1aR), and the oxytocin receptor (OTR) were expressed in the walls of both cerebral arteries overlying the cerebral cortex and intracranial arteries of the dura mater. ERα, V1aR, and PR were found to be localized in both smooth muscle cells and endothelium, whereas OTR was exclusively located within the smooth muscle cells. CONCLUSIONS Hypothalamic, sex hormones and the pancreas hormone (amylin) receptors are expressed in the human intracranial artery walls. The vasomotor responses revealed no sex differences, however contractile responses to vasopressin was higher and more potent in MMA compared to CCA when pooling data from both sexes. Overall, the hormones estrogen, progesterone and oxytocin, which drop in circulating levels at onset of menstruation, only showed modest vasomotor responses as compared to CGRP. This suggests that their role in inducing menstrual migraine attacks is not directly related to vasomotor responses.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden.
| | - Irena Grubor
- Department of Neurosurgery, University Hospital, Lund, Sweden
| | - Aida Maddahi
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden
| | - Lars Edvinsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden
| |
Collapse
|
4
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
5
|
Wattanathorn J, Thukham-Mee W. Omega-3-Rich Tuna Oil Derived from By-Products of the Canned Tuna Industry Enhances Memory in an Ovariectomized Rat Model of Menopause. Antioxidants (Basel) 2024; 13:637. [PMID: 38929077 PMCID: PMC11201088 DOI: 10.3390/antiox13060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
To increase the value of the by-products of the canned tuna industry, the memory enhancement effect and the possible mechanisms of omega-3-rich tuna oil in bilateral ovariectomized (OVX) rats were assessed. Female rats were orally given tuna oil at doses of 140, 200, and 250 mg/kg of body weight (BW) for 28 days before OVX and for 21 days continually after OVX. Memory performance was assessed every week, whereas the parameters regarding mechanisms of action were assessed at the end of the study. All doses of tuna oil enhanced memory, docosahexaenoic acid (DHA) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities but decreased cortisol, acetylcholinesterase (AChE), malondialdehyde (MDA), and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Medium and high doses of tuna oil suppressed monoamine oxidase (MAO) but increased eNOS activity. A high dose of tuna oil suppressed gamma-aminotransferase (GABA-T) but increased glutamic acid decarboxylase (GAD) and sirtuin-1. A medium dose of tuna oil decreased homocysteine (Hcys) and C-reactive protein. No change in telomere or estradiol was observed in this study. Our results suggest the memory-enhancing effect of tuna oil in an OVX rat model of menopause. The main mechanisms may involve a reduction in oxidative stress, inflammation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
McLaren S, Seidler K, Neil J. Investigating the Role of 17β-Estradiol on the Serotonergic System, Targeting Soy Isoflavones as a Strategy to Reduce Menopausal Depression: A Mechanistic Review. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:221-235. [PMID: 37695875 DOI: 10.1080/27697061.2023.2255237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Low serotonin is one factor implicated in the development of depression. 17β-estradiol (E2) has been shown to modulate gene expression regulating the neurotransmission of serotonin. Sex hormone levels fluctuate dramatically during the menopausal transition, coinciding with a 14-fold increased risk of depression. This review aimed to examine the effect of soy isoflavones to support decreased and variable E2 levels before and after menopause, linked to an investigation of the pathophysiological mechanisms underlying the protective influence of E2 on the serotonin pathway. The overall aim of this review is to assess the potential of soy isoflavones to reduce depression in middle-aged women. A systematic literature search was performed in three stages. 1,421 papers were screened for relevance to the research aims and objectives. 63 papers were selected based on pre-defined inclusion/exclusion criteria (13 reviews, 24 mechanistic and 26 intervention studies) and critically appraised. Available research supported the hypotheses that E2 increases serotonin synthesis and availability through stimulation of tryptophan hydroxylase-2 (TPH-2) and decreased degradation by monoamine oxidase-A (MAO-A). There was less scientific agreement on the effects of E2 on serotonin transporter (SERT) and serotonin receptors 1 A and 2 A. Studies varied widely on the effectiveness of soy isoflavones in reducing depressive symptoms in (peri)menopausal women. Animal and human studies acknowledge women's increased risk of depression linked to fluctuating E2 rather than absolute levels. However, mechanisms linking E2 variability with depression remain an underrepresented area of research. Study limitations and heterogeneity may contribute to varying results for soy isoflavones and some effects of E2 on the serotonin pathway.
Collapse
Affiliation(s)
- Scotti McLaren
- Centre for Nutrition Education and Lifestyle Management (CNELM) and Middlesex University, Wokingham, United Kingdom
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management (CNELM) and Middlesex University, Wokingham, United Kingdom
| | - James Neil
- Centre for Nutrition Education and Lifestyle Management (CNELM) and Middlesex University, Wokingham, United Kingdom
| |
Collapse
|
7
|
Godley F, Meitzen J, Nahman-Averbuch H, O'Neal MA, Yeomans D, Santoro N, Riggins N, Edvinsson L. How Sex Hormones Affect Migraine: An Interdisciplinary Preclinical Research Panel Review. J Pers Med 2024; 14:184. [PMID: 38392617 PMCID: PMC10889915 DOI: 10.3390/jpm14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sex hormones and migraine are closely interlinked. Women report higher levels of migraine symptoms during periods of sex hormone fluctuation, particularly during puberty, pregnancy, and perimenopause. Ovarian steroids, such as estrogen and progesterone, exert complex effects on the peripheral and central nervous systems, including pain, a variety of special sensory and autonomic functions, and affective processing. A panel of basic scientists, when challenged to explain what was known about how sex hormones affect the nervous system, focused on two hormones: estrogen and oxytocin. Notably, other hormones, such as progesterone, testosterone, and vasopressin, are less well studied but are also highlighted in this review. When discussing what new therapeutic agent might be an alternative to hormone therapy and menopause replacement therapy for migraine treatment, the panel pointed to oxytocin delivered as a nasal spray. Overall, the conclusion was that progress in the preclinical study of hormones on the nervous system has been challenging and slow, that there remain substantial gaps in our understanding of the complex roles sex hormones play in migraine, and that opportunities remain for improved or novel therapeutic agents. Manipulation of sex hormones, perhaps through biochemical modifications where its positive effects are selected for and side effects are minimized, remains a theoretical goal, one that might have an impact on migraine disease and other symptoms of menopause. This review is a call to action for increased interest and funding for preclinical research on sex hormones, their metabolites, and their receptors. Interdisciplinary research, perhaps facilitated by a collaborative communication network or panel, is a possible strategy to achieve this goal.
Collapse
Affiliation(s)
- Frederick Godley
- Association of Migraine Disorders, P.O. Box 870, North Kingstown, RI 02852, USA
| | - John Meitzen
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Hadas Nahman-Averbuch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Yeomans
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nina Riggins
- Brain Performance Center and Research Institute, San Diego, CA 92122, USA
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 22185 Lund, Sweden
| |
Collapse
|
8
|
De Matteis E, Ornello R, Sacco S. Menstrually associated migraine. HANDBOOK OF CLINICAL NEUROLOGY 2024; 199:331-351. [PMID: 38307655 DOI: 10.1016/b978-0-12-823357-3.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Menstrually related migraine is a disabling condition affecting 35% to 54% females with migraine during their fertile years. The International Headache Classification distinguishes menstrually related migraine from pure menstrual migraine based on the occurrence of the attacks even outside the perimenstrual periods. Hormonal fluctuations are the main driver for the disease in subjects with genetic susceptibility and alterations of brain structures and connectivity. Menstrually related attacks are often particularly severe and disabling requiring proper management. Acute treatment mainly consists of nonsteroidal anti-inflammatory drugs (NSAIDs), recommended in patients also suffering from dysmenorrhea, and triptans. Prevention is specifically indicated in women with high monthly headache frequency or burdensome attacks during perimenstrual periods. Trials proved the efficacy of short-term prevention with triptans and NSAIDs but did not evaluate possible long-term effectiveness and tolerability. Evidence of prevention using hormonal treatments is poor, but extended-cycle treatments might be suitable for women requiring hormonal replacement for concomitant conditions. Few data are available on treatments targeting CGRP, among whom gepants are the most promising because of their utility both in migraine acute and preventive treatment. A greater recognition of disease and a deep knowledge of patients' comorbidities are essential to its proper management.
Collapse
Affiliation(s)
- Eleonora De Matteis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
9
|
Barone JC, Butler MP, Ross A, Patterson A, Wagner-Schuman M, Eisenlohr-Moul TA. A scoping review of hormonal clinical trials in menstrual cycle-related brain disorders: Studies in premenstrual mood disorder, menstrual migraine, and catamenial epilepsy. Front Neuroendocrinol 2023; 71:101098. [PMID: 37619655 PMCID: PMC10843388 DOI: 10.1016/j.yfrne.2023.101098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
UNLABELLED Cyclic variations in hormones during the normal menstrual cycle underlie multiple central nervous system (CNS)-linked disorders, including premenstrual mood disorder (PMD), menstrual migraine (MM), and catamenial epilepsy (CE). Despite this foundational mechanistic link, these three fields operate independently of each other. In this scoping review (N = 85 studies), we survey existing human research studies in PMD, MM, and CE to outline the exogenous experimental hormone manipulation trials conducted in these fields. We examine a broad range of literature across these disorders in order to summarize existing diagnostic practices and research methods, highlight gaps in the experimental human literature, and elucidate future research opportunities within each field. While no individual treatment or study design can fit every disease, there is immense overlap in study design and established neuroendocrine-based hormone sensitivity among the menstrual cycle-related disorders PMD, MM, and CE. SCOPING REVIEW STRUCTURED SUMMARY Background. The menstrual cycle can be a biological trigger of symptoms in certain brain disorders, leading to specific, menstrual cycle-linked phenomena such as premenstrual mood disorders (PMD), menstrual migraine (MM), and catamenial epilepsy (CE). Despite the overlap in chronicity and hormonal provocation, these fields have historically operated independently, without any systematic communication about methods or mechanisms. OBJECTIVE Online databases were used to identify articles published between 1950 and 2021 that studied hormonal manipulations in reproductive-aged females with either PMD, MM, or CE. We selected N = 85 studies that met the following criteria: 1) included a study population of females with natural menstrual cycles (e.g., not perimenopausal, pregnant, or using hormonal medications that were not the primary study variable); 2) involved an exogenous hormone manipulation; 3) involved a repeated measurement across at least two cycle phases as the primary outcome variable. CHARTING METHODS After exporting online database query results, authors extracted sample size, clinical diagnosis of sample population, study design, experimental hormone manipulation, cyclical outcome measure, and results from each trial. Charting was completed manually, with two authors reviewing each trial. RESULTS Exogenous hormone manipulations have been tested as treatment options for PMD (N = 56 trials) more frequently than MM (N = 21) or CE (N = 8). Combined oral contraceptive (COC) trials, specifically those containing drospirenone as the progestin, are a well-studied area with promising results for treating both PMDD and MM. We found no trials of COCs in CE. Many trials test ovulation suppression using gonadotropin-releasing hormone agonists (GnRHa), and a meta-analysis supports their efficacy in PMD; GnRHa have been tested in two MM-related trials, and one CE open-label case series. Finally, we found that non-contraceptive hormone manipulations, including but not limited to short-term transdermal estradiol, progesterone supplementation, and progesterone antagonism, have been used across all three disorders. CONCLUSIONS Research in PMD, MM, and CE commonly have overlapping study design and research methods, and similar effects of some interventions suggest the possibility of overlapping mechanisms contributing to their cyclical symptom presentation. Our scoping review is the first to summarize existing clinical trials in these three brain disorders, specifically focusing on hormonal treatment trials. We find that PMD has a stronger body of literature for ovulation-suppressing COC and GnRHa trials; the field of MM consists of extensive estrogen-based studies; and current consensus in CE focuses on progesterone supplementation during the luteal phase, with limited estrogen manipulations due to concerns about seizure provocation. We argue that researchers in any of these respective disciplines would benefit from greater communication regarding methods for assessment, diagnosis, subtyping, and experimental manipulation. With this scoping review, we hope to increase collaboration and communication among researchers to ultimately improve diagnosis and treatment for menstrual-cycle-linked brain disorders.
Collapse
Affiliation(s)
- Jordan C Barone
- University of Illinois at Chicago, Department of Psychiatry, USA; University of Illinois at Chicago, Medical Scientist Training Program, USA.
| | - Mitchell P Butler
- University of Illinois at Chicago, Medical Scientist Training Program, USA; University of Illinois at Chicago, Department of Neurology and Rehabilitation, USA
| | - Ashley Ross
- University of Illinois at Chicago, Department of Psychiatry, USA; University of Illinois at Chicago, Medical Scientist Training Program, USA
| | - Anna Patterson
- University of Illinois at Chicago, Department of Psychiatry, USA; University of Illinois at Chicago, Medical Scientist Training Program, USA
| | | | - Tory A Eisenlohr-Moul
- University of Illinois at Chicago, Department of Psychiatry, USA; University of Illinois at Chicago, Medical Scientist Training Program, USA
| |
Collapse
|
10
|
Martinez CI, Liktor-Busa E, Largent-Milnes TM. Molecular mechanisms of hormones implicated in migraine and the translational implication for transgender patients. FRONTIERS IN PAIN RESEARCH 2023; 4:1117842. [PMID: 37795389 PMCID: PMC10546064 DOI: 10.3389/fpain.2023.1117842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Migraine is a primary headache disorder recognized by the World Health Organization as one of the most poorly understood and debilitating neurological conditions impacting global disability. Chronic pain disorders are more frequently diagnosed among cisgender women than men, suggesting that female sex hormones could be responsible for mediating chronic pain, including migraine and/or that androgens can be protective. This review discusses the major gonadal hormones, estrogens, progesterone, and testosterone in the context of molecular mechanisms by which they play a role in migraine pathophysiology. In addition, the literature to date describing roles of minor sex hormones including prolactin, luteinizing hormone, follicular stimulating hormone, and gonadotropin releasing hormone in migraine are presented. Because transgender and gender non-conforming (trans*) individuals are an underserved patient population in which gender-affirming sex hormone replacement therapy (HRT) is often medically necessary to align biological sex with gender identity, results from cisgender patient populations are discussed in the context of these major and minor sex hormones on migraine incidence and management in trans* patients.
Collapse
Affiliation(s)
| | | | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Raffaelli B, Storch E, Overeem LH, Terhart M, Fitzek MP, Lange KS, Reuter U. Sex Hormones and Calcitonin Gene-Related Peptide in Women With Migraine: A Cross-sectional, Matched Cohort Study. Neurology 2023; 100:e1825-e1835. [PMID: 36813730 PMCID: PMC10136010 DOI: 10.1212/wnl.0000000000207114] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sex hormones may modulate calcitonin gene-related peptide (CGRP) release in the trigeminovascular system. We studied CGRP concentrations in plasma and tear fluid in female participants with episodic migraine (EM) and a regular menstrual cycle (RMC), female participants with EM and combined oral contraception (COC), and female participants with EM in the postmenopause. For control, we analyzed 3 corresponding groups of age-matched female participants without EM. METHODS Participants with an RMC had 2 visits: during menstruation on menstrual cycle day 2 ± 2 and in the periovulatory period on day 13 ± 2. Participants with COC were examined at day 4 ± 2 of the hormone-free interval (HFI) and between days 7 and 14 of hormone intake (HI). Postmenopausal participants were assessed once at a random time point. Plasma and tear fluid samples were collected at each visit for determination of CGRP levels with an ELISA. RESULTS A total of 180 female participants (n = 30 per group) completed the study. Participants with migraine and an RMC showed statistically significantly higher CGRP concentrations in plasma and tear fluid during menstruation compared with female participants without migraine (plasma: 5.95 pg/mL [IQR 4.37-10.44] vs 4.61 pg/mL [IQR 2.83-6.92], p = 0.020 [Mann-Whitney U test]; tear fluid: 1.20 ng/mL [IQR 0.36-2.52] vs 0.4 ng/mL [IQR 0.14-1.22], p = 0.005 [Mann-Whitney U test]). In contrast, female participants with COC and in the postmenopause had similar CGRP levels in the migraine and the control groups. In migraine participants with an RMC, tear fluid but not plasma CGRP concentrations during menstruation were statistically significantly higher compared with migraine participants under COC (p = 0.015 vs HFI and p = 0.029 vs HI, Mann-Whitney U test). DISCUSSION Different sex hormone profiles may influence CGRP concentrations in people, with current or past capacity to menstruate, with migraine. Measurement of CGRP in tear fluid was feasible and warrants further investigation.
Collapse
Affiliation(s)
- Bianca Raffaelli
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany.
| | - Elisabeth Storch
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| | - Lucas Hendrik Overeem
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| | - Maria Terhart
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| | - Mira Pauline Fitzek
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| | - Kristin Sophie Lange
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| | - Uwe Reuter
- From the Department of Neurology (B.R., E.S., L.H.O., M.T., M.P.F., K.S.L., U.R.), Charité-Universitätsmedizin Berlin; Clinician Scientist Program (B.R.), Berlin Institute of Health at Charité (BIH); and Universitätsmedizin Greifswald (U.R.), Germany
| |
Collapse
|
12
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Simona G, Carlo B, Daria B, Michela CM, Flavia LC, Luca P. Monoclonal anti-CGRP antibodies in post-menopausal women: a real-life study. Acta Neurol Belg 2023. [PMID: 36867346 DOI: 10.1007/s13760-023-02190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Migraine usually ameliorates after menopause. However, 10-29% of women still experience migraine attacks after menopause, especially if menopause is surgical. The use of monoclonal antibodies against the calcitonin gene-related peptide (CGRP) is changing the landscape of migraine treatment. This study aims to explore the effectiveness and safety of anti-CGRP monoclonal antibodies in women in menopause. METHODS Women affected by either migraine or chronic migraine and treated with an anti-CGRP monoclonal antibody for up to 1 year. Visits were scheduled every 3 months. RESULTS Women in menopause displayed a similar response compared to women of childbearing age. Among women in menopause, the women experiencing surgical menopause seemed to exhibit a similar response compared to the ones experiencing physiological menopause. Erenumab and galcanezumab displayed similar effectiveness in women in menopause. No serious adverse events were registered. DISCUSSION The effectiveness of anti-CGRP monoclonal antibodies is almost the same between women in menopause and women of childbearing age, without appreciable differences between the different antibodies.
Collapse
Affiliation(s)
- Guerzoni Simona
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics, Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
| | - Baraldi Carlo
- PhD School in Neurosciences, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Brovia Daria
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics, Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
| | - Cainazzo Maria Michela
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics, Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
| | - Lo Castro Flavia
- Post-Graduate School in Pharmacology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pani Luca
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics, Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
- Pharmacology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, USA
- VeraSci, Durham, NC, USA
| |
Collapse
|
14
|
Spekker E, Bohár Z, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Estradiol Treatment Enhances Behavioral and Molecular Changes Induced by Repetitive Trigeminal Activation in a Rat Model of Migraine. Biomedicines 2022; 10:biomedicines10123175. [PMID: 36551931 PMCID: PMC9776064 DOI: 10.3390/biomedicines10123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
A migraine is a neurological condition that can cause multiple symptoms. It is up to three times more common in women than men, thus, estrogen may play an important role in the appearance attacks. Its exact pathomechanism is still unknown; however, the activation and sensitization of the trigeminal system play an essential role. We aimed to use an animal model, which would better illustrate the process of repeated episodic migraine attacks to reveal possible new mechanisms of trigeminal pain chronification. Twenty male (M) and forty ovariectomized (OVX) female adult rats were used for our experiment. Male rats were divided into two groups (M + SIF, M + IS), while female rats were divided into four groups (OVX + SIF, OVX + IS, OVX + E2 + SIF, OVX + E2 + IS); half of the female rats received capsules filled with cholesterol (OVX + SIF, OVX + IS), while the other half received a 1:1 mixture of cholesterol and 17β-estradiol (OVX + E2 + SIF, OVX + E2 + IS). The animals received synthetic interstitial fluid (SIF) (M + SIF, OVX + SIF, OVX + E2 + SIF) or inflammatory soup (IS) (M + IS, OVX + IS, OVX + E2 + IS) treatment on the dural surface through a cannula for three consecutive days each week (12 times in total). Behavior tests and immunostainings were performed. After IS application, a significant decrease was observed in the pain threshold in the M + IS (0.001 < p < 0.5), OVX + IS (0.01 < p < 0.05), and OVX + E2 + IS (0.001 < p < 0.05) groups compared to the control groups (M + SIF; OVX + SIF, OVX + E2 + SIF). The locomotor activity of the rats was lower in the IS treated groups (M + IS, 0.01 < p < 0.05; OVX + IS, p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05), and these animals spent more time in the dark room (M + IS, p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.01). We found a significant difference between M + IS and OVX + E2 + IS groups (p < 0.05) in the behavior tests. Furthermore, IS increased the area covered by calcitonin gene-related peptide (CGRP) immunoreactive (IR) fibers (M + IS, p < 0.01; OVX + IS, p < 0.01; OVX + E2 + IS, p < 0.001) and the number of neuronal nitric oxide synthase (nNOS) IR cells (M + IS, 0.001< p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05) in the caudal trigeminal nucleus (TNC). There was no difference between M + IS and OVX + IS groups; however, the area was covered by CGRP IR fibers (0.01 < p < 0.05) and the number of nNOS IR cells was significantly higher in the OVX + E2 + IS (p < 0.05) group than the other two IS- (M + IS, OVX + IS) treated animals. Overall, repeated administration of IS triggers activation and sensitization processes and develops nociceptive behavior changes. CGRP and nNOS levels increased significantly in the TNC after IS treatments, and moreover, pain thresholds and locomotor activity decreased with the development of photophobia. In our model, stable high estradiol levels proved to be pronociceptive. Thus, repeated trigeminal activation causes marked behavioral changes, which is more prominent in rats treated with estradiol, also reflected by the expression of the sensitization markers of the trigeminal system.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351; Fax: +36-62-545-597
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
15
|
Compound of Cynanchum wilfordii and Humulus lupulus L. Ameliorates Menopausal Symptoms in Ovariectomized Mice. Reprod Sci 2022; 30:1625-1636. [PMID: 36333646 DOI: 10.1007/s43032-022-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Cynanchum wilfordii and Humulus lupulus L. have been used for their various pharmacological properties in South Korea as a traditional medicine or health functional food, respectively, and their intake may relieve menopausal symptoms. The purpose of current study was to determine the effect of compound of Cynanchum wilfordii and Humulus lupulus L. (CWHL) in menopausal symptoms of ovariectomized (OVX) mice. OVX mice received CWHL or caudatin (an active ingredient of CWHL) once daily for 7 weeks. Values for hypothalamic serotonin (5-HT), dopamine, norepinephrine, estrogen receptor (ER)-β, 5-HT1A, and 5-HT2A were significantly enhanced, while value for hypothalamic monoamine oxidase A was reduced in CWHL and caudatin groups compared with the OVX group. CWHL and caudatin significantly reduced tail skin temperature and rectal temperature of OVX mice through partial recovering of the levels of serum estrogen, nitric oxide, follicle-stimulating hormone, luteinizing hormone, and receptor-activator of the NF-κB ligand (RANKL). Moreover, CWHL and caudatin improved bone mineral density via decreasing levels of serum RANKL, tartrate-resistant acid phosphatase, and collagen type 1 cross-linked N-telopeptide and improving levels of serum alkaline phosphatase, osteoprotegerin, and osteocalcin compared with the OVX group without adverse effects such as dyslipidemia. CWHL increased uterine ER-β levels but did not change uterus and vaginal weights. Taken together, the results indicate that CWHL may relieve menopausal symptoms by controlling depression-, hot flashes-, and osteoporosis-associated biomarkers. Therefore, we propose that CWHL might be a safe and potential candidate for management of menopause as a health functional food.
Collapse
|
16
|
Role of Estrogens in Menstrual Migraine. Cells 2022; 11:cells11081355. [PMID: 35456034 PMCID: PMC9025552 DOI: 10.3390/cells11081355] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a major neurological disorder affecting one in nine adults worldwide with a significant impact on health care and socioeconomic systems. Migraine is more prevalent in women than in men, with 17% of all women meeting the diagnostic criteria for migraine. In women, the frequency of migraine attacks shows variations over the menstrual cycle and pregnancy, and the use of combined hormonal contraception (CHC) or hormone replacement therapy (HRT) can unveil or modify migraine disease. In the general population, 18–25% of female migraineurs display a menstrual association of their headache. Here we present an overview on the evidence supporting the role of reproductive hormones, in particular estrogens, in the pathophysiology of migraine. We also analyze the efficacy and safety of prescribing exogenous estrogens as a potential treatment for menstrual-related migraine. Finally, we point to controversial issues and future research areas in the field of reproductive hormones and migraine.
Collapse
|
17
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
18
|
Uchida K, Takano S, Takata K, Mukai M, Koyama T, Ohashi Y, Saito H, Takaso M, Miyagi M, Inoue G. Differential Synovial CGRP/RAMP1 Expression in Men and Women With Knee Osteoarthritis. Cureus 2021; 13:e15483. [PMID: 34109089 PMCID: PMC8180472 DOI: 10.7759/cureus.15483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Female patients with osteoarthritis report more severe knee pain compared to men. However, the mechanism underlying sex differences in pain remains unclear. We previously found that calcitonin gene-related peptide (CGRP) was expressed in synovial tissue and that this localization may play a role in pain associated with knee osteoarthritis (KOA). Several animal studies have shown that the expression of CGRP and its receptor (receptor activity modifying protein 1, RAMP1) differs by sex. Here, we investigated synovial CGRP and RAMP1 expression in male and female patients with KOA. Methods Synovial tissue (ST) was harvested from male and female subjects (n=30 each) with radiographically confirmed unilateral Kellgren/Lawrence grade 3-4 KOA during total knee arthroplasty. Patients’ subjective pain severity was scored on a 0 to 10 cm visual analog scale (VAS). We compared the expression of CGRP and RAMP1 in ST from men and women and examined the correlation between mRNA levels of CGRP and RAMP1 and pain severity. Results Synovial expression of CGRP and RAMP1 was significantly elevated in women compared to men (CGRP, P=0.017; RAMP1, P=0.028). While CGRP expression was positively correlated with pain severity in females (ρ=0.443, P=0.014), no correlation was observed in men (ρ=-0.021, P=0.913). RAMP1 expression was not correlated with pain severity in either men or women (male, ρ=-0.114, P=0.939; female, ρ=-0.047, P=0.807). Conclusion CGRP and RAMP1 expression levels differ between men and women. Differential CGRP levels may suggest the presence of different pain mechanisms in men and women with KOA.
Collapse
Affiliation(s)
- Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Sagamihara, JPN
| | - Shotaro Takano
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Ken Takata
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Manabu Mukai
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Tomohisa Koyama
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Yoshihisa Ohashi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Hiroki Saito
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Gen Inoue
- Orthopaedic Surgery, Kitasato University, Sagamihara, JPN
| |
Collapse
|
19
|
Ornello R, De Matteis E, Di Felice C, Caponnetto V, Pistoia F, Sacco S. Acute and Preventive Management of Migraine during Menstruation and Menopause. J Clin Med 2021; 10:jcm10112263. [PMID: 34073696 PMCID: PMC8197159 DOI: 10.3390/jcm10112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Migraine course is influenced by female reproductive milestones, including menstruation and perimenopause; menstrual migraine (MM) represents a distinct clinical entity. Increased susceptibility to migraine during menstruation and in perimenopause is probably due to fluctuations in estrogen levels. The present review provides suggestions for the treatment of MM and perimenopausal migraine. MM is characterized by long, severe, and poorly treatable headaches, for which the use of long-acting triptans and/or combined treatment with triptans and common analgesics is advisable. Short-term prophylaxis with triptans and/or estrogen treatment is another viable option in women with regular menstrual cycles or treated with combined hormonal contraceptives; conventional prevention may also be considered depending on the attack-related disability and the presence of attacks unrelated to menstruation. In women with perimenopausal migraine, hormonal treatments should aim at avoiding estrogen fluctuations. Future research on migraine treatments will benefit from the ascertainment of the interplay between female sex hormones and the mechanisms of migraine pathogenesis, including the calcitonin gene-related peptide pathway.
Collapse
|
20
|
Ornello R, Frattale I, Caponnetto V, De Matteis E, Pistoia F, Sacco S. Menstrual Headache in Women with Chronic Migraine Treated with Erenumab: An Observational Case Series. Brain Sci 2021; 11:brainsci11030370. [PMID: 33805838 PMCID: PMC8000210 DOI: 10.3390/brainsci11030370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We aimed to assess the differences between menstrual and non-menstrual headache in women with chronic migraine treated with erenumab. METHODS We included fertile women from a single center. Patients were defined as responders to erenumab if reporting a ≥50% decrease in monthly headache days, as compared to pre-treatment for more than half of the treatment period. Premenstrual days were defined as the two days preceding menstruation, while menstrual days were defined as the first three days of menstruation. RESULTS We included 18 women (11 erenumab responders and 7 erenumab non-responders) contributing to a total of 103 menstrual cycles and 2926 days. The proportion of headache days was higher in menstrual than in premenstrual and non-menstrual days in erenumab responders (34.4% vs. 14.8% vs. 16.3%, respectively; p < 0.001) and in erenumab non-responders (71.4% vs. 53.6% vs. 48.3%, respectively; p < 0.001). Headache days with ≥2 acute medications were higher in menstrual than in premenstrual or non-menstrual headache days in erenumab non-responders (p = 0.002) but not in erenumab responders (p = 0.620). CONCLUSIONS Our data suggest that migraine is more frequent during than outside menstrual days even in women treated with erenumab.
Collapse
Affiliation(s)
- Raffaele Ornello
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy; (R.O.); (V.C.); (E.D.M.); (F.P.)
| | - Ilaria Frattale
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy;
| | - Valeria Caponnetto
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy; (R.O.); (V.C.); (E.D.M.); (F.P.)
| | - Eleonora De Matteis
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy; (R.O.); (V.C.); (E.D.M.); (F.P.)
| | - Francesca Pistoia
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy; (R.O.); (V.C.); (E.D.M.); (F.P.)
| | - Simona Sacco
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy; (R.O.); (V.C.); (E.D.M.); (F.P.)
- Correspondence:
| |
Collapse
|
21
|
Bansal S, Chopra K. Construction of time-response curve for neuronal and vascular endothelial dysfunction in ovariectomized rats. Indian J Pharmacol 2021; 53:31-38. [PMID: 33975997 PMCID: PMC8216116 DOI: 10.4103/ijp.ijp_233_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND: Studies have shown that there is a critical time period to start hormone therapy after the loss of ovarian function during menopause. The length of estrogen deprivation may evolve different pathophysiological manifestations. OBJECTIVE: The aim of the present study was to investigate behavioral, biochemical, and molecular alterations at different time points after surgical menopause with an aim and identify various pathophysiological targets to exploit “window of opportunity” and to design newer therapeutic modalities for menopause-associated neurobehavioral and vascular deficits. MATERIALS AND METHODS: Bilateral ovariectomy was performed to induce surgical menopause and estrogen deficiency state. Menopause-associated neuronal and vascular dysfunctions were noted after 1, 2, and 3 months of the study. RESULTS: Neuronal and vascular endothelial dysfunction post ovariectomy revealed that behavioral, biochemical, molecular, and vascular endothelial dysfunction appeared after 1 month of ovariectomy except hyperglycemia, which occurs after 3 months. CONCLUSIONS: Time-response studies measuring behavioral, biochemical, and molecular markers at various time points after ovariectomy reveal that there is a fast onset of neuronal and vascular complications, but the duration of insulin resistance is a relatively late phenomenon.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
22
|
Gazerani P, Cairns BE. Sex-Specific Pharmacotherapy for Migraine: A Narrative Review. Front Neurosci 2020; 14:222. [PMID: 32265634 PMCID: PMC7101090 DOI: 10.3389/fnins.2020.00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Migraine is a common neurological disorder characterized by recurrent headache episodes that accompany sensory-motor disturbances, such as higher sensitivity to touch and light, extremity heaviness or weakness, and speech or language disabilities. Worldwide, migraine is one of the top 10 causes of disability and hence poses a huge economic burden to society. On average, migraine occurs in 12% of population but its occurrence is sexually dimorphic, as it is two to three times more prevalent in women than in men. This female to male ratio of migraine prevalence is age- and sex hormone-dependent. Advancements in understanding migraine pathogenesis have also revealed an association with both genetics and epigenetics. The severity of migraine, in terms of its attack duration, headache intensity, frequency, and occurrence of migraine-associated symptoms, has generally been reported to be greater in women. Sex differences in migraine disability and comorbidities, such as psychiatric disorders, have also been noted in some population-based studies. However, research on sex-related differences in response to migraine treatments is relatively scarce. Although a general observation is that women consume more medication than men for migraine treatment, strategies for the use of abortive and preventive medications for migraine are generally similar in both sexes. This narrative review summarizes available findings on sexually distinct responses to abortive and prophylactic pharmacotherapy of migraine. Basic experimental data and clinical findings will be presented, and potential mechanisms underlying sex-based responses will be discussed to highlight the importance and value of sex-based treatment in migraine research and practice.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Martinelli D, Arceri S, Tronconi L, Tassorelli C. Chronic migraine and Botulinum Toxin Type A: Where do paths cross? Toxicon 2020; 178:69-76. [PMID: 32250749 DOI: 10.1016/j.toxicon.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Migraine is a highly prevalent and disabling disorder accounted among the primary headaches. It is the expression of a complex, and not yet fully understood, pathophysiology involving the sensitization of peripheral and central nociceptive pathways. In this review we succinctly illustrate the molecular, anatomical, and functional abnormalities underlying the migraine attack that are relevant for understanding in more depth the neurobiology behind the therapeutic effect of Botulinum Toxin Type A (BoNT-A). BoNT-A has proved effective in several neurological conditions and, more recently, also in chronic migraine. Its antimigraine mechanism of action was initially thought to be limited to the periphery and interpreted as an inhibitory activity on the processes associated to the local release of neuropeptides, with subsequent induction of peripheral sensitization. Increasing experimental evidence has become available to suggest that additional mechanisms are possibly involved, including the direct/indirect inhibition of sensitization processes in central nociceptive pathways.
Collapse
Affiliation(s)
- Daniele Martinelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Sebastiano Arceri
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Tronconi
- Mondino Foundation IRCCS, Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Cristina Tassorelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Peres MF, Valença MM, Amaral FG, Cipolla-Neto J. Current understanding of pineal gland structure and function in headache. Cephalalgia 2019; 39:1700-1709. [PMID: 31370669 DOI: 10.1177/0333102419868187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The pineal gland plays an important role in biological rhythms, circadian and circannual variations, which are key aspects in several headache disorders. OVERVIEW Melatonin, the main pineal secreting hormone, has been extensively studied in primary and secondary headache disorders. Altered melatonin secretion occurs in many headache syndromes. Experimental data show pineal gland and melatonin both interfere in headache animal models, decreasing trigeminal activation. Melatonin has been shown to regulate CGRP and control its release. DISCUSSION Melatonin has been used successfully as a treatment for migraine, cluster headaches and other headaches. There is a rationale for including the pineal gland as a relevant brain structure in the mechanisms of headache pathophysiology, and melatonin as a treatment option in primary headache.
Collapse
Affiliation(s)
- Mario Fp Peres
- Hospital Israelita Albert Einstein, Sao Paolo, Brazil.,Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Pernambuco, Brazil
| | | | | | - José Cipolla-Neto
- Instituto de Ciencias Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Peng KP, May A. Oral contraceptive use and its association with symptomatology in migraine patients. CEPHALALGIA REPORTS 2019. [DOI: 10.1177/2515816319856007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Hormonal changes in natural menstrual cycles are known to modulate and even worsen headache symptoms in migraineurs; however, the impact of oral contraceptive pills (OCP), including combined oral contraceptive (COC) and progestogen-only pills on migraine symptomatology, is little investigated. Method: In this retrospective cohort study of 1758 migraine patients, data from 1032 female patients aged 15–45 years were accessed and their contraceptive methods, if any, were analyzed. Further comparisons were conducted between patients with OCP use and those without OCP use regarding the demographics, headache symptoms, and associated symptoms. Most OCP users in this study were assumed to have used COC, but information of individual hormone content of OCP was not collected. Patients with nonoral hormonal contraceptives were excluded for further comparison. Results: The use of OCP was common (47.8%) among the study cohort. Compared to those without OCP use ( n = 410), patients with OCP use ( n = 493) were younger (27.4 ± 7.0 vs. 32.8 ± 7.9, p < 0.001), had lower headache frequency (days per month, 11.1 ± 7.5 vs. 12.3 ± 8.8, p = 0.03), were less likely to have osmophobia (47.3 vs. 54.4%, p = 0.033) or cranial autonomic symptoms (44.8 vs. 53.2%, p = 0.013), and more commonly reported menstrually-related worsening of headache (52.3 vs. 42.4%, p = 0.012). The proportion of migraine with aura or other headache characteristics including severity, unilaterality, and pulsatile characteristic showed no differences between groups. Conclusion: Our data provide real-life information about contraceptive use among patients with migraine. The use of OCP is associated with differences in migraine symptomatology. Further studies are needed to determine whether this relationship is causal and any possible underlying mechanism.
Collapse
Affiliation(s)
- Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Oliveira MA, Lima WG, Schettini DA, Tilelli CQ, Chaves VE. Is calcitonin gene-related peptide a modulator of menopausal vasomotor symptoms? Endocrine 2019; 63:193-203. [PMID: 30306319 DOI: 10.1007/s12020-018-1777-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed in the central and peripheral nervous systems, which is known as a potent vasodilator. Postmenopausal women who experience hot flushes have high levels of plasma CGRP, suggesting its involvement in menopausal vasomotor symptoms. METHODS In this review, we describe the biochemical aspects of CGRP and its effects associated with deficiencies of sexual hormones on skin temperature, vasodilatation, and sweating as well as the possible peripheral and central mechanisms involved in these events. RESULTS Several studies have shown that the effects of CGRP on increasing skin temperature and inducing vasodilatation are potentiated by a deficiency of sex hormones, a common condition of postmenopausal women. Additionally, the medial preoptic area of the hypothalamus, involved in thermoregulation, contains over 25-fold more CGRP-immunoreactive cells in female rodents compared with male rodents, reinforcing the role of female sex hormones on the action of CGRP. Some studies suggest that ovarian hormone deficiency decreases circulating endogenous CGRP, inducing an upregulation of CGRP receptors. Consequently, the high CGRP receptor density, especially in blood vessels, amplifies the stimulatory effects of this neuropeptide to raise skin temperature in postmenopausal women during hot flushes. CONCLUSIONS The duration of the perception of each hot flush in a woman is brief, while local reddening after intradermal administration of α-CGRP persists for 1 to 6 h. This contrast remains unclear.
Collapse
Affiliation(s)
- Maria Alice Oliveira
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Cristiane Queixa Tilelli
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Improvement effects of a mixed extract of flowers of Pueraria thomsonii Benth. and peels of Citrus unshiu Markovich on postmenopausal symptoms of ovariectomized mice. Biomed Pharmacother 2018; 103:524-530. [DOI: 10.1016/j.biopha.2018.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/06/2023] Open
|
28
|
Tan EC, Lim HW, Chua TE, Tan HS, Lee TM, Chen HY. Investigation of variants in estrogen receptor genes and perinatal depression. Neuropsychiatr Dis Treat 2018; 14:919-925. [PMID: 29636617 PMCID: PMC5880413 DOI: 10.2147/ndt.s160424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Depressive symptoms are common during pregnancy and after childbirth. Estrogen levels fluctuate greatly during the course of pregnancy and may contribute to mood instability. The first aim of this case-control study was to investigate whether variants in the two estrogen receptor genes might contribute to the genetic susceptibility to pregnancy-related depression using controls that were screened for postnatal depression. The second aim was to uncover new variants in the two estrogen receptor genes. PATIENTS AND METHODS Our study sample comprised 554 control subjects who had Edinburgh Postnatal Depression Scale (EPDS) scores below 7 at postnatal screening, and 159 patients with clinically diagnosed pregnancy-related depression. They were genotyped for four single-nucleotide polymorphisms (SNPs) and a dinucleotide repeat in the two genes: estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Fifty-six cases with personal and/or family history of depression of psychiatric disorders were selected for resequencing of the two genes. RESULTS There was no statistically significant association with perinatal depression for all five variants. However, there was a trend toward higher frequencies of the genotypes associated with higher risk of depression for rs2077647 and rs4986938 in the case group. From resequencing, two novel ESR1 variants were identified from two different patients. CONCLUSION Our study that used screened controls with low EPDS scores and cases with clinically diagnosed pregnancy-related depression could not replicate the association with depression for any of the SNPs for both genotype and allele frequencies. Two novel SNPs were identified and could be further investigated in a larger sample set.
Collapse
Affiliation(s)
- Ene-Choo Tan
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore
| | - Hwee-Woon Lim
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Tze-Ern Chua
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore.,Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hui-San Tan
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Theresa My Lee
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore.,Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Helen Y Chen
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore.,Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
29
|
Abstract
Background Migraine is two to three times more prevalent in women than in men, but the mechanisms involved in this gender disparity are still poorly understood. In this respect, calcitonin gene-related peptide (CGRP) plays a key role in migraine pathophysiology and, more recently, the functional interactions between ovarian steroid hormones, CGRP and the trigeminovascular system have been recognized and studied in more detail. Aims To provide an overview of CGRP studies that have addressed gender differences utilizing animal and human migraine preclinical research models to highlight how the female trigeminovascular system responds differently in the presence of varying ovarian steroid hormones. Conclusions Gender differences are evident in migraine. Several studies indicate that fluctuations of ovarian steroid hormone (mainly estrogen) levels modulate CGRP in the trigeminovascular system during different reproductive milestones. Such interactions need to be considered when conducting future animal and human experiments, since these differences may contribute to the development of gender-specific therapies.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carlos M Villalón
- 2 Departamento de Farmacobiología, Cinvestav-I.P.N. (Unidad Sur), Ciudad de México, México
| | - Antoinette MaassenVanDenBrink
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Ansari M, Karkhaneh A, Kheirollahi A, Emamgholipour S, Rafiee MH. The effect of melatonin on gene expression of calcitonin gene-related peptide and some proinflammatory mediators in patients with pure menstrual migraine. Acta Neurol Belg 2017; 117:677-685. [PMID: 28584969 DOI: 10.1007/s13760-017-0803-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/29/2017] [Indexed: 01/20/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP), a potent vasoactive and a marker of trigeminal inflammation, has been considered as an important mediator in various types of migraine such as pure menstrual migraine. Earlier studies have shown that CGRP can modulate the synthesis and release of other inflammatory factor including nitric oxide (NO) and interleukin-1beta (IL-1β) from trigeminal ganglion glial cells. Exogenous melatonin protects the tissues from inflammatory damages. The goal of this study was to determine the anti-inflammatory effects of melatonin on the CGRP expression, inducible nitric oxide synthase (iNOS) activity, NO, and IL-1β release in cultured peripheral blood mononuclear cells (PBMCs) from pure menstrual migraine patients and healthy subjects. This study was performed on 12 pure menstrual migraine patients and 12 age-and sex-matched healthy subjects. PBMCs were isolated and treated with melatonin for 12 h at pharmacological dose. Gene expression was evaluated by real-time PCR. CGRP and IL-1β proteins in culture supernatant were determined by ELISA method. iNOS activity in PBMCs was determined by colorimetric assays. Total nitrite as an indicator of NO concentrations in the culture supernatants was measured using Griess method. We found that melatonin treatment significantly decreases mRNA expression of CGRP release, NO production, and iNOS activity in the patient groups. Taken together, it appears that melatonin reduces inflammation through decreasing CGRP level and iNOS activity in the patients with migraine; however, further studies are needed in this regard.
Collapse
Affiliation(s)
- Mohammad Ansari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Karkhaneh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Reference Laboratory, Social Security Organization, Tehran, Iran.
| | - Asma Kheirollahi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Del Pino J, Moyano P, Ruiz M, Anadón MJ, Díaz MJ, García JM, Labajo-González E, Frejo MT. Amitraz changes NE, DA and 5-HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. CHEMOSPHERE 2017; 181:518-529. [PMID: 28463726 DOI: 10.1016/j.chemosphere.2017.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 05/21/2023]
Abstract
Amitraz is a formamidine insecticide/acaricide that alters different neurotransmitters levels, among other neurotoxic effects. Oral amitraz exposure (20, 50 and 80 mg/kg bw, 5 days) has been reported to increase serotonin (5-HT), norepinephrine (NE) and dopamine (DA) content and to decrease their metabolites and turnover rates in the male rat brain, particularly in the striatum, prefrontal cortex, and hippocampus. However, the mechanisms by which these alterations are produced are not completely understood. One possibility is that amitraz monoamine oxidase (MAO) inhibition could mediate these effects. Alternatively, it alters serum concentrations of sex steroids that regulate the enzymes responsible for these neurotransmitters synthesis and metabolism. Thus, alterations in sex steroids in the brain could also mediate the observed effects. To test these hypothesis regarding possible mechanisms, we treated male rats with 20, 50 and 80 mg/kg bw for 5 days and then isolated tissue from striatum, prefrontal cortex, and hippocampus. We then measured tissue levels of expression and/or activity of MAO, catechol-O-metyltransferase (COMT), dopamine-β-hydroxylase (DBH), tyrosine hydroxylase (TH) and tryptophan hydroxylase (TRH) as well as estradiol levels in these regions. Our results show that amitraz did not inhibit MAO activity at these doses, but altered MAO, COMT, DBH, TH and TRH gene expression, as well as TH and TRH activity and estradiol levels. The alteration of these enzymes was partially mediated by dysregulation of estradiol levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of amitraz.
Collapse
Affiliation(s)
- Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Matilde Ruiz
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Jesús Díaz
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Elena Labajo-González
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
32
|
Liu C, Lai Y, Ouyang J, Yang T, Guo Y, Yang J, Huang S. Influence of nonylphenol and octylphenol exposure on 5-HT, 5-HT transporter, and 5-HT 2A receptor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8279-8286. [PMID: 28160177 DOI: 10.1007/s11356-017-8487-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/19/2017] [Indexed: 05/20/2023]
Abstract
Nonylphenol (NP) and octylphenol (OP) are priority environmental contaminants that have a potential role as endocrine disruptors. They can be biomagnified in the food chain and pose an estrogenic health risk to human health. A 28-day oral toxicity study was performed to observe the impact of single and combined exposure to NP and OP on 5-HT transporter (SERT) as well as 5-HT2A receptor. Results showed that the 5-HT levels in rat plasma increased with exposure to middle-dose and high-dose NP, to high-dose OP, and to low, middle, and high doses of combined NP and OP (P < 0.05), while the 5-HT levels in rat platelets increased when exposed to NP/OP or combined NP and OP of middle or high dose (P < 0.05). The expression levels of SERT in rat platelets decreased when exposed to high-dose NP/OP or high dose of combined NP and OP (P < 0.05). Meanwhile, the expression levels of 5-HT2A in rat platelets decreased when exposed to high-dose NP/OP as well as combined NP and OP (P < 0.05). These findings suggested that exposure to NP and OP could influence the metabolic network of 5-hydroxytryptamine via transportation and receptor binding pathways.
Collapse
Affiliation(s)
- Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
- Laboratory of Quality and Safety Risk Assessment to Post-Harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Yuting Lai
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyan Ouyang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tongwang Yang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youting Guo
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Yang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Huang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
33
|
Karkhaneh A, Ansari M, Emamgholipour S, Rafiee MH. The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:894-901. [PMID: 26526225 PMCID: PMC4620189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The neuropeptide calcitonin gene-related peptide (CGRP) has long been postulated to play an integral role in the pathophysiology of migraine. Earlier studies showed that CGRP can stimulate the synthesis and release of nitric oxide (NO) and cytokines from trigeminal ganglion glial cells. The purpose of this study was to determine the effect of 17β-estradiol in regulation of CGRP expression, inducible nitric oxide synthase (iNOS) activity, and NO and interleukin-1beta (IL-1β) release in cultured peripheral blood mononuclear cells (PBMCs) from patients with pure menstrual migraine and healthy individuals. MATERIALS AND METHODS This study was performed on twelve patients with pure menstrual migraine and twelve age-and sex-matched healthy individuals. PBMCs treated with 17β-estradiol for 24 hr at physiological and pharmacological doses. Gene expression was evaluated by real time-PCR. CGRP and IL-1β proteins in culture supernatant were determined by ELISA method. Activity of iNOS in PBMCs and total nitrite in the culture supernatant were measured by colorimetric assays. RESULTS Treatment with 17β-estradiol had a biphasic effect on expression of CGRP. We found that 17β-estradiol treatment at pharmacological dose significantly increases mRNA expression of CGRP in both groups (P<0.001), whereas at physiological dose it could significantly decrease CGRP mRNA expression (P<0.001), CGRP protein levels, IL-1β release, NO production and iNOS activity only in patient groups (P<0.05). CONCLUSION Collectively, it appears that 17β-estradiol can exert protective effect on decrease of inflammation in migraine via decrease in levels of CGRP, IL-1β and iNOS activity; however, more studies are necessary in this regard.
Collapse
Affiliation(s)
- Azam Karkhaneh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Reference Laboratory, Iranian Social Security Organization, Tehran, Iran
| | - Mohammad Ansari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Ansari. Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Solaleh Emamgholipour
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|