1
|
Ahrens AP, Lynch K, Hyöty H, Lloyd RE, Petrosino J, Triplett EW, Agardh D. Temporal dynamics of the gut microbiome preceding celiac disease in genetically at-risk children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.29.25328357. [PMID: 40492077 PMCID: PMC12148259 DOI: 10.1101/2025.05.29.25328357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Longitudinal study of the microbial dysbiosis preceding celiac disease (CD) is needed, particularly in the first several years of life. Within the Environmental Determinants of Diabetes in the Young (TEDDY) multi-national prospective cohort study, a case-cohort study of 306 CD cases (i.e., seroconverting by 48 months of age), with controls matched 2:1 by site, gender, and time of birth, was assessed. Temporal microbiome case-control dynamics were modelled by 16S rRNA analysis of monthly sequential stool samples taken from age three months up to age four (or until the development of CD). Significant differences were identified across time, including key taxa that break down gluten and influence inflammation, all before the development of autoantibodies. Key bacterial associations with environmental factors such as diet were assessed using detailed longitudinal nutrient intake and diary data, along with genetic variants conferring high CD risk.
Collapse
|
2
|
Baek JE, Park JB, Bae JH, Kim MH, Hong SW, Hwang SW, Lee JL, Yoon YS, Yang DH, Ye BD, Byeon JS, Myung SJ, Yu CS, Yang SK, Park SH. Incidence, Risk Factors, and Outcomes of Chronic Antibiotic-Refractory Pouchitis in Korean Patients with Ulcerative Colitis. Gut Liver 2025; 19:388-397. [PMID: 39639750 PMCID: PMC12070222 DOI: 10.5009/gnl240226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/26/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background/Aims The study investigated the incidence, risk factors, and clinical outcomes of chronic antibiotic-refractory pouchitis (CARP) in Korean patients with ulcerative colitis (UC). Methods This single-center retrospective study included patients with UC who underwent total proctocolectomy with ileal pouch-anal anastomosis at the Asan Medical Center in Korea between January 1987 and December 2022. The primary outcomes were endoscopic remission and pouch failure. The Cox's proportional hazard model was used to identify the risk factors for CARP. Results The clinical data of 232 patients were analyzed. The most common cause of surgery was steroid refractoriness (50.9%), followed by dysplasia/colorectal cancer (26.7%). Among 74 patients (31.9%) with chronic pouchitis (CP), 31 (13.4%) had CARP, and 43 (18.5%) had chronic antibiotic-dependent pouchitis (CADP). The most frequent endoscopic phenotype was focal inflammation of the pouch (CP, 47.3%; CARP, 35.5%; CADP, 55.8%). Patients with CARP were less likely to use concomitant probiotics than patients with CADP (29.0% vs 72.1%, p<0.01). The endoscopic remission rate of CP, CARP, and CADP was 14.9%, 9.7%, and 18.6%, respectively. The pouch failure rate associated with CP, CARP, and CADP was 13.5%, 16.1%, and 11.6%, respectively. Current smoking status (adjusted hazard ratio [aHR], 2.96; 95% confidence interval [CI], 1.27 to 6.90; p=0.01) and previous use of biologics/small molecules (aHR, 2.40; 95% CI, 1.05 to 5.53; p=0.04) were significantly associated with CARP development. Conclusions UC patients who were current smokers and previously used biologics/small molecules had a higher risk of developing CARP. Concomitant use of probiotics was less likely to be associated with CARP development.
Collapse
Affiliation(s)
- Ji Eun Baek
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jung-Bin Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - June Hwa Bae
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Hyun Kim
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Wook Hong
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Lyul Lee
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sik Yoon
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Sik Yu
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Hyun HK, Cheon JH. Metabolic Disorders and Inflammatory Bowel Diseases. Gut Liver 2025; 19:307-317. [PMID: 39774122 PMCID: PMC12070218 DOI: 10.5009/gnl240316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic immune-mediated intestinal inflammation, presenting with a spectrum of metabolic disorders as well as intestinal and extraintestinal manifestations. Lifestyle factors, genetic predisposition, immune dysfunction, and gut bacteria composition contribute to the development of IBD. Several comorbidities, including cardiovascular diseases, thrombosis, and metabolic disorders, have been associated with IBD. Therefore, metabolic disorders, including nonalcoholic fatty liver disease, type 2 diabetes mellitus, and obesity have become the focus of attention in patients with IBD. Identifying and managing these conditions can significantly influence patient outcomes and enhance overall management. Therefore, this review aimed to elucidate the current understanding of relevant and emerging metabolic comorbidities and extraintestinal manifestations associated with IBD and their clinical significance.
Collapse
Affiliation(s)
- Hye Kyung Hyun
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
4
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Goldiș A, Dragomir R, Mercioni MA, Goldiș C, Sirca D, Enătescu I, Olariu L, Belei O. Personalized Microbiome Modulation to Improve Clinical Outcomes in Pediatric Inflammatory Bowel Disease: A Multi-Omics and Interventional Approach. Microorganisms 2025; 13:1047. [PMID: 40431220 PMCID: PMC12114576 DOI: 10.3390/microorganisms13051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disorder influenced by genetic, environmental, and microbial factors, with emerging evidence highlighting the gut microbiome's role in disease pathogenesis. This study investigates the impact of microbiome-targeted interventions in pediatric IBD by integrating multi-omics analysis, including metagenomics, metabolomics, transcriptomics, and clinical biomarkers, to identify microbial dysbiosis patterns and potential therapeutic targets. A cohort of pediatric IBD patients underwent a personalized intervention involving dietary modifications, probiotic supplementation, and selective antibiotic therapy. Microbiome composition, inflammatory markers (fecal calprotectin, CRP), and disease activity scores (PCDAI/PUCAI) were assessed before and after treatment. At the 3-month follow-up, patients showed significant clinical improvement, with reduced stool frequency (p = 0.004) and improved stool consistency (p < 0.001). Symptoms such as bloating and abdominal pain decreased, while energy levels increased (p < 0.001). Dietary changes included higher fruit, meat, and dairy intake, and lower fast-food and sweets consumption (p < 0.001). Physician assessments classified 90% as "improved", reinforcing the effectiveness of personalized microbiome interventions. Microbiome-targeted interventions (diet, probiotics, and selective antibiotics) improved pediatric IBD outcomes by reducing pathogenic bacteria and increasing short-chain fatty acid (SCFA)-producing species, lowering inflammation and symptoms. Early-life factors (cesarean birth, and formula feeding) influence IBD risk. Personalized diets enhanced microbial balance. Integrating multi-omics supports precision medicine, offering microbiome-based biomarkers and reducing immunosuppressive reliance.
Collapse
Affiliation(s)
- Adrian Goldiș
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Radu Dragomir
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Marina Adriana Mercioni
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.A.M.); (C.G.); (D.S.)
- Applied Electronics Department, Faculty of Electronics, Telecommunications and Informatio Technologies, Politehnica University Timișoara, 300223 Timișoara, Romania
| | - Christian Goldiș
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.A.M.); (C.G.); (D.S.)
| | - Diana Sirca
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.A.M.); (C.G.); (D.S.)
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.O.); (O.B.)
| | - Oana Belei
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.O.); (O.B.)
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
6
|
Hakimiha N, Jahani Sherafat S, Laakso EL, Fekrazad R. Photobiomodulation and the oral-gut microbiome axis: therapeutic potential and challenges. Front Med (Lausanne) 2025; 12:1555704. [PMID: 40270495 PMCID: PMC12014685 DOI: 10.3389/fmed.2025.1555704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
This Perspective article explores the challenges associated with the direct application of photobiomodulation (PBM) to the gut and presents a novel hypothesis for indirect gut health modulation through oral microbiome alteration. Given the difficulties in delivering PBM effectively to deep gastrointestinal tissues, an alternative approach involves targeting the oral microbiome, which has a demonstrated relationship with the gut microbiome. Research indicates that PBM applied to the oral cavity could selectively alter microbial composition. This alteration may, via the oral-gut microbiome axis, indirectly impact gut health. This hypothesis, supported by preliminary studies, suggests that oral PBM could offer a promising non-invasive strategy for managing gut-related disorders. Furthermore, there may be a link between the oral microbiome and brain diseases. Given the proximity to the brain, PBM-induced changes in the oral microbiota could indirectly help prevent neurological disorders. However, further investigation is necessary to comprehensively elucidate the underlying mechanisms and therapeutic implications of this approach.
Collapse
Affiliation(s)
- Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Reza Fekrazad
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
7
|
Xu J, Chen Y, Zhan M, Liu S, Zhang H, Wu Q, Xiao J, Cao Y, Xiao H, Song M. Investigating the interaction between tangeretin metabolism and amelioration of gut microbiota disorders using dextran sulfate sodium-induced colitis and antibiotic-associated diarrhea models. Curr Res Food Sci 2025; 10:101049. [PMID: 40265146 PMCID: PMC12013402 DOI: 10.1016/j.crfs.2025.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/24/2025] Open
Abstract
Dysregulation of gut microbiota homeostasis can lead to various health issues. In this study, we investigated the effects of tangeretin (TAN) on gut microbiota homeostasis in a mouse model (C57BL/6J) of disease, specifically focusing on dextran sulfate sodium (DSS)-induced colitis and antibiotic-associated diarrhea through in vitro fermentation of intestinal bacteria. Our results demonstrated that TAN effectively improved the diversity and structure of the disordered microbiota, increasing the levels of beneficial bacteria such as Lachnospiraceae and Bacteroidaceae, while decreasing harmful bacteria such as Enterococcaceae and Pseudomonadaceae. Additionally, TAN enhanced the production of short-chain fatty acids (SCFAs) in disordered microbial communities. Moreover, the metabolism of TAN by intestinal microorganisms yielded two new metabolites, which exhibited an inverse-conjugate (deconjugate) role, leading to the production of more functional substances with high bioactivity. These findings provide a scientific basis for the potential use of TAN as a prebiotic to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Jingyi Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shijun Liu
- Guangzhou Institute of Energy Conversion, Guangzhou, China
| | - Huikun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Qianhua Wu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Wang Z, Liu T, Liu L, Xie J, Tang F, Pi Y, Zhong Y, He Z, Zhang W, Zheng C. Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Pharmacol Res 2025; 213:107663. [PMID: 39961405 DOI: 10.1016/j.phrs.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder, and its incidence is experiencing an upward trend worldwide. UC can result in gut microbiota dysbiosis, impaired intestinal epithelial barrier, and systemic inflammation, for all of which there is presently no definitive treatment available. Lactobacillus is known to regulate gut microbiota and related metabolites to intervene in the development of UC. The objective of this study was to explore the underlying mechanism through which a novel probiotic, Lactobacillus vaginalis, alleviates DSS-induced colitis. Specifically, L. vaginalis were found to ameliorate the DSS-induced UC phenotype, restore intestinal microbiota balance and intestinal barrier function, and elevate the levels of 3-indoleacrylic acid (IAA) in mouse feces. Furthermore, fecal microbiota transplantation and fecal filtrate transplantation provide additional evidence that L. vaginalis alleviate DSS-induced colitis through metabolic products. Additionally, IAA has been shown to alleviate DSS-induced colitis symptoms, decrease inflammatory responses, and enhance intestinal barrier function. Finally, our findings confirm that L. vaginal and metabolites possess the capability to regulate the immune microenvironment in mice with colitis. And the RNA-seq analysis suggests that L. vaginal may play a pivotal role in alleviating colitis by modulating the PPAR signaling pathway. In conclusion, our findings suggest that oral administration of L. vaginalis alleviates DSS induced colonic inflammation by increasing the levels of IAA. L. vaginalis, as an emerging probiotic, provides a potential therapeutic strategy for clinical UC.
Collapse
Affiliation(s)
- Zhuoya Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tian Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jian Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Precision Cell Therapy, The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
9
|
Yang YJ, Jeon SR. Metabolic musculoskeletal disorders in patients with inflammatory bowel disease. Korean J Intern Med 2025; 40:181-195. [PMID: 40102707 PMCID: PMC11938716 DOI: 10.3904/kjim.2024.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 03/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder that affects not only the gastrointestinal tract but also extraintestinal organs, leading to various extraintestinal manifestations and complications. Among these, musculoskeletal disorders such as osteoporosis, sarcopenia, and axial and peripheral spondyloarthritis are the most commonly observed. These conditions arise from complex mechanisms, including chronic inflammation, malnutrition, gut dysbiosis, and glucocorticoid use, all of which contribute to reduced bone density, muscle loss, and joint inflammation. Osteoporosis and sarcopenia may co-occur as osteosarcopenia, a condition that heightens the risk of fractures, impairs physical performance, and diminishes quality of life, particularly in elderly patients with IBD. Holistic management strategies, including lifestyle modifications, calcium, and vitamin D supplementation, resistance training, and pharmacological interventions, are essential for mitigating the impact of these conditions. Spondyloarthritis, which affects both axial and peripheral joints, further complicates disease management and significantly compromises joint health. Timely diagnosis and appropriate medical interventions, such as administration of nonsteroidal anti-inflammatory drugs and biologics, are critical for preventing chronic joint damage and disability. Moreover, a multidisciplinary approach that addresses both metabolic and inflammatory aspects is essential for optimizing physical function and improving treatment outcomes in patients who have IBD with musculoskeletal involvement.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon,
Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon,
Korea
| | - Seong Ran Jeon
- Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul,
Korea
| |
Collapse
|
10
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
11
|
Galasso L, Termite F, Mignini I, Esposto G, Borriello R, Vitale F, Nicoletti A, Paratore M, Ainora ME, Gasbarrini A, Zocco MA. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers (Basel) 2025; 17:368. [PMID: 39941737 PMCID: PMC11816155 DOI: 10.3390/cancers17030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum.
Collapse
Affiliation(s)
- Linda Galasso
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Fabrizio Termite
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Giorgio Esposto
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Raffaele Borriello
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Federica Vitale
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Alberto Nicoletti
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Mattia Paratore
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Elena Ainora
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Assunta Zocco
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
12
|
Cui M, Yang WM, Yao P. Protective effect of low-dose lactulose in dextran sulfate sodium induced ulcerative colitis model of rats. Sci Rep 2025; 15:2760. [PMID: 39843913 PMCID: PMC11754915 DOI: 10.1038/s41598-025-86823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e., normal drinking water was provided for an initial 14 days in blank control group, 4% dextran sulfate sodium was used for modeling in the remaining 4 groups. During the 15-24th day, rats in the blank control group were administered with 0.9% saline (0.5 ml/d) by gavage. In the rest 4 groups, rats were administered 0.9% saline (0.5 ml/d, UC model), mesalazine (400 mg/kg/d), lactulose (1000 mg/kg/d), and lactulose + mesalazine (two-drug combination) by gavage. In addition to symptoms and pathological changes, serum IL-6, TNF-α, and High-sensitivity C-reactive protein(Hs-CRP) by ELISA analysis, mRNA and protein expression levels of TLR-2, TLR-4, Nuclear factor-κB(NF-κB), IL-6, and TNF-α in colon tissues by RT-qPCR and WB analyses respectively. Meanwhile, short-chain fatty acid(SCFAs) and intestinal flora were analyzed. Low-dose lactulose improved symptoms (diarrhea, blood in stool, weight loss) and pathological inflammation. In addition to serum IL-6, TNF-α, and Hs-CRP, the mRNA and protein expression levels of TLR-2, TLR-4, NF-κB, IL-6 and TNF-α in the colon were down-regulated with the intervention of lactulose.Meanwhile, lactulose decreased the ileocecal PH, increased SCFAs and altered the intestinal flora. Low-dose lactulose may be beneficial to UC by regulating TLRs/NF-κB pathway, reducing ileocecal PH, increasing SCFAs, regulating intestinal flora and improving the intestinal mucosal barrier. Meanwhile, low-dose lactulose and mesalazine may have additive effects upon combination.
Collapse
Affiliation(s)
- Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China
| | - Wei-Ming Yang
- Xinjiang Medical University, Xinjiang Province, Urumqi, 830000, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China.
| |
Collapse
|
13
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Hu Y, Wu Z, Yang X, Ding J, Wang Q, Fang H, Zhu L, Hu M. Reduced gut microbiota diversity in ulcerative colitis patients with latent tuberculosis infection during vedolizumab therapy: insights on prophylactic anti-tuberculosis effects. BMC Microbiol 2024; 24:543. [PMID: 39731099 DOI: 10.1186/s12866-024-03705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The gut microbiota plays a pivotal role in ulcerative colitis (UC) development. This study explores the impact of latent tuberculosis infection (LTBI) on the gut microbiota in UC and assesses changes during vedolizumab treatment, investigating prophylactic anti-tuberculosis therapy. RESULTS This cohort study included adult patients with UC receiving vedolizumab treatment at Jinhua Hospital, Zhejiang University from April 2021 to December 2022. Patients were divided into LTBI (n = 24) and non-LTBI (n = 21) groups. Patients in the LTBI group were further subdivided into prophylactic (n = 13) and non-prophylactic (n = 11) groups. Clinical and fecal samples were collected pre- and post-vedolizumab treatment for the LTBI groups and pre-treatment for the non-LTBI group. The gut microbiota was analyzed using 16 S rRNA sequencing. Patients in the non-LTBI group exhibited higher diversity indices. Vedolizumab demonstrated efficacy in the LTBI group, with clinical response and remission rates of 83.3% and 75.0%, respectively. The gut microbiota diversity in the LTBI group increased post-vedolizumab treatment, and receiving prophylactic isoniazid showed no significant difference in vedolizumab treatment response compared to not receiving prophylactic isoniazid. Microbiota changes were similar between groups, with an increase in [Ruminococcus] expression after vedolizumab treatment. CONCLUSIONS This cohort study, conducted at a single center, highlights that LTBI can reduce gut microbiota diversity among adult patient with UC. The observed efficacy of vedolizumab treatment in the LTBI group indicates a potential association with microbiota changes. However, mono-isoniazid exhibited limited impact, underscoring the potential of vedolizumab as a promising candidate for prophylactic anti-tuberculosis treatment in the context of UC.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Zhenping Wu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Xiaoyun Yang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Qunying Wang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, P. R. China
| | - Lujian Zhu
- Department of Infection, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, P. R. China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
16
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
17
|
Zhou Z, Huang X, Zhang B. Analysis of the Preventive Effect of Lonicera caerulea Pomace and Its Isolated Components on Colitis in Mice Based on Gut Microbiota and Serum Metabolomics. Antioxidants (Basel) 2024; 13:1478. [PMID: 39765807 PMCID: PMC11672951 DOI: 10.3390/antiox13121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD), including relapsing-remitting ulcerative colitis and Crohn's disease, is a non-specific chronic intestinal inflammatory disease. Lonicera caerulea, which is rich in polyphenolic compounds, has been shown to exert antioxidative and anti-inflammatory effects. The research evaluates the dietary impacts of Lonicera caerulea pomace, its polyphenol-rich extract, and fiber-rich residue on colitis symptoms. Colitis was induced with 2.5% DSS (dextran sulfate sodium) aqueous solution after continuous feeding of customized Lonicera caerulea feed for 2.5 weeks. The results indicate that the intake of the polyphenol-rich extract has an effect in preventing colitis in mice, but the effect is less than that by the pomace itself, and the fiber residue alone does not prevent the condition when ingested. The pomace and polyphenol-rich extract have a positive regulatory effect on the gut microbiota of mice with colitis, and the intake of Lonicera caerulea pomace significantly restores 15 metabolites in mice with colitis, significantly improving five metabolic pathways, including steroid biosynthesis, with the regulation of metabolites and metabolic pathways being significantly correlated with the gut microbiota.
Collapse
Affiliation(s)
- Zinuo Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
| | - Xinwen Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
| | - Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
19
|
Otaru N, Bajic D, Van den Abbeele P, Vande Velde S, Van Biervliet S, Steinert RE, Rehman A. Bifidogenic Effect of Human Milk Oligosaccharides on Pediatric IBD Fecal Microbiota. Microorganisms 2024; 12:1977. [PMID: 39458287 PMCID: PMC11509818 DOI: 10.3390/microorganisms12101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of pediatric inflammatory bowel disease (pIBD) has been increasing over the last two decades. Yet, treatment strategies are still limited, in part due to the multifactorial nature of the disease and the complex interplay between genetic, environmental, dietary, immune, and gut microbial factors in its etiology. With their direct and indirect anti-inflammatory properties, human milk oligosaccharides (HMOs) are a promising treatment and management strategy for IBD. However, to date there are no insights into how HMOs may affect pIBD microbiota. Here, we compared the effects of 2'fucosyllactose (2'FL), difucosyllactose (DFL), 3'sialyllactose (3'SL), and blends thereof with fructooligosaccharide (FOS) on microbiota functionality (short- and branched-chain fatty acids, pH, and gas production) and composition (quantitative shallow shotgun sequencing) using fecal material from eight different pediatric Crohn's disease patients inoculated in the SIFR® technology. In general, all HMO treatments significantly increased total short-chain fatty acid production when compared with FOS, despite equal gas production. We found that 2'FL, either alone or in combination with DFL and 3'SL, exhibited a strong acetogenic and propiogenic effect, and 3'SL an acetogenic effect that surpassed the effects observed with FOS. No differences in overall community diversity between HMO- and FOS-treated pIBD microbiota were observed. There was, however, a stronger bifidogenic effect of 2'FL, 3'SL, 2'FL/DFL, and 2'FL/DFL + 3'SL when compared with FOS. In general, 3'SL and HMO blends enriched a broader species profile, including taxa with potentially anti-inflammatory properties, such as Faecalibacterium prausnitzii and Blautia species. This study suggests HMOs as a promising strategy to beneficially alter the gut microbial profile in pIBD.
Collapse
Affiliation(s)
- Nize Otaru
- Health, Nutrition & Care (HNC), DSM-Firmenich, 4303 Kaiseraugst, Switzerland
| | - Danica Bajic
- Health, Nutrition & Care (HNC), DSM-Firmenich, 4303 Kaiseraugst, Switzerland
| | | | - Saskia Vande Velde
- Pediatric Gastroenterology and Nutrition, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stephanie Van Biervliet
- Pediatric Gastroenterology and Nutrition, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Robert E. Steinert
- Health, Nutrition & Care (HNC), DSM-Firmenich, 4303 Kaiseraugst, Switzerland
| | - Ateequr Rehman
- Health, Nutrition & Care (HNC), DSM-Firmenich, 4303 Kaiseraugst, Switzerland
| |
Collapse
|
20
|
Deleu S, Jacobs I, Vazquez Castellanos JF, Verstockt S, Trindade de Carvalho B, Subotić A, Verstockt B, Arnauts K, Deprez L, Vissers E, Lenfant M, Vandermeulen G, De Hertogh G, Verbeke K, Matteoli G, Huys GRB, Thevelein JM, Raes J, Vermeire S. Effect of Mutant and Engineered High-Acetate-Producing Saccharomyces cerevisiae var. boulardii Strains in Dextran Sodium Sulphate-Induced Colitis. Nutrients 2024; 16:2668. [PMID: 39203805 PMCID: PMC11357622 DOI: 10.3390/nu16162668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran sodium sulphate for 7 days, combined with a daily gavage of various treatments with different levels of acetate accumulation: sham control (phosphate buffered saline, no acetate), non-probiotic control (Baker's yeast, no acetate), probiotic control (Enterol®, transient acetate), and additionally several Saccharomyces cerevisiae var. boulardii strains with respectively no, high, and extra-high acetate accumulation. Disease activity was monitored daily, and feces samples were collected at different timepoints. On day 14, the mice were sacrificed, upon which blood and colonic tissue were collected for analysis. Disease activity in inflamed mice was lower when treated with the high-acetate-producing strain compared to sham and non-probiotic controls. The non-acetate-producing strain showed higher disease activity compared to the acetate-producing strains. Accordingly, higher histologic inflammation was observed in non- or transient-acetate-producing strains compared to the sham control, whereas this increase was not observed for high- and extra-high-acetate-producing strains upon induction of inflammation. These anti-inflammatory findings were confirmed by transcriptomic analysis of differentially expressed genes. Moreover, only the strain with the highest acetate production was superior in maintaining a stable gut microbial alpha-diversity upon inflammation. These findings support new possibilities for acetate-mediated management of inflammation in inflammatory bowel disease by administrating high-acetate-producing Saccharomyces cerevisae var. boulardii strains.
Collapse
Affiliation(s)
- Sara Deleu
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Inge Jacobs
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Jorge F. Vazquez Castellanos
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sare Verstockt
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | | | - Ana Subotić
- NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee, 3001 Leuven, Belgium
| | - Bram Verstockt
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Kaline Arnauts
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Lowie Deprez
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Eva Vissers
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Matthias Lenfant
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Greet Vandermeulen
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Gert De Hertogh
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Laboratory of Morphology and Molecular Pathology, UZ Leuven, 3000 Leuven, Belgium
| | - Kristin Verbeke
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Gianluca Matteoli
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Geert R. B. Huys
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Johan M. Thevelein
- NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee, 3001 Leuven, Belgium
| | - Jeroen Raes
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Séverine Vermeire
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Alexandrescu L, Nicoara AD, Tofolean DE, Herlo A, Nelson Twakor A, Tocia C, Trandafir A, Dumitru A, Dumitru E, Aftenie CF, Preotesoiu I, Dina E, Tofolean IT. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success-A Systematic Review. Int J Mol Sci 2024; 25:8451. [PMID: 39126020 PMCID: PMC11313389 DOI: 10.3390/ijms25158451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research indicates that the microbiome has a significant impact on the progression of inflammatory bowel disease (IBD) and that creating therapies that change its composition could positively impact the outcomes of IBD treatment. This review summarizes the results of extensive studies that examined IBD patients undergoing several therapies, including anti-TNF medication, vedolizumab, ustekinumab, probiotics, and fecal microbiota transplantation (FMT), and the alterations in their gut microbiota's composition and function. The objective was to investigate the variety and effectiveness of microbial species in order to discover new biomarkers or therapeutic targets that could improve the outcome of treatment for these patients. This research aimed to offer useful insights into personalized medicine techniques for managing IBD. Beneficial bacteria such as Faecalibacterium prausnitzii and Roseburia have been consistently linked to favorable clinical outcomes, whereas pathogenic bacteria such as Escherichia coli and Clostridioides difficile are associated with worsening disease conditions. Although many studies have examined the role of gut microbiota in IBD, there is still a need for more targeted research on the connection between specific microbial communities and treatment outcomes. This study sought to address this gap by exploring the intricate relationship between the gut microbiota composition and the effectiveness of IBD medications.
Collapse
Affiliation(s)
- Luana Alexandrescu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Alina Doina Nicoara
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Internal Medicine Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Doina Ecaterina Tofolean
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Pneumology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Andreea Nelson Twakor
- Internal Medicine Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Cristina Tocia
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Anamaria Trandafir
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Andrei Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
| | - Eugen Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Cristian Florentin Aftenie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Ionela Preotesoiu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Elena Dina
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
| | - Ioan Tiberiu Tofolean
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| |
Collapse
|
22
|
Vivacqua G, Mancinelli R, Leone S, Vaccaro R, Garro L, Carotti S, Ceci L, Onori P, Pannarale L, Franchitto A, Gaudio E, Casini A. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders. Neurogastroenterol Motil 2024; 36:e14780. [PMID: 38462652 DOI: 10.1111/nmo.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovica Garro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Kiran N, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol Transl Sci 2024; 7:967-990. [PMID: 38633600 PMCID: PMC11019743 DOI: 10.1021/acsptsci.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.
Collapse
Affiliation(s)
- Neelakanta
Sarvashiva Kiran
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Rahul Maheshwari
- School
of Pharmacy and Technology Management, SVKM’s
Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC,, Jadcherla, Hyderabad 509301, India
| | - Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
24
|
Xiong J, Shi Z. Editorial: Environments-pathogens-the gut microbiota and host diseases. Front Microbiol 2024; 14:1357125. [PMID: 38260887 PMCID: PMC10800979 DOI: 10.3389/fmicb.2023.1357125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|