1
|
Infection control and outcome of staged reverse shoulder arthroplasty for the management of shoulder infections. JSES Int 2020; 4:959-963. [PMID: 33345240 PMCID: PMC7738577 DOI: 10.1016/j.jseint.2020.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background The treatment of septic arthritis, caused by either hematogenous seeding, injections, or surgery, can be challenging. Staged reverse shoulder arthroplasty (RSA) with temporary implantation of an antibiotic-loaded spacer is widely accepted but still discussed controversially. This study investigated the shoulder-specific bacterial spectrum, infection control rate, functional outcome, and infection-free survival rate after staged RSA in the mid- to long-term follow-up. It was hypothesized that staged RSA would show a high infection-free survival rate. Methods A total of 39 patients treated with staged RSA for primary septic arthritis (n = 8), secondary infection (n = 8), or periprosthetic infection (n = 23) were retrospectively included. The infection control rate was calculated based on cultures taken intraoperatively at spacer removal and RSA implantation. Infection-free survival was defined as no revision due to infection. The minimum follow-up period for functional outcome assessment was 2 years (n = 14; mean, 76 months; range, 31-128 months). Results Cutibacterium (26%) and coagulase-negative staphylococci (23%) were the predominant pathogens. The infection control rate was 90%. The cumulative infection-free survival rate was 91% after 128 months. Follow-up examinations showed a mean Constant score of 48 (range, 7-85), a mean QuickDASH (short version of Disabilities of the Arm, Shoulder and Hand questionnaire) score of 40.0 (range, 11.4-93.3), and a mean pain score of 1.6 (range, 0-7). Conclusion Staged RSA implantation was confirmed to be a reliable treatment option for primary, secondary, and periprosthetic infections of the shoulder. The infection control rate and infection-free survival rate are satisfactory. However, patients and surgeons must be aware of functional impairment even after successful treatment of infections.
Collapse
|
2
|
Suarez Fernandez JP. Comments on “Consensus document for the diagnosis of prosthetic joint infections: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement)”. Eur J Nucl Med Mol Imaging 2020; 47:2501-2502. [DOI: 10.1007/s00259-020-04889-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022]
|
3
|
Ehrensberger MT, Clark CM, Canty MK, McDermott EP. Electrochemical methods to enhance osseointegrated prostheses. Biomed Eng Lett 2020; 10:17-41. [PMID: 32175128 PMCID: PMC7046908 DOI: 10.1007/s13534-019-00134-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022] Open
Abstract
Osseointegrated (OI) prosthetic limbs have been shown to provide an advantageous treatment option for amputees. In order for the OI prosthesis to be successful, the titanium implant must rapidly achieve and maintain proper integration with the bone tissue and remain free of infection. Electrochemical methods can be utilized to control and/or monitor the interfacial microenvironment where the titanium implant interacts with the biological system (host bone tissue or bacteria). This review will summarize the current understanding of how electrochemical modalities can influence bone tissue and bacteria with specific emphasis on applications where the metallic prosthesis itself can be utilized directly as a stimulating electrode for enhanced osseointegration and infection control. In addition, a summary of electrochemical impedance sensing techniques that could be used to potentially assess osseointegration and infection status of the metallic prosthesis is presented.
Collapse
Affiliation(s)
- Mark T. Ehrensberger
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
- Department of Orthopaedics, University at Buffalo, Buffalo, NY USA
| | - Caelen M. Clark
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
| | - Mary K. Canty
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY USA
| | - Eric P. McDermott
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
4
|
Francisella tularensis Periprosthetic Joint Infections Diagnosed with Growth in Cultures. J Clin Microbiol 2019; 57:JCM.00339-19. [PMID: 31189580 DOI: 10.1128/jcm.00339-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/27/2019] [Indexed: 01/02/2023] Open
Abstract
Tularemia caused by Francisella tularensis is a zoonotic infection of the Northern Hemisphere that mainly affects the skin, lymph nodes, bloodstream, and lungs. Other manifestations of tularemia are very rare, especially those with musculoskeletal involvement. Presenting in 2016, we diagnosed two cases of periprosthetic knee joint infections (PJI) caused by Francisella tularensis in Europe (one in Switzerland and one in the Czech Republic). We found only two other PJI cases in the literature, another knee PJI diagnosed 1999 in Ontario, Canada, and one hip PJI in Illinois, USA, in 2017. Diagnosis was made in all cases by positive microbiological cultures after 3, 4, 7, and 12 days. All were successfully treated, two cases by exchange of the prosthesis, one with debridement and retention, and one with repeated aspiration of the synovial fluid only. Antibiotic treatment was given between 3 weeks and 12 months with either ciprofloxacin-rifampin or with doxycycline alone or doxycycline in combination with gentamicin. Zoonotic infections should be considered in periprosthetic infections in particular in culture-negative PJIs with a positive histology or highly elevated leukocyte levels in synovial aspiration. Here, we recommend prolonging cultivation time up to 14 days, performing specific PCR tests, and/or conducting epidemiologically appropriate serological tests for zoonotic infections, including that for F. tularensis.
Collapse
|
5
|
Synovial Fluid Aspiration Should Not Be Routinely Performed during the Two-Stage Exchange of the Knee. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6720712. [PMID: 30009171 PMCID: PMC6020654 DOI: 10.1155/2018/6720712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Purpose Detection of infection persistence during the two-stage exchange of the knee for periprosthetic joint infection is challenging. Synovial fluid culture (SFC) and synovial white blood cell count (SWBCC) before joint reimplantation are widespread diagnostic means for this indication. The sensitivity and specificity of SFC and of SWBCC for infection persistence before planned reimplantation were evaluated. Methods 94 two-stage exchanges of the knee with synovial fluid aspiration performed after a drug holiday of at least 14 days and before reimplantation or spacer exchange (planned reimplantation) were retrospectively analyzed. Only cases with at least 3 intraoperative samples at planned reimplantation were included. SFC and SWBCC were compared to pathogen detection (SFC(culture)/SWBCC(culture)) and to histopathological signs of infection persistence (SFC(histo)/SWBCC(histo)) from intraoperative samples at planned reimplantation. For SFC, the sensitivity and specificity were calculated. For SWBCC, the optimal cut-off value with its sensitivity and specificity was calculated with the Youden-Index. Results Sensitivity and specificity of SFC(culture) were 0.0% and 98.9%. Sensitivity and specificity of SFC(histo) were 3.4% and 100%. The optimal cut-off value for SWBCC(culture) was 4450 cells/μl with a sensitivity of 50.0% and a specificity of 86.5%. The optimal cut-off value for SWBCC(histo) was 3250 cells/μl with a sensitivity of 35.7% and a specificity of 92.9%. Conclusion The detection of infection persistence remains challenging and a consented approach is lacking. The results do not warrant the routine performance of SFC during the two-stage exchange at the knee. SWBCC can be used to confirm infection persistence at high cut-offs, but they only occur in few patients and are therefore inappropriate for the routine use.
Collapse
|
6
|
Clauss M. CORR Insights®: Does the Alpha-defensin Immunoassay or the Lateral Flow Test Have Better Diagnostic Value for Periprosthetic Joint Infection? A Systematic Review. Clin Orthop Relat Res 2018; 476:1073-1075. [PMID: 29601396 PMCID: PMC5916616 DOI: 10.1007/s11999.0000000000000287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Martin Clauss
- M. Clauss, Head Interdisciplinary Unit for Orthopedic Infections, Kantonsspital Baselland, Liestal, Switzerland, and Interdisciplinary Unit for Muscolo-Sceletal Infections University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Wang J, Li J, Qian S, Guo G, Wang Q, Tang J, Shen H, Liu X, Zhang X, Chu PK. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11162-11178. [PMID: 27054673 DOI: 10.1021/acsami.6b02803] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Co-Culture of S. epidermidis and Human Osteoblasts on Implant Surfaces: An Advanced In Vitro Model for Implant-Associated Infections. PLoS One 2016; 11:e0151534. [PMID: 26982194 PMCID: PMC4794246 DOI: 10.1371/journal.pone.0151534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Objectives Total joint arthroplasty is one of the most frequent and effective surgeries today. However, despite improved surgical techniques, a significant number of implant-associated infections still occur. Suitable in vitro models are needed to test potential approaches to prevent infection. In the present study, we aimed to establish an in vitro co-culture setup of human primary osteoblasts and S. epidermidis to model the onset of implant-associated infections, and to analyze antimicrobial implant surfaces and coatings. Materials and Methods For initial surface adhesion, human primary osteoblasts (hOB) were grown for 24 hours on test sample discs made of polystyrene, titanium alloy Ti6Al4V, bone cement PALACOS R®, and PALACOS R® loaded with antibiotics. Co-cultures were performed as a single-species infection on the osteoblasts with S. epidermidis (multiplicity of infection of 0.04), and were incubated for 2 and 7 days under aerobic conditions. Planktonic S. epidermidis was quantified by centrifugation and determination of colony-forming units (CFU). The quantification of biofilm-bound S. epidermidis on the test samples was performed by sonication and CFU counting. Quantification of adherent and vital primary osteoblasts on the test samples was performed by trypan-blue staining and counting. Scanning electron microscopy was used for evaluation of topography and composition of the species on the sample surfaces. Results After 2 days, we observed approximately 104 CFU/ml biofilm-bound S. epidermidis (103 CFU/ml initial population) on the antibiotics-loaded bone cement samples in the presence of hOB, while no bacteria were detected without hOB. No biofilm-bound bacteria were detectable after 7 days in either case. Similar levels of planktonic bacteria were observed on day 2 with and without hOB. After 7 days, about 105 CFU/ml planktonic bacteria were present, but only in the absence of hOB. Further, no bacteria were observed within the biofilm, while the number of hOB was decreased to 10% of its initial value compared to 150% in the mono-culture of hOB. Conclusion We developed a co-culture setup that serves as a more comprehensive in vitro model for the onset of implant-associated infections and provides a test method for antimicrobial implant materials and coatings. We demonstrate that observations can be made that are unavailable from mono-culture experiments.
Collapse
|
9
|
Zhang XM, Zhang HH, McLeroth P, Berkowitz RD, Mont MA, Stabin MG, Siegel BA, Alavi A, Barnett TM, Gelb J, Petit C, Spaltro J, Cho SY, Pomper MG, Conklin JJ, Bettegowda C, Saha S. [(124)I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol 2016; 43:273-9. [PMID: 27150029 DOI: 10.1016/j.nucmedbio.2016.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Fialuridine (FIAU) is a nucleoside analog that is a substrate for bacterial thymidine kinase (TK). Once phosphorylated by TK, [(124)I]FIAU becomes trapped within bacteria and can be detected with positron emission tomography/computed tomography (PET/CT). [(124)I]FIAU PET/CT has been shown to detect bacteria in patients with musculoskeletal bacterial infections. Accurate diagnosis of prosthetic joint infections (PJIs) has proven challenging because of the lack of a well-validated reference. In the current study, we assessed biodistribution and dosimetry of [(124)I]FIAU, and investigated whether [(124)I]FIAU PET/CT can diagnose PJIs with acceptable accuracy. METHODS To assess biodistribution and dosimetry, six subjects with suspected hip or knee PJI and six healthy subjects underwent serial PET/CT after being dosed with 74MBq (2mCi) [(124)I]FIAU intravenously (IV). Estimated radiation doses were calculated with the OLINDA/EXM software. To determine accuracy of [(124)I]FIAU, 22 subjects with suspected hip or knee PJI were scanned at 2-6 and 24-30h post IV injection of 185MBq (5mCi) [(124)I]FIAU. Images were interpreted by a single reader blinded to clinical information. Representative cases were reviewed by 3 additional readers. The utility of [(124)I]FIAU to detect PJIs was assessed based on the correlation of the patient's infection status with imaging results as determined by an independent adjudication board (IAB). RESULTS The kidney, liver, spleen, and urinary bladder received the highest radiation doses of [(124)I]FIAU. The effective dose was 0.16 to 0.20mSv/MBq and doses to most organs ranged from 0.11 to 0.76mGy/MBq. PET image quality obtained from PJI patients was confounded by metal artifacts from the prostheses and pronounced FIAU uptake in muscle. Consequently, a correlation with infection status and imaging results could not be established. CONCLUSIONS [(124)I]FIAU was well-tolerated in healthy volunteers and subjects with suspected PJI, and had acceptable dosimetry. However, the utility of [(124)I]FIAU for the clinical detection of PJIs is limited by poor image quality and low specificity.
Collapse
Affiliation(s)
| | - Halle H Zhang
- BioMed Valley Discoveries Inc., Kansas City, Missouri
| | | | | | - Michael A Mont
- The Rubin Institute for Advanced Orthopedics, Sinai Hospital, Baltimore, Maryland
| | - Michael G Stabin
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Steve Y Cho
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | | | - Chetan Bettegowda
- Department of Neurology, The Johns Hopkins Medical Institutes, Baltimore, Maryland
| | - Saurabh Saha
- BioMed Valley Discoveries Inc., Kansas City, Missouri.
| |
Collapse
|
10
|
[Microbiological characteristics and patterns of resistance in prosthetic joint infections in a referral hospital]. CIR CIR 2015; 83:371-7. [PMID: 26143043 DOI: 10.1016/j.circir.2015.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/23/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND The prosthetic joint infection is the most feared and catastrophic complication for cause severe physical damage to patients and, generates high economic costs. OBJECTIVES To describe the microbiological characteristics and to determine the resistance pattern in prosthetic joint infections in a reference hospital in Mexico. MATERIAL AND METHODS Patients whose prosthetic devices were withdrawn due to suspicion of septic and aseptic loosening were included. Cultures were performed to identify microorganisms and susceptibility analysis. RESULTS Of the 111 patients included, 55% were diagnosed with prosthetic joint infection, with the most frequent prosthesis being of the hip (43%). Positive cultures were obtained in 97% of the infected cases, of which 75% were monomicrobial infections. The most frequent bacterial species isolated were: Staphylococcus epidermidis (31%), Enterococcus faecalis (16%), Staphylococcus aureus (13%), and Escherichia coli (8%). The resistance patterns for the Staphylococcus genus were: oxacillin (79%), erythromycin (45%) and ciprofloxacin (37%). Enterococcus faecalis showed a high percentage of resistance to erythromycin and clindamycin (86%), and fluoroquinolones (43%). The large majority (86%) of Escherichia coli were extended spectrum beta-lactamases positive, in addition to having high resistance to fluoroquinolones (86%), trimethoprim/sulfamethoxazole (86%) and gentamicin (72%). CONCLUSION The microbiological characteristics found in prosthetic joint infections vary according to the hospitals. In this series, a high proportion of coagulase-negative Staphylococci and Enterococcus spp. were found, as well as a high bacterial resistance.
Collapse
|
11
|
Evaluation of implant sonication as a diagnostic tool in implant-associated infections. J Appl Biomater Funct Mater 2014; 12:135-40. [PMID: 25199070 DOI: 10.5301/jabfm.5000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Infections of implants pose a severe problem in the field of orthopedic surgery, because they can cause bone degradation with subsequent loosening of the implant. The discrimination between septic implant loosening and aseptic loosening can be a challenge, and hence novel diagnostic methods have been introduced to improve the detection of bacteria. Because a major problem is their firm adherence to implants due to biofilm formation, sonication has been introduced, followed by identification of bacteria by culture or genetic methods. In this study, we compared the results obtained after sonication pretreatment with those of microbiological testing of tissue samples and histopathological evaluation of the same tissue. Furthermore, we related the results obtained following sonication to the clinical diagnosis of septic or aseptic implant loosening, respectively. Sonication of explanted devices also enhances the likelihood of detecting bacterial growth in patients who were considered "aseptic" based on the clinical evaluation.
Collapse
|
12
|
Jansen P, Mumme T, Randau T, Gravius S, Hermanns-Sachweh B. Endoglin (CD105) expression differentiates between aseptic loosening and periprosthetic joint infection after total joint arthroplasty. SPRINGERPLUS 2014; 3:561. [PMID: 26034672 PMCID: PMC4447722 DOI: 10.1186/2193-1801-3-561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
The differentiation between aseptic loosening and periprosthetic joint infection (PJI) after total joint arthroplasty is essential for successful therapy. A better understanding of pathogenesis of aseptic loosening and PJI may help to prevent or treat these complications. Previous investigations revealed an increased vascularization in the periprosthetic membrane in cases of PJI via PET signals. Based on these findings our hypothesis was that PJI is associated with an increased neovascularization in the periprosthetic membrane. Tissue samples from periprosthetic membranes of the bone-implant interface were investigated histologically for inflammation, wear particles, vascularization and fibrosis. To identify vascular structures antibodies against CD 31, CD 34, factor VIII and CD 105 (endoglin) were applied for immunohistochemical investigations. According to a consensus classification of Morawietz the tissue samples were divided into four types: type I (wear particle induced type, n = 11), type II (infectious type, n = 7), type III (combined type, n = 7) and type IV (indeterminate type, n = 7). Patients with PJI (type II) showed a pronounced infiltration of neutrophil granulocytes in the periprosthetic membrane and an enhanced neovascularization indicated by positive immunoreaction with antibodies against CD 105 (endoglin). Tissue samples classified as type I, type III and type IV showed significantly less immune reaction for CD 105. In cases of aseptic loosening and PJI vascularization is found in different expression in periprosthetic membranes. However, in aseptic loosening, there is nearly no neovascularization with CD 105-positive immune reaction. Therefore, endoglin (CD 105) expression allows for differentiation between aseptic loosening and PJI.
Collapse
Affiliation(s)
- Philipp Jansen
- Gerhard-Schümmer-Straße 11, Geilenkirchen, 52511 Germany
| | - Torsten Mumme
- Department of Orthopedics, Medical School of the Technical University of Aachen, Aachen, Germany
| | - Thomas Randau
- Department of Orthopedic and Trauma Surgery, University of Bonn Medical School, Bonn, Germany
| | - Sascha Gravius
- Department of Orthopedic and Trauma Surgery, University of Bonn Medical School, Bonn, Germany
| | - Benita Hermanns-Sachweh
- Institute of Pathology, Medical School of the Technical University of Aachen, Aachen, Germany
| |
Collapse
|
13
|
Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: a need to act. J Intern Med 2014; 276:98-110. [PMID: 24796496 DOI: 10.1111/joim.12242] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- U Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Prosthetic joint infection (PJI) is a serious and potentially devastating complication of arthroplasty. Prior arthroplasty, immunosuppression, severe comorbid conditions, and prolonged surgical duration are important risk factors for PJI. More than half of the cases of PJI are caused by Staphylococcus aureus and coagulase-negative staphylococci. The biofilm plays a central role in its pathogenesis. The diagnosis of PJI requires the presence of purulence, sinus tract, evidence of inflammation on histopathology, or positive microbiologic cultures. The use of diagnostic imaging techniques is generally limited but may be helpful in selected cases. The most effective way to prevent PJI is to optimize the health of patients, using antibiotic prophylaxis in a proper and timely fashion. Management of PJI frequently requires removal of all hardware and administration of intravenous antibiotics. This review summarizes and analyzes the results of previous reports of PJI and assesses the prevention and management of this important entity.
Collapse
|
15
|
Achermann Y, Stasch P, Preiss S, Lucke K, Vogt M. Characteristics and treatment outcomes of 69 cases with early prosthetic joint infections of the hip and knee. Infection 2014; 42:511-9. [DOI: 10.1007/s15010-014-0584-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/03/2014] [Indexed: 01/27/2023]
|
16
|
From Koch's postulates to biofilm theory. The lesson of Bill Costerton. Int J Artif Organs 2013; 35:695-9. [PMID: 23138704 DOI: 10.5301/ijao.5000169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2012] [Indexed: 11/20/2022]
Abstract
The clinical diagnoses of implant infections pose insurmountable difficulties for cultural methods because of their frequent failure when bacteria are growing in biofilms. In 1978 Bill Costerton warned that chronic infections in patients with indwelling medical devices were caused by bacteria growing in well-developed glycocalyx-enclosed biofilms and that bacteria within biofilms resist antibiotic therapies and immune host defenses. Costerton's "biofilm theory" opened two lines of scientific endeavor: the study of the biochemistry and genetics of biofilm formation and function; and, on the other side, the search for new methods for medical diagnosis and treatment of biofilm-centered implant infections. This Editorial and the entire 2012 issue "Focus on Implant Infections" are dedicated to the memory of Bill Costerton, recognized worldwide as the Father of Biofilms for his innovation and body of work on infections caused by sessile bacteria. Bill Costerton was a great scientist, heedful both to the biological aspects of biofilms and to the medical challenges of new diagnostic methods and modern therapeutic approaches to implant infections. But, most of all, he was a charming Maestro for the large number of colleagues and students whose enthusiasm for the science he was able to nourish. Bill passed away on May 12th, 2012 and the entire science community mourns the death of a friend and a leader.
Collapse
|