1
|
Putra MA, Soebandrio A, Wibawan IWT, Nugroho CMHN, Kurnia RS, Silaen OSM, Rizkiantino R, Indrawati A, Poetri ON, Krisnamurti DGB. Analyzing Molecular Traits of H9N2 Avian Influenza Virus Isolated from a Same Poultry Farm in West Java Province, Indonesia, in 2017 and 2023. F1000Res 2025; 13:571. [PMID: 39610402 PMCID: PMC11602698 DOI: 10.12688/f1000research.150975.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 11/30/2024] Open
Abstract
Background Indonesia is one of the countries that is endemic to avian influenza virus subtype H9N2. This study aims to compare the molecular characteristics of avian influenza virus (AIV) subtype H9N2 from West Java. Methods Specific pathogen-free (SPF) embryonated chicken eggs were used to inoculate samples. RNA extraction and RT-qPCR confirmed the presence of H9 and N2 genes in the samples. RT-PCR was employed to amplify the H9N2-positive sample. Nucleotide sequences were obtained through Sanger sequencing and analyzed using MEGA 7. Homology comparison and phylogenetic tree analysis, utilizing the neighbor-joining tree method, assessed the recent isolate's similarity to reference isolates from GenBank. Molecular docking analysis was performed on the HA1 protein of the recent isolate and the A/Layer/Indonesia/WestJava-04/2017 isolate, comparing their interactions with the sialic acids Neu5Ac2-3Gal and Neu5Ac2-6Gal. Results RT-qPCR confirmed the isolate samples as AIV subtype H9N2. The recent virus exhibited 11 amino acid residue differences compared to the A/Layer/Indonesia/WestJava-04/2017 isolate. Phylogenetically, the recent virus remains within the h9.4.2.5 subclade. Notably, at antigenic site II, the recent isolate featured an amino acid N at position 183, unlike A/Layer/Indonesia/WestJava-04/2017. Molecular docking analysis revealed a preference of HA1 from the 2017 virus for Neu5Ac2-3Gal, while the 2023 virus displayed a tendency to predominantly bind with Neu5Ac2-6Gal. Conclusion In summary, the recent isolate displayed multiple mutations and a strong affinity for Neu5Ac2-6Gal, commonly found in mammals.
Collapse
Affiliation(s)
- Muhammad Ade Putra
- Master of Animal Biomedical Sciences, School of Veterinary and Biomedical, IPB University, Bogor, West Java, 16680, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10320, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | | | - Ryan Septa Kurnia
- Animal Health Diagnostic Unit, PT. Medika Satwa Laboratoris, Bogor, West Java, 16166, Indonesia
| | | | - Rifky Rizkiantino
- Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Banten, 15560, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Okti Nadia Poetri
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Desak Gede Budi Krisnamurti
- Department of Medical Pharmacy, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Nugroho CMH, Silaen OSM, Kurnia RS, Krisnamurti DGB, Putra MA, Indrawati A, Poetri ON, Wibawan IWT, Widyaningtyas ST, Soebandrio A. In vitro antiviral activity of NanB bacterial sialidase against avian influenza H9N2 virus in MDCK cells. Avian Pathol 2025; 54:96-107. [PMID: 39069790 DOI: 10.1080/03079457.2024.2386315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The avian influenza virus is an infectious agent that may cause global health problems in poultry and is potentially zoonotic. In the recent decades, bacterial-derived sialidases have been extensively studied for their ability to inhibit avian influenza virus infections. In this study, the antiviral activity of NanB sialidase from Pasteurella multocida was investigated through in vitro analysis using Madin-Darby canine kidney (MDCK) cells. NanB sialidase was purified from P. multocida to test its toxicity and its ability to hydrolyse its sialic acid receptors on MDCK cells. The H9N2 challenge virus was propagated in MDCK cells until cytopathic effects appeared. Antiviral activity of NanB sialidase was tested using MDCK cells, and then observed based on cell morphology, viral copy number, and expression of apoptosis-mediating genes. NanB sialidase effectively hydrolysed Neu5Acα(2,6)-Gal sialic acid at a dose of 129 mU/ml, while at 258 mU/ml, it caused toxicity to MDCK cells. Antiviral activity of sialidase was evident based on the significant decrease in viral copy number at all doses administered. The increase of p53 and caspase-3 expression was observed in infected cells without sialidase. Our study demonstrates the ability of NanB sialidase to inhibit H9N2 virus replication based on observations of sialic acid hydrolysis, reduction in viral copy number, and expression of apoptosis-related genes. The future application of sialidase may be considered as an antiviral strategy against avian influenza H9N2 virus infections. RESEARCH HIGHLIGHTSNanB sialidase effectively hydrolyses Neu5Acα(2,6)-Gal at a dose of 129 mU/ml.NanB sialidase from Pasteurella multocida can inhibit the entry of H9N2 virus into cells.NanB sialidase of Pasteurella multocida prevents infection-induced cell apoptosis.NanB sialidase reduces the H9N2 viral copy number in MDCK cells.
Collapse
Affiliation(s)
- Christian Marco Hadi Nugroho
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Ryan Septa Kurnia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | | | - Muhammad Ade Putra
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Okti Nadia Poetri
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Silvia Tri Widyaningtyas
- Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| |
Collapse
|
3
|
Sagong M, Lee KN, Lee EK, Kang H, Choi YK, Lee YJ. Current situation and control strategies of H9N2 avian influenza in South Korea. J Vet Sci 2023; 24:e5. [PMID: 36560837 PMCID: PMC9899936 DOI: 10.4142/jvs.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.
Collapse
Affiliation(s)
- Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyunmi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
4
|
Panzarin V, Marciano S, Fortin A, Brian I, D’Amico V, Gobbo F, Bonfante F, Palumbo E, Sakoda Y, Le KT, Chu DH, Shittu I, Meseko C, Haido AM, Odoom T, Diouf MN, Djegui F, Steensels M, Terregino C, Monne I. Redesign and Validation of a Real-Time RT-PCR to Improve Surveillance for Avian Influenza Viruses of the H9 Subtype. Viruses 2022; 14:v14061263. [PMID: 35746734 PMCID: PMC9227555 DOI: 10.3390/v14061263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.
Collapse
Affiliation(s)
- Valentina Panzarin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
- Correspondence:
| | - Sabrina Marciano
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Andrea Fortin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Irene Brian
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Valeria D’Amico
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Federica Gobbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Francesco Bonfante
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Elisa Palumbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Yoshihiro Sakoda
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Kien Trung Le
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi 115-19, Vietnam;
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Clement Meseko
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Abdoul Malick Haido
- Laboratoire Central de l’Élevage (LABOCEL), Ministère de l’Agriculture et de l’Elevage, Niamey 485, Niger;
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Ministry of Food & Agriculture, Accra M161, Ghana;
| | - Mame Nahé Diouf
- Laboratoire National de l’Élevage et de Recherches Vétérinaires (LNERV) de l’Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann 2057, Senegal;
| | - Fidélia Djegui
- Laboratoire de Diagnostic Vétérinaire et de Sérosurveillance (LADISERO), Parakou 23, Benin;
| | - Mieke Steensels
- AI/ND National Reference Laboratory, Sciensano, 1050 Brussels, Belgium;
| | - Calogero Terregino
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Isabella Monne
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| |
Collapse
|
5
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threat and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 09/05/2024] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that, the next human pandemic variant will be avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccines updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
6
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threats and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for the influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into a new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that the next human pandemic variant will be the avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccine updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|