1
|
Nakayama T, Saito R, Furuya S, Higuchi Y, Matsuoka K, Takahashi K, Maruyama S, Shoda K, Takiguchi K, Shiraishi K, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Suzuki-Inoue K, Ichikawa D. Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination. Oncol Lett 2024; 28:498. [PMID: 39211304 PMCID: PMC11358723 DOI: 10.3892/ol.2024.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yudai Higuchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Matsuoka
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
2
|
Zhou S, Xu H, Duan Y, Tang Q, Huang H, Bi F. Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer Metastasis Rev 2024; 43:941-957. [PMID: 38436892 DOI: 10.1007/s10555-024-10178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.
Collapse
Affiliation(s)
- Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yichun Duan
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Huang K, Wei S, Huang Z, Xie Y, Wei C, Xu J, Dong L, Zou Q, Yang J. Effect of preoperative peripheral blood platelet volume index on prognosis in patients with invasive breast cancer. Future Oncol 2023; 19:1853-1863. [PMID: 37593839 DOI: 10.2217/fon-2022-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Aim: This study was designed to investigate the prognostic value of the platelet volume index in patients with invasive breast cancer (IBC). Methods: A total of 524 patients with IBC were enrolled in this study, with a median follow-up time of 6.76 years. The relationship between platelet volume indices and breast cancer prognosis was analyzed. Results: There is a strong correlation between a higher platelet distribution width-to-platelet count ratio (PDW/P) and poorer disease-free survival (DFS) in patients with IBC. The DFS rate was significantly lower among individuals with elevated PDW/P ratios compared with those with lower ratios. Conclusion: The PDW/P ratio is an independent risk factor for predicting DFS in patients with IBC.
Collapse
Affiliation(s)
- Kai Huang
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Suosu Wei
- Department of Scientific Cooperation of Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhen Huang
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yujie Xie
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Chunyu Wei
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jinan Xu
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Lingguang Dong
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Quanqing Zou
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jianrong Yang
- Department of Breast & Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| |
Collapse
|
4
|
Liu J, Wu P, Lai S, Wang J, Hou H, Zhang Y. Prognostic models for upper urinary tract urothelial carcinoma patients after radical nephroureterectomy based on a novel systemic immune-inflammation score with machine learning. BMC Cancer 2023; 23:574. [PMID: 37349696 PMCID: PMC10286456 DOI: 10.1186/s12885-023-11058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE This study aimed to evaluate the clinical significance of a novel systemic immune-inflammation score (SIIS) to predict oncological outcomes in upper urinary tract urothelial carcinoma(UTUC) after radical nephroureterectomy(RNU). METHOD The clinical data of 483 patients with nonmetastatic UTUC underwent surgery in our center were analyzed. Five inflammation-related biomarkers were screened in the Lasso-Cox model and then aggregated to generate the SIIS based on the regression coefficients. Overall survival (OS) was assessed using Kaplan-Meier analyses. The Cox proportional hazards regression and random survival forest model were adopted to build the prognostic model. Then we established an effective nomogram for UTUC after RNU based on SIIS. The discrimination and calibration of the nomogram were evaluated using the concordance index (C-index), area under the time-dependent receiver operating characteristic curve (time-dependent AUC), and calibration curves. Decision curve analysis (DCA) was used to assess the net benefits of the nomogram at different threshold probabilities. RESULT According to the median value SIIS computed by the lasso Cox model, the high-risk group had worse OS (p<0.0001) than low risk-group. Variables with a minimum depth greater than the depth threshold or negative variable importance were excluded, and the remaining six variables were included in the model. The area under the ROC curve (AUROC) of the Cox and random survival forest models were 0.801 and 0.872 for OS at five years, respectively. Multivariate Cox analysis showed that elevated SIIS was significantly associated with poorer OS (p<0.001). In terms of predicting overall survival, a nomogram that considered the SIIS and clinical prognostic factors performed better than the AJCC staging. CONCLUSION The pretreatment levels of SIIS were an independent predictor of prognosis in upper urinary tract urothelial carcinoma after RNU. Therefore, incorporating SIIS into currently available clinical parameters helps predict the long-term survival of UTUC.
Collapse
Affiliation(s)
- Jianyong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital Continence Center, Beijing, China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital Continence Center, Beijing, China
| | - Shicong Lai
- Department of Urology, Peking University People’s Hospital, 100044 Beijing, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital Continence Center, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital Continence Center, Beijing, China
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital Continence Center, Beijing, China
| |
Collapse
|
5
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
6
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
7
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
8
|
Chen H, Huang Z, Sun B, Wang A, Wang Y, Shi H, Zheng T, Li T, Huang M, Fu W. The predictive value of systemic immune inflammation index for postoperative survival of gallbladder carcinoma patients. J Surg Oncol 2021; 124:59-66. [PMID: 33765331 DOI: 10.1002/jso.26470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Growing evidence indicates that systemic immune inflammation index (SII) can predict the prognosis of various solid tumors. The objective of this study aimed to investigate the efficacy of SII in predicting the prognosis of gallbladder carcinoma (GBC) patients after radical surgery. METHODS A consecutive series of 93 patients with GBC who underwent radical resection were enrolled in the retrospective study. The cutoff value for the SII was calculated using the time-dependent receiver operating characteristic (ROC) curve analysis by overall survival (OS) prediction. The associations between the SII and the clinicopathologic characteristics were analyzed using Pearson's χ2 test and Fisher's exact test. Survival curves were calculated using the Kaplan-Meier method. Univariate analysis was performed to evaluate the prognostic relevance of preoperative parameters. The multivariate Cox regression proportional hazard model was used to assess variables significant on univariate analysis. RESULTS The Kaplan-Meier survival analysis and the multivariate analysis of patients with GBC who received radical resection showed SII independently predicted OS. The univariate analysis showed that the TNM stage, SII, CA19-9, ALP, prealbumin, NLR, MLR, lymph node metastasis, and histopathological type were all associated with overall survival. In time-dependent ROC analysis, the area of the SII-CA19-9 under the ROC curve (AUC) was higher than that of the preoperative SII or CA19-9 levels for the prediction of OS. CONCLUSION Our results demonstrate that high SII was a predictor of poor long-term outcomes among patients with GBC undergoing curative surgery. SII-CA19-9 classification may be more effective in predicting the postoperative prognosis of GBC patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Zhiwei Huang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Bo Sun
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Ankang Wang
- Nanchong City Central Hospital, Nanchong, Sichuan, China
| | - Yanrong Wang
- Clinical Medical College, Southwest Medical University
| | - Hao Shi
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Tianxiang Zheng
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Tongxi Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Clinical Medical College, Southwest Medical University
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Geranpayehvaghei M, Dabirmanesh B, Khaledi M, Atabakhshi-Kashi M, Gao C, Taleb M, Zhang Y, Khajeh K, Nie G. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1702. [PMID: 33538125 DOI: 10.1002/wnan.1702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/03/2023]
Abstract
Platelets, with hemostasis and thrombosis activities, are one of the key components in the blood circulation. As a guard, they rapidly respond to any abnormal blood vessel injury signal and release their granules' contents, which induce their adhesion and aggregation on wound site for hemostasis. Recently, increasing evidence has indicated that platelets are critically involved in the growth and metastasis of cancer cells by releasing a variety of cytokines and chemokines to stimulate cancer cell proliferation and various angiogenic regulators to accelerate tumor angiogenesis. Platelets also secrete active transforming growth factor beta (TGF-β) to promote the epithelial-mesenchymal transition of cancer cells and their extravasation from primary site, and form microthrombus on the surface of cancer cells to protect them from immune attack and high-speed shear force in the circulation. Therefore, blocking platelet-cancer cell interaction may be an attractive strategy to treat primary tumor and/or prevent cancer metastasis. However, systemic inhibition or depletion of platelets brings risk of severe bleeding complication. Cancer-associated-platelets-targeted nanomedicines and biomimetic nanomedicines coated with platelet membrane can be used for targeted anticancer drug delivery, due to their natural targeting ability to tumor cells and platelets. In the current review, we first summarized the platelet mechanisms of action in physiological condition and their multiple roles in cancer progression and conventional antiplatelet therapeutics. We then highlighted the recent progress on the design and fabrication of cancer-associated-platelet-targeted nanomedicines and platelet membrane coating nanomedicines for cancer therapy. Finally, we discussed opportunities and challenges and offered our thoughts for the future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Marzieh Geranpayehvaghei
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Bahareh Dabirmanesh
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khaledi
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Chao Gao
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Mohammad Taleb
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Khosro Khajeh
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.,GBA Research Innovation Institute for Nanotechnology, Guangdong, China
| |
Collapse
|
10
|
Balkenhol J, Kaltdorf KV, Mammadova-Bach E, Braun A, Nieswandt B, Dittrich M, Dandekar T. Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics 2020; 21:897. [PMID: 33353544 PMCID: PMC7756956 DOI: 10.1186/s12864-020-07215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07215-4.
Collapse
Affiliation(s)
- Johannes Balkenhol
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Kristin V Kaltdorf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Elmina Mammadova-Bach
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany.,Present address: Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig, Maximilian University of Munich, D-80336, Munich, Germany
| | - Attila Braun
- Member of the German Center for Lung Research (DZL), Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.,Dept of Genetics, Biocenter, Am Hubland, University of Würzburg, Am Hubland, D 97074, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
11
|
Hufnagel DH, Cozzi GD, Crispens MA, Beeghly-Fadiel A. Platelets, Thrombocytosis, and Ovarian Cancer Prognosis: Surveying the Landscape of the Literature. Int J Mol Sci 2020; 21:ijms21218169. [PMID: 33142915 PMCID: PMC7663176 DOI: 10.3390/ijms21218169] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are critical components of a number of physiologic processes, including tissue remodeling after injury, wound healing, and maintenance of vascular integrity. Increasing evidence suggests that platelets may also play important roles in cancer. In ovarian cancer, thrombocytosis, both at the time of initial diagnosis and at recurrence, has been associated with poorer prognosis. This review describes current evidence for associations between thrombocytosis and ovarian cancer prognosis and discusses the clinical relevance of platelet count thresholds and timing of assessment. In addition, we discuss several mechanisms from in vitro, in vivo, and clinical studies that may underlie these associations and recommend potential approaches for novel therapeutic targets for this lethal disease.
Collapse
Affiliation(s)
- Demetra H. Hufnagel
- Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN 37240, USA; (D.H.H.); (G.D.C.)
| | - Gabriella D. Cozzi
- Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN 37240, USA; (D.H.H.); (G.D.C.)
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA;
- Vanderbilt-Ingram Cancer Center, 1301 Medical Center Drive, Nashville, TN 37232, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, 1301 Medical Center Drive, Nashville, TN 37232, USA
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA
- Correspondence:
| |
Collapse
|
12
|
Li Y, Xu Y, Gao C, Sun Y, Zhou K, Wang P, Cheng J, Guo W, Ya C, Fan J, Yang X. USP1 Maintains the Survival of Liver Circulating Tumor Cells by Deubiquitinating and Stabilizing TBLR1. Front Oncol 2020; 10:554809. [PMID: 33102219 PMCID: PMC7545832 DOI: 10.3389/fonc.2020.554809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) is closely associated with the occurrence of distant metastases, which is likely due to circulating tumor cells (CTCs). However, the low number of CTCs is the main obstacle limiting research of the mechanism of CTC metastasis. Here, We evaluated the role of ubiquitin-specific protease 1 (USP1) in promoting CTC survival during blood-borne metastases. We observed that USP1 was frequently upregulated in CTCs and correlated with metastasis and a reduced overall survival rate of patients. Additionally, genetic knockout of USP1 the survival rate of CTCs. Further analyses showed that USP1 mediates oncogenic activity by deubiquitinating and stabilizing transducin β-like 1 X-linked receptor 1 (TBLR1), which plays essential roles in regulating Wnt signaling. These results demonstrated that USP1 may act as an essential factor in promoting the survival of CTCs and suggest that inhibition of USP1 is a potential strategy for HCC treatment.
Collapse
Affiliation(s)
- Yuancheng Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yang Xu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Chao Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yunfan Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Kaiqian Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Pengxiang Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jianweng Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cao Ya
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jia Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xinrong Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Deng Y, Li W, Liu X, Ma G, Wu Q, Chen F, Wang Z, Zhou Q. The combination of platelet count and lymphocyte to monocyte ratio is a prognostic factor in patients with resected breast cancer. Medicine (Baltimore) 2020; 99:e18755. [PMID: 32358341 PMCID: PMC7440296 DOI: 10.1097/md.0000000000018755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many inflammation indicators have been reported to be related with patient outcomes in various cancers. Previous studies have evaluated the combination of platelet (PLT) and lymphocyte to monocyte ratio (COP-LMR) as a systemic inflammatory marker for prognostication in lung cancer, yet its prognostic role among breast cancer patients remains unclear.In the present study, a total of 409 breast cancer patients with surgical resection were retrospectively investigated. The receiver operating characteristic (ROC) curve was used to choose the optimal cut-off value of PLT and lymphocyte to monocyte ratio (LMR). Patients were classified into 3 groups according to the score of COP-LMR, and its relationship with various clinicopathological factors and breast cancer prognosis were further evaluated.The ROC curve analysis showed that COP-LMR had a higher area under the ROC curve for the prediction of 5-year disease-free survival and overall survival than PLT or LMR alone. Multivariable analysis showed that an elevated COP-LMR was an independent predictor of poor disease-free survival (P = .032) and overall survival (P = .005). Subgroup analysis revealed that COP-LMR was still significantly associated with prognosis in both luminal A and luminal B subtypes.Preoperative COP-LMR is a potential prognostic factor in breast cancer patients who underwent surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | |
Collapse
|
14
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
San Juan BP, Garcia-Leon MJ, Rangel L, Goetz JG, Chaffer CL. The Complexities of Metastasis. Cancers (Basel) 2019; 11:E1575. [PMID: 31623163 PMCID: PMC6826702 DOI: 10.3390/cancers11101575] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Therapies that prevent metastatic dissemination and tumor growth in secondary organs are severely lacking. A better understanding of the mechanisms that drive metastasis will lead to improved therapies that increase patient survival. Within a tumor, cancer cells are equipped with different phenotypic and functional capacities that can impact their ability to complete the metastatic cascade. That phenotypic heterogeneity can be derived from a combination of factors, in which the genetic make-up, interaction with the environment, and ability of cells to adapt to evolving microenvironments and mechanical forces play a major role. In this review, we discuss the specific properties of those cancer cell subgroups and the mechanisms that confer or restrict their capacity to metastasize.
Collapse
Affiliation(s)
- Beatriz P San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Maria J Garcia-Leon
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laura Rangel
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Christine L Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| |
Collapse
|
16
|
Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 2019; 133:2696-2706. [PMID: 30952674 DOI: 10.1182/blood.2018877043] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis. Thus, a detailed understanding of how platelets safeguard vascular integrity in tumors is urgently demanded. Here, we show for the first time that functional inhibition of glycoprotein VI (GPVI) on the platelet surface with an antibody (JAQ1) F(ab)2 fragment rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion while not inducing systemic bleeding complications. The intratumor bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells, confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, JAQ1 F(ab)2-mediated GPVI inhibition increased intratumoral accumulation of coadministered chemotherapeutic agents, such as Doxil and paclitaxel, thereby resulting in a profound antitumor effect. In summary, our findings identify platelet GPVI as a key regulator of vascular integrity specifically in growing tumors and could serve as a basis for the development of antitumor strategies based on the interference with platelet function.
Collapse
|
17
|
Yang R, Chang Q, Meng X, Gao N, Wang W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J Cancer 2018; 9:3295-3302. [PMID: 30271489 PMCID: PMC6160683 DOI: 10.7150/jca.25691] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Systemic immune-inflammation index (SII), on the basis of lymphocyte, neutrophil and platelet counts had been published to be a good prognostic factor in multiple cancers. Nevertheless, the prognostic value of SII in cancer patients remains inconsistent. Therefore, we carried out a meta-analysis to evaluate the prognostic value of SII in these patients with cancer. A total of 22 articles with 7657 patients enrolled in this meta-analysis. The combined result revealed that a high SII was evidently correlated with poor overall survival (OS) (HR=1.69, 95%CI=1.42-2.01, p<0.001), poor time to recurrent (TTR) (HR=1.87, p<0.001) , poor progress-free survival (PFS) (HR=1.61, p=0.012) ,poor cancer-specific survival (CSS) (HR=1.44, p=0.027) , poor relapse-free survival (RFS) (HR=1.66, p=0.025) and poor disease-free survival (DFS) (HR=2.70, p<0.001) in patients with cancers. Subgroup analysis indicated that SII over the cutoff value could predict worse overall survival in Hepatocellular carcinoma (p<0.001), Gastric cancer (p=0.005), Esophageal Squamous Cell Carcinoma (p=0.013), Urinary system cancer (p<0.001), Small cell lung cancer (p<0.001), Non-Small cell lung cancer (p<0.001) and Acral Melanoma (p<0.001). The largest effect size was observed in the Hepatocellular carcinoma (HR=2.11). In addition, these associations did not vary significantly by the cutoff value, sample size and ethnicity. Therefore, high SII may be a potential prognostic marker in patients with various cancers and associated with the poor overall outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Wanhai Wang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
18
|
Garraud O, Gachet C. Platelets: A more than a centenary old Odyssey and more to come. Transfus Clin Biol 2018; 25:149-150. [PMID: 30049627 DOI: 10.1016/j.tracli.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- O Garraud
- EA3064, faculté de médecine, université de Lyon, 42023 Saint-Etienne, France; Institut national de la transfusion sanguine, 75015 Paris, France.
| | - C Gachet
- Université de Strasbourg, Inserm, EFS, BPPS UMR-S1255, 67065 Strasbourg, France; Établissement français du sang Grand-Est, 54700 Nancy, France
| |
Collapse
|
19
|
Mammadova-Bach E, Mauler M, Braun A, Duerschmied D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets 2018; 29:541-548. [PMID: 29863942 DOI: 10.1080/09537104.2018.1478072] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Platelets serotonin (5-hydroxytrytamine, 5-HT) uptake and storage in dense granules is tightly regulated by the serotonergic transport system in the blood. Several 5-HT transporters (5-HTTs) have been identified in the vasculature and blood cells, beyond them 5-HTT is the major 5-HT transporter in platelets. Abnormal 5-HT concentrations in the blood plasma or increased platelet 5-HT uptake or abnormal release contribute to the development of various diseases in the vasculature. Consequently, several clinical trials suggested the positive therapeutic effects of 5-HTT blockade in the circulation. Inhibition of 5-HT strongly attenuates autocrine and paracrine functions of platelets, influencing platelet aggregation, vascular contraction, permeability, tissue repair, wound healing, immunity and cancer. Here, we highlight the current state of basic biological research regarding the hemostatic and non-hemostatic functions of platelet-derived 5-HT in normal and disease conditions. We also describe the physiological consequences of targeting platelet 5-HT functions in thrombosis, stroke, inflammation and cancer to overcome common health problems.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- a Institute of Experimental Biomedicine , University Hospital and Rudolf Virchow Center , Wuerzburg , Germany
| | - Maximilian Mauler
- b Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine , University of Freiburg , Freiburg, Germany
| | - Attila Braun
- a Institute of Experimental Biomedicine , University Hospital and Rudolf Virchow Center , Wuerzburg , Germany
| | - Daniel Duerschmied
- b Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine , University of Freiburg , Freiburg, Germany
| |
Collapse
|
20
|
Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel) 2017; 9:cancers9100133. [PMID: 28956830 PMCID: PMC5664072 DOI: 10.3390/cancers9100133] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets are small anucleated cell fragments that ensure the arrest of bleeding after a vessel wall injury. They are also involved in non-hemostatic function such as development, immunity, inflammation, and in the hematogeneous phase of metastasis. While the role of platelets in tumor metastasis has been recognized for 60 years, the molecular mechanism underlying this process remains largely unclear. Platelets physically and functionally interact with various tumor cells through surface receptors including integrins. Platelets express five integrins at their surface, namely α2β1, α5β1, α6β1, αvβ3, and αIIbβ3, which bind preferentially to collagen, fibronectin, laminin, vitronectin, and fibrinogen, respectively. The main role of platelet integrins is to ensure platelet adhesion and aggregation at sites of vascular injury. Two of these, α6β1 and αIIbβ3, were proposed to participate in platelet–tumor cell interaction and in tumor metastasis. It has also been reported that pharmacological agents targeting both integrins efficiently reduce experimental metastasis, suggesting that platelet integrins may represent new anti-metastatic targets. This review focuses on the role of platelet integrins in tumor metastasis and discusses whether these receptors may represent new potential targets for novel anti-metastatic approaches.
Collapse
|
21
|
Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell 2017; 32:282-293. [PMID: 28898694 DOI: 10.1016/j.ccell.2017.07.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Most metastasizing tumor cells reach distant sites by entering the circulatory system. Within the bloodstream, they are exposed to severe stress due to loss of adhesion to extracellular matrix, hemodynamic shear forces, and attacks of the immune system, and only a few cells manage to extravasate and to form metastases. We review the current understanding of the cellular and molecular mechanisms that allow tumor cells to survive in the intravascular environment and that mediate and promote tumor cell extravasation. As these processes are critical for the metastatic spread of tumor cells, we discuss implications for potential therapeutic approaches and future research.
Collapse
Affiliation(s)
- Boris Strilic
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany; J.W. Goethe University Frankfurt, Center for Molecular Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
22
|
Kurokawa T, Ohkohchi N. Platelets in liver disease, cancer and regeneration. World J Gastroenterol 2017; 23:3228-3239. [PMID: 28566882 PMCID: PMC5434428 DOI: 10.3748/wjg.v23.i18.3228] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.
Collapse
|
23
|
Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin α6 β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 2016; 1:e88245. [PMID: 27699237 DOI: 10.1172/jci.insight.88245] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metastatic dissemination of cancer cells, which accounts for 90% of cancer mortality, is the ultimate hallmark of malignancy. Growing evidence suggests that blood platelets have a predominant role in tumor metastasis; however, the molecular mechanisms involved remain elusive. Here, we demonstrate that genetic deficiency of integrin α6β1 on platelets markedly decreases experimental and spontaneous lung metastasis. In vitro and in vivo assays reveal that human and mouse platelet α6β1 supports platelet adhesion to various types of cancer cells. Using a knockdown approach, we identified ADAM9 as the major counter receptor of α6β1 on both human and mouse tumor cells. Static and flow-based adhesion assays of platelets binding to DC-9, a recombinant protein covering the disintegrin-cysteine domain of ADAM9, demonstrated that this receptor directly binds to platelet α6β1. In vivo studies showed that the interplay between platelet α6β1 and tumor cell-expressed ADAM9 promotes efficient lung metastasis. The integrin α6β1-dependent platelet-tumor cell interaction induces platelet activation and favors the extravasation process of tumor cells. Finally, we demonstrate that a pharmacological approach targeting α6β1 efficiently impairs tumor metastasis through a platelet-dependent mechanism. Our study reveals a mechanism by which platelets promote tumor metastasis and suggests that integrin α6β1 represents a promising target for antimetastatic therapies.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - Camille Brucker
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Catherine Bourdon
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Monique Freund
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Adèle De Arcangelis
- U964, INSERM, UMR 7104, CNRS, Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Strasbourg, France
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Gertaud Orend
- INSERM U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, LabEx Medalis, Strasbourg, France
| | - Christian Gachet
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|