1
|
Dettleff P, Palomino J, González-Coppia F, De Los Reyes M. Transcriptomic profiling of miRNA-mRNA interactions in canine oocytes and cumulus cells during in vitro maturation: a sequencing analysis. Theriogenology 2025; 242:117454. [PMID: 40288148 DOI: 10.1016/j.theriogenology.2025.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Oocyte maturation is a critical process for successful fertilization and early embryonic development. In this study, we investigated the molecular mechanisms underlying oocyte maturation in dogs by analyzing the transcriptomic profiles of miRNAs and mRNAs in canine cumulus cells (CCs) and oocytes during in vitro maturation (IVM). RNA sequencing identified 285 miRNAs expressed in oocytes and 310 in CCs, with 282 miRNAs shared between the two cell types, highlighting the role of intercellular communication in maintaining miRNA expression equilibrium. Differential expression analysis revealed 222 mRNAs with significant differences between CCs and oocytes, including genes involved in transcriptional regulation and nuclear structure. Enrichment analyses identified pathways such as actin cytoskeleton regulation, mTOR signaling, cAMP signaling, and calcium signaling, all critical to oocyte maturation. Network analysis revealed 643 significant miRNA-mRNA coexpression relationships, suggesting miRNAs play pivotal roles in regulating mRNA expression during oocyte maturation. Notably, key miRNAs such as miR-30b, miR-375, and miR-503 were implicated in regulating genes involved in oocyte maturation pathways, while others like miR-378 and miR-21 aligned with known roles in suppressing cumulus expansion and influencing maturation. The absence of differential miRNA expression between CCs and oocytes suggests the miRNA transfer through gap junctions. These findings provide new insights into the transcriptional and post-transcriptional regulation of oocyte maturation in dogs, offering valuable knowledge to improve reproductive biotechnologies such as in vitro fertilization and embryo development in this species.
Collapse
Affiliation(s)
- Phillip Dettleff
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile. Santiago, Chile
| | - Jaime Palomino
- School of Veterinary Medicine, Center for Health and Society Research Studies, Bernardo O'Higgins University, Santiago, Chile; Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Fabiola González-Coppia
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Monica De Los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
2
|
Kassim Y, Sheng H, Xu G, Jin H, Iqbal T, Elashry M, Zhang K. Integrated Multi-Omics Analysis Reveals Key Regulators of Bovine Oocyte Maturation. Int J Mol Sci 2025; 26:3973. [PMID: 40362214 PMCID: PMC12071811 DOI: 10.3390/ijms26093973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to the metaphase II (MII) stage. Our findings reveal distinct metabolic shifts, including suppressed β-oxidation combined with the accumulation of long-chain fatty acids (LCFAs). Notably, progesterone emerged as a key regulator of meiotic resumption through its influence on cAMP levels. We also observed enhanced glycolysis, moderate activation of the citric acid cycle (TCA cycle), and suppression of oxidative phosphorylation (OXPHOS), alongside reduced urea cycle flux and shifts in amino acid metabolism favoring glutamate synthesis. Intriguingly, discrepancies between metabolic and transcriptional activities in pathways such as the TCA cycle and nucleotide metabolism suggest asynchronous regulation. These findings provide a comprehensive multi-omics resource, advancing our understanding of the dynamic metabolic and transcriptional landscape during bovine oocyte maturation.
Collapse
Affiliation(s)
- Yassin Kassim
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Animal and Poultry Production, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
| | - Hao Sheng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangjun Xu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tariq Iqbal
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Elashry
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Guo Y, Gao M, Liu X, Zhang H, Wang Y, Yan T, Wang B, Han X, Qi Y, Zhu H, Situ C, Li Y, Guo X. Single-Cell Multi-Omics Analysis of In Vitro Post-Ovulatory-Aged Oocytes Revealed Aging-Dependent Protein Degradation. Mol Cell Proteomics 2025; 24:100882. [PMID: 39571909 PMCID: PMC11728983 DOI: 10.1016/j.mcpro.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Once ovulated, the oocyte has to be fertilized in a short time window or it will undergo post-ovulation aging (POA), whose underlying mechanisms are still not elucidated. Here, we optimized single-cell proteomics methods and performed single-cell transcriptomic, proteomic, and phosphoproteomic analysis of fresh, POA, and melatonin-treated POA oocytes. POA oocytes showed downregulation of most differentially expressed proteins, with little correlation with mRNA expression, and the protein changes can be rescued by melatonin treatment. MG132 treatment rescued the decreased fertilization and polyspermy rates and upregulated fragmentation and parthenogenesis rates of POA oocytes. MG132-treated oocytes displayed health status at proteome, phosphoproteome, and fertilization ability similar to fresh oocytes, suggesting that protein stabilization might be the underlying mechanism for melatonin to rescue POA. The important roles of proteasome-mediated protein degradation during oocyte POA revealed by single-cell multi-omics analyses offer new perspectives for increasing oocyte quality during POA and improving assisted reproduction technologies.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengmeng Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Benzhen L, Shucheng S, Chenchang B, Zhaoxia C, Yanan Y. Transcriptome analysis elucidates mating affects the expression of intra-/extra-ovarian factors, thereby influencing ovarian development in the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101334. [PMID: 39378790 DOI: 10.1016/j.cbd.2024.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Prior to the pubertal molt and mating, the ovarian development of the mud crab Scylla paramamosain was primarily at stage II. However, immediately after mating, female crabs initiate vitellogenesis, and their ovaries quickly develop. The aim of this study was to identify differentially expressed genes associated with ovarian development in the mud crab before and after mating, in order to elucidate the influence of mating on ovarian development using comparative transcriptomics. The KEGG pathway analysis results indicated that ribosome and ribosome-related pathways were highly associated with ovarian development at stage II across both transcriptomes, likely to support the subsequent vitellogenesis by providing the necessary materials. Additionally, the neurodegeneration, MAPK, cAMP and PLD pathways were active in regulating oogonia differentiation, oocyte proliferation and vitellogenesis after mating. Meanwhile, certain intra-ovarian factors, such as the cell cycle-related genes cyclin B and APC, the forkhead box family genes Foxl2 and slp1, the SOX family gene SOX5-like, the hormone-related genes SULT1E1 and Eip74EF-like, the growth factor-related genes VEGFD-like and CUBE1-like, as well as HPS10 and tra1-like, have essential functions in regulating ovarian development after mating. Furthermore, the receptors of extra-ovarian hormones, such as RPCHR, HR4, and ILR1, as well as the neurotransmitter receptor 5-HTR4, were involved in ovarian development. It is believed that ovarian development is controlled by the coordinated action of both intrinsic and extrinsic endocrine factors, and these factors are influenced by mating. Finally, the analysis of epigenic modification-related genes, transcription factors, and target genes revealed the regulation of gene expression. Our study indicated that, those genes work in a coordinated manner to regulate the complex processes of follicle cell development, oogonia differentiation, oocyte proliferation, and vitellogenesis during ovarian development.
Collapse
Affiliation(s)
- Li Benzhen
- School of Marine Science, Ningbo University, Ningbo, China
| | - Shao Shucheng
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bao Chenchang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Cui Zhaoxia
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yang Yanan
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Ohta N, Christiaen L. Cellular remodeling and JAK inhibition promote zygotic gene expression in the Ciona germline. EMBO Rep 2024; 25:2188-2201. [PMID: 38649664 PMCID: PMC11094015 DOI: 10.1038/s44319-024-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway.
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Xiong WJ, Lai XL, Lu J, Li LS, Zhang JX, Duan X. O-GlcNAcylation orchestrates porcine oocyte maturation through maintaining mitochondrial dynamics and function. Mol Hum Reprod 2024; 30:gaae003. [PMID: 38265252 DOI: 10.1093/molehr/gaae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.
Collapse
Affiliation(s)
- Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jie Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
7
|
Yu L, Kong N, Lin Y, Qiu P, Xu Q, Zhang Y, Zhen X, Yan G, Sun H, Mei J, Cao G. NUSAP1 regulates mouse oocyte meiotic maturation. J Cell Biochem 2023; 124:1931-1947. [PMID: 37992207 DOI: 10.1002/jcb.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Panpan Qiu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
8
|
Ju J, Pan Z, Zhang K, Ji Y, Liu J, Sun S. Mcrs1 regulates G2/M transition and spindle assembly during mouse oocyte meiosis. EMBO Rep 2023; 24:e56273. [PMID: 36951681 PMCID: PMC10157313 DOI: 10.15252/embr.202256273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
9
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
10
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
11
|
Xu L, Shi Z, Li H, He J, Chen B, Tao Z, Tian Y, Chen L, Li G, Tao Z, Gu T, Xu W, Lu L. Genome-wide DNA methylation differences between conservation and breeding populations of Shaoxing ducks. Heliyon 2022; 8:e11644. [DOI: 10.1016/j.heliyon.2022.e11644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
|
12
|
Chan JNM, Sánchez-Vidaña DI, Anoopkumar-Dukie S, Li Y, Benson Wui-Man L. RNA-binding protein signaling in adult neurogenesis. Front Cell Dev Biol 2022; 10:982549. [PMID: 36187492 PMCID: PMC9523427 DOI: 10.3389/fcell.2022.982549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The process of neurogenesis in the brain, including cell proliferation, differentiation, survival, and maturation, results in the formation of new functional neurons. During embryonic development, neurogenesis is crucial to produce neurons to establish the nervous system, but the process persists in certain brain regions during adulthood. In adult neurogenesis, the production of new neurons in the hippocampus is accomplished via the division of neural stem cells. Neurogenesis is regulated by multiple factors, including gene expression at a temporal scale and post-transcriptional modifications. RNA-binding Proteins (RBPs) are known as proteins that bind to either double- or single-stranded RNA in cells and form ribonucleoprotein complexes. The involvement of RBPs in neurogenesis is crucial for modulating gene expression changes and posttranscriptional processes. Since neurogenesis affects learning and memory, RBPs are closely associated with cognitive functions and emotions. However, the pathways of each RBP in adult neurogenesis remain elusive and not clear. In this review, we specifically summarize the involvement of several RBPs in adult neurogenesis, including CPEB3, FXR2, FMRP, HuR, HuD, Lin28, Msi1, Sam68, Stau1, Smaug2, and SOX2. To understand the role of these RBPs in neurogenesis, including cell proliferation, differentiation, survival, and maturation as well as posttranscriptional gene expression, we discussed the protein family, structure, expression, functional domain, and region of action. Therefore, this narrative review aims to provide a comprehensive overview of the RBPs, their function, and their role in the process of adult neurogenesis as well as to identify possible research directions on RBPs and neurogenesis.
Collapse
Affiliation(s)
- Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Dalinda Isabel Sánchez-Vidaña
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lau Benson Wui-Man
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lau Benson Wui-Man,
| |
Collapse
|
13
|
Lv Y, Lu G, Cai Y, Su R, Liang L, Wang X, Mu W, He X, Huang T, Ma J, Zhao Y, Chen ZJ, Xue Y, Liu H, Chan WY. RBM46 is essential for gametogenesis and functions in post-transcriptional roles affecting meiotic cohesin subunits. Protein Cell 2022; 14:51-63. [PMID: 36726756 PMCID: PMC9871953 DOI: 10.1093/procel/pwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 02/04/2023] Open
Abstract
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.
Collapse
Affiliation(s)
| | | | | | | | - Liang Liang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenyu Mu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xiuqing He
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yueran Zhao
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China,Center for Reproductive Medicine, Shandong University, Jinan 250012, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
14
|
Gindi N, Grossman H, Bar-Joseph H, Miller I, Nemerovsky L, Hadas R, Nevo N, Galiani D, Dekel N, Shalgi R. Fyn and argonaute 2 participate in maternal-mRNA degradation during mouse oocyte maturation. Cell Cycle 2022; 21:792-804. [PMID: 35104175 PMCID: PMC8973342 DOI: 10.1080/15384101.2022.2031427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fertilization triggers physiological degradation of maternal-mRNAs, which are then replaced by embryonic transcripts. Ample evidence suggests that Argonaut 2 (AGO2) is a possible post-fertilization regulator of maternal-mRNAs degradation; but its role in degradation of maternal-mRNAs during oocyte maturation remains obscure. Fyn, a member of the Src family kinases (SFKs), and an essential factor in oocyte maturation, was reported to inhibit AGO2 activity in oligodendrocytes. Our aim was to examine the role of Fyn and AGO2 in degradation of maternal-mRNAs during oocyte maturation by either suppressing their activity with SU6656 - an SFKs inhibitor; or by microinjecting DN-Fyn RNA for suppression of Fyn and BCl-137 for suppression of AGO2. Batches of fifteen mouse oocytes or embryos were analyzed by qPCR to measure the expression level of nine maternal-mRNAs that were selected for their known role in oocyte growth, maturation and early embryogenesis. We found that Fyn/SFKs are involved in maintaining the stability of at least four pre-transcribed mRNAs in oocytes at the germinal vesicle (GV) stage, whereas AGO2 had no role at this stage. During in-vivo oocyte maturation, eight maternal-mRNAs were significantly degraded. Inhibition of AGO2 prevented the degreadation of at least five maternal-mRNAs, whereas inhibition of Fyn/SFK prevented degradation of at least five Fyn maternal-mRNAs and two SFKs maternal-mRNAs; pointing at their role in promoting the physiological degradation which occurs during in-vivo oocyte maturation. Our findings imply the involvement of Fyn/SFKs in stabilization of maternal-mRNA at the GV stage and the involvement of Fyn, SFKs and AGO2 in degradation of maternal mRNAs during oocyte maturation.
Collapse
Affiliation(s)
- Natalie Gindi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Hadas Bar-Joseph
- The Unit for Tmcr, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Irit Miller
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Luba Nemerovsky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Ron Hadas
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael,CONTACT Ruth Shalgi Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv69978, Israel
| |
Collapse
|
15
|
García-Martínez T, Martínez-Rodero I, Roncero-Carol J, Vendrell-Flotats M, Gardela J, Gutiérrez-Adán A, Ramos-Ibeas P, Higgins AZ, Mogas T. The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes. Animals (Basel) 2022; 12:ani12040530. [PMID: 35203238 PMCID: PMC8868131 DOI: 10.3390/ani12040530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in vitro matured oocytes, with a focus on the role of aquaporin 7 (AQP7). We demonstrated that cryoprotectants stimulated AQP3 and AQP7 but not AQP9 expression in mature bovine oocytes. Dimethyl sulfoxide upregulates AQP3 expression, while ethylene glycol upregulates AQP7 expression in oocytes in a CPA-dependent fashion. We also demonstrated that exogenous expression of aquaglyceroporins such as AQP7 is possible in in vitro matured oocytes. When permeability values for membrane transport of dimethyl sulfoxide, ethylene glycol and sucrose were assessed, we observed that AQP7 overexpressed oocytes are more permeable to water in the presence of dimethyl sulfoxide solution. These biophysical characteristics, together with the use of membrane transport modeling, will allow re-evaluation and possibly improvement of previously described protocols for bovine oocyte cryopreservation. Abstract Aquaglyceroporins are known as channel proteins, and are able to transport water and small neutral solutes. In this study, we evaluate the effect of exposure of in vitro matured bovine oocytes to hyperosmotic solutions containing ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or sucrose on the expression levels of AQP3, AQP7 and AQP9. Moreover, we studied whether artificial protein expression of AQP7 in bovine oocytes increases their permeability to water and cryoprotectants. Exposure to hyperosmotic solutions stimulated AQP3 and AQP7 but not AQP9 expression. Oocytes exposed to hyperosmotic Me2SO solution exhibited upregulated AQP3 expression, while AQP7 expression was upregulated by EG hyperosmotic exposure. Microinjection of oocytes at the germinal vesicle stage with enhanced green fluorescent protein (EGFP) or EGFP+AQP7 cRNAs resulted in the expression of the corresponding proteins in ≈86% of the metaphase-II stage oocytes. AQP7 facilitated water diffusion when bovine MII oocytes were in presence of Me2SO solution but not EG or sucrose solution. However, the overexpression of this aquaporin did not increase membrane permeability to Me2SO or EG. In summary, cryoprotectant-induced increase of AQP3 and AQP7 expression could be one of the mechanisms underlying oocyte tolerance to hyperosmotic stress. Water diffusion appears to be improved when AQP7 overexpressed oocytes are exposed to Me2SO, shortening the time required for oocytes to achieve osmotic balance with cryoprotectant solutions.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Joan Roncero-Carol
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331-2702, USA;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
16
|
Redhu N, Thakur Z. Network biology and applications. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Dai X, Cheng X, Huang J, Gao Y, Wang D, Feng Z, Zhai G, Lou Q, He J, Wang Z, Yin Z. Rbm46, a novel germ cell-specific factor, modulates meiotic progression and spermatogenesis. Biol Reprod 2021; 104:1139-1153. [PMID: 33524105 DOI: 10.1093/biolre/ioab016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
It has been suggested that many novel RNA-binding proteins (RBPs) are required for gametogenesis, but the necessity of few of these proteins has been functionally verified. Here, we identified one RBP, Rbm46, and investigated its expression pattern and role in zebrafish reproduction. We found that rbm46 is maternally provided and specifically expressed in the germ cells of gonadal tissues using in situ hybridization, reverse transcription-PCR, and quantitative real-time polymerase chain reaction (qRT-PCR). Two independent rbm46 mutant zebrafish lines were generated via the transcription activator-like effector nuclease technique. Specific disruption of rbm46 resulted in masculinization and infertility in the mutants. Although the spermatogonia appeared grossly normal in the mutants, spermatogenesis was impaired, and meiosis events were not observed. The introduction of a tp53M214K mutation could not rescue the female-to-male sex-reversal phenotype, indicating that rbm46 acts independently of the p53-dependent apoptotic pathway. RNA sequencing and qRT-PCR subsequently indicated that Rbm46 might be involved in the posttranscriptional regulation of functional genes essential for germ cell development, such as nanos3, dazl, and sycp3, during gametogenesis. Together, our results reveal for the first time the crucial role of rbm46 in regulating germ cell development in vivo through promotion of germ cell progression through meiosis prophase I.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinkai Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianfei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Gao
- Research Centre for Diagnosis and Prevention of Hereditary Disease, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Wang Y, Chen CZ, Fu XH, Liu JB, Peng YX, Wang YJ, Han DX, Zhang Z, Yuan B, Gao Y, Jiang H, Zhang JB. CPEB3 regulates the proliferation and apoptosis of bovine cumulus cells. Anim Sci J 2020; 91:e13416. [PMID: 32648330 DOI: 10.1111/asj.13416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Abstract
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a member of the Cytoplasmic polyadenylation element-binding family, which has been found to regulate the translation of dormant and masked mRNA in Xenopus oocytes and plays potential roles in regulating biological functions in cells and tissues. However, its role in cumulus cells is not clear. In this study, the mRNA expression of CPEB3 in bovine cumulus cells was inhibited with small interfering RNA. Cell cycle progression, proliferation, and apoptosis were measured after inhibition of CPEB3. Subsequently, changes in intracellular Reactive oxygen species content, mitochondrial membrane potential and expansion-related gene expression were examined. The results showed that after CPEB3 inhibition, cumulus cells had an abnormal cell cycle, the numbers of cells in the S and G2/M phases were significantly increased, cell proliferation was increased and apoptosis rates were decreased. These effects were likely due CPEB3 inhibition-induced decreases in intracellular Reactive oxygen species levels; increases in mitochondrial membrane potential; decreases in apoptosis; downregulation of CCNA, CCND, CCNE, CDK2, CDK4, CDK6, p21, and p27 mRNA expression; and upregulation of CCNB, CDK1, HAS2, PTGS2, PTX3, and CEBPB mRNA expression. Therefore, CPEB3 plays potential roles in regulating the biological and physiological functions of bovine cumulus cell.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Xu-Huang Fu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Jian-Bo Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yan-Xia Peng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yi-Jie Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Dong-Xu Han
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
21
|
Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020; 9:cells9030662. [PMID: 32182827 PMCID: PMC7140715 DOI: 10.3390/cells9030662] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The oocyte faces a particular challenge in terms of gene regulation. When oocytes resume meiosis at the end of the growth phase and prior to ovulation, the condensed chromatin state prevents the transcription of genes as they are required. Transcription is effectively silenced from the late germinal vesicle (GV) stage until embryonic genome activation (EGA) following fertilisation. Therefore, during its growth, the oocyte must produce the mRNA transcripts needed to fulfil its protein requirements during the active period of meiotic completion, fertilisation, and the maternal-to zygote-transition (MZT). After meiotic resumption, gene expression control can be said to be transferred from the nucleus to the cytoplasm, from transcriptional regulation to translational regulation. Maternal RNA-binding proteins (RBPs) are the mediators of translational regulation and their role in oocyte maturation and early embryo development is vital. Understanding these mechanisms will provide invaluable insight into the oocyte's requirements for developmental competence, with important implications for the diagnosis and treatment of certain types of infertility. Here, we give an overview of post-transcriptional regulation in the oocyte, emphasising the current knowledge of mammalian RBP mechanisms, and develop the roles of these mechanisms in the timely activation and elimination of maternal transcripts.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Magali Dhellemmes
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Emeline Lambert
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Pierre F. Ray
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- Correspondence: ; Tel.: +33-(0)4-76-63-74-08
| |
Collapse
|
22
|
Clarke H. Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. Results Probl Cell Differ 2019; 63:17-41. [PMID: 28779312 DOI: 10.1007/978-3-319-60855-6_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.
Collapse
Affiliation(s)
- Hugh Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Room E.M0.2218, Glen Research Building, 100 Boul Decarie, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
23
|
Prochazkova B, Komrskova P, Kubelka M. CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development. Int J Mol Sci 2018; 19:ijms19103138. [PMID: 30322039 PMCID: PMC6214008 DOI: 10.3390/ijms19103138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
Oocyte meiotic maturation and embryogenesis are some of the most important physiological processes that occur in organisms, playing crucial roles in the preservation of life in all species. The post-transcriptional regulation of maternal messenger ribonucleic acids (mRNAs) and the post-translational regulation of proteins are critical in the control of oocyte maturation and early embryogenesis. Translational control affects the basic mechanism of protein synthesis, thus, knowledge of the key components included in this machinery is required in order to understand its regulation. Cytoplasmic polyadenylation element binding proteins (CPEBs) bind to the 3′-end of mRNAs to regulate their localization and translation and are necessary for proper development. In this study we examined the expression pattern of cytoplasmic polyadenylation element binding protein 2 (CPEB2) both on the mRNA (by real-time quantitative reverse transcription polymerase chain reaction, qRT-PCR) and protein (by Western blotting, WB) level, as well as its localization during the meiotic maturation of porcine oocytes and early embryonic development by immunocytochemistry (ICC). For the elucidation of its functions, CPEB2 knockdown by double-strand RNA (dsRNA) was used. We discovered that CPEB2 is expressed during all stages of porcine meiotic maturation and embryonic development. Moreover, we found that it is necessary to enable a high percentage of oocytes to reach the metaphase II (MII) stage, as well as for the production of good-quality parthenogenetic blastocysts.
Collapse
Affiliation(s)
- Barbora Prochazkova
- Department of Veterinary Sciences, Czech University of Life Sciences, Kamycka 129, 165 00 Prague, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic.
| | - Pavla Komrskova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic.
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic.
| |
Collapse
|
24
|
Fukuda K, Masuda A, Naka T, Suzuki A, Kato Y, Saga Y. Requirement of the 3'-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development. PLoS Genet 2018; 14:e1007436. [PMID: 29883445 PMCID: PMC6010300 DOI: 10.1371/journal.pgen.1007436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/20/2018] [Accepted: 05/19/2018] [Indexed: 12/25/2022] Open
Abstract
Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like) is one of the RBPs required for the sexual differentiation of primordial germ cells and for the progression of meiosis in ovulated oocytes. However, the involvement of DAZL in the development of follicular oocytes is still unknown. Here, we show that Dazl is translationally suppressed in a 3'-UTR-dependent manner in follicular oocytes, and this suppression is required for normal pre-implantation development. We found that suppression of DAZL occurred in postnatal oocytes concomitant with the formation of primordial follicles, whereas Dazl mRNA was continuously expressed throughout oocyte development, raising the possibility that DAZL is dispensable for the survival and growth of follicular oocytes. Indeed, follicular oocyte-specific knockout of Dazl resulted in the production of normal number of pups. On the other hand, genetically modified female mice that overexpress DAZL produced fewer numbers of pups than the control due to defective pre-implantation development. Our data suggest that post-transcriptional suppression of DAZL in oocytes is an important mechanism controlling gene expression in the development of functional oocytes.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Aki Masuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takuma Naka
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Yuzuru Kato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- * E-mail: (YK); (YS)
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (YK); (YS)
| |
Collapse
|
25
|
CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation. Sci Rep 2018; 8:6812. [PMID: 29717177 PMCID: PMC5931610 DOI: 10.1038/s41598-018-25187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
In many cell types, the length of the poly(A) tail of an mRNA is closely linked to its fate - a long tail is associated with active translation, a short tail with silencing and degradation. During mammalian oocyte development, two contrasting patterns of polyadenylation have been identified. Some mRNAs carry a long poly(A) tail during the growth stage and are actively translated, then become deadenylated and down-regulated during the subsequent stage, termed meiotic maturation. Other mRNAs carry a short tail poly(A) tail and are translationally repressed during growth, and their poly(A) tail lengthens and they become translationally activated during maturation. As well, a program of elimination of this ‘maternal’ mRNA is initiated during oocyte maturation. Here we describe a third pattern of polyadenylation: mRNAs are deadenylated in growing oocytes, become polyadenylated during early maturation and then deadenylated during late maturation. We show that the deadenylase, CNOT6, is present in cortical foci of oocytes and regulates deadenylation of these mRNAs, and that PUF-binding elements (PBEs) regulate deadenylation in mature oocytes. Unexpectedly, maintaining a long poly(A) tail neither enhances translation nor inhibits degradation of these mRNAs. Our findings implicate multiple machineries, more complex than previously thought, in regulating mRNA activity in oocytes.
Collapse
|
26
|
Feitosa WB, Morris PL. SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation. Am J Physiol Cell Physiol 2018; 315:C115-C121. [PMID: 29669220 DOI: 10.1152/ajpcell.00038.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUMOylation, a process of posttranslational modification of proteins by the small ubiquitin-related modifier (SUMO) family of proteins, is known to be involved in yeast and mammalian somatic cell-cycle regulation. However, the identities of the SUMO-modified oocyte targets are largely unknown and the functional role(s) for SUMOylation during mammalian oocyte maturation remains unclear. On the basis of studies in non-germline cells, protein kinase B/Akt is a potential SUMOylation target in the mouse oocyte, where it plays an essential role in cell-cycle resumption and progression during maturation. This study investigated the temporal patterns and prospective role(s) for interactions between SUMOylation and Akt serine-phosphorylation during oocyte meiotic resumption. Pharmacological inhibition of SUMOylation significantly decreased follicular fluid meiosis-activating sterol-induced cell-cycle resumption in oocytes matured in vitro and negatively affected the phosphorylation and nuclear translocation of Akt. Similarly, nuclear localization of cyclin D1, a downstream target of Akt activation, was significantly decreased following SUMOylation inhibition. Together these data show that SUMO and the posttranslational process of SUMOylation are involved in cell-cycle resumption during murine oocyte maturation and exert a regulatory influence on the Akt pathway during germinal vesicle breakdown.
Collapse
Affiliation(s)
| | - Patricia L Morris
- Center for Biomedical Research, Population Council , New York, New York.,The Rockefeller University , New York, New York
| |
Collapse
|
27
|
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Gene expression universally relies on protein synthesis, where ribosomes recognize and decode the messenger RNA template by cycling through translation initiation, elongation, and termination phases. All aspects of translation have been studied for decades using the tools of biochemistry and molecular biology available at the time. Here, we focus on the mechanism of translation initiation in eukaryotes, which is remarkably more complex than prokaryotic initiation and is the target of multiple types of regulatory intervention. The "consensus" model, featuring cap-dependent ribosome entry and scanning of mRNA leader sequences, represents the predominantly utilized initiation pathway across eukaryotes, although several variations of the model and alternative initiation mechanisms are also known. Recent advances in structural biology techniques have enabled remarkable molecular-level insights into the functional states of eukaryotic ribosomes, including a range of ribosomal complexes with different combinations of translation initiation factors that are thought to represent bona fide intermediates of the initiation process. Similarly, high-throughput sequencing-based ribosome profiling or "footprinting" approaches have allowed much progress in understanding the elongation phase of translation, and variants of them are beginning to reveal the remaining mysteries of initiation, as well as aspects of translation termination and ribosomal recycling. A current view on the eukaryotic initiation mechanism is presented here with an emphasis on how recent structural and footprinting results underpin axioms of the consensus model. Along the way, we further outline some contested mechanistic issues and major open questions still to be addressed. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
28
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
29
|
Lin X, Wang F, Li Y, Zhai C, Wang G, Zhang X, Gao Y, Yi T, Sun D, Wu S. The SCF ubiquitin ligase Slimb controls Nerfin-1 turnover in Drosophila. Biochem Biophys Res Commun 2018; 495:629-633. [DOI: 10.1016/j.bbrc.2017.11.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
|
30
|
Félix LM, Serafim C, Valentim AM, Antunes LM, Matos M, Coimbra AM. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish. Toxicol Lett 2017; 279:1-8. [DOI: 10.1016/j.toxlet.2017.07.888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022]
|
31
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
32
|
Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments. Sci Rep 2017; 7:2238. [PMID: 28533542 PMCID: PMC5440411 DOI: 10.1038/s41598-017-02071-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/07/2017] [Indexed: 01/06/2023] Open
Abstract
Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.
Collapse
|
33
|
Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS One 2016; 11:e0162722. [PMID: 27611906 PMCID: PMC5017692 DOI: 10.1371/journal.pone.0162722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
Delayed ovulation and delayed fertilization can lead to reduced developmental competence of the oocyte. In contrast to the consequences of postovulatory aging of the oocyte, hardly anything is known about the molecular processes occurring during oocyte maturation if ovulation is delayed (preovulatory aging). We investigated several aspects of oocyte maturation in two models of preovulatory aging: an in vitro follicle culture and an in vivo mouse model in which ovulation was postponed using the GnRH antagonist cetrorelix. Both models showed significantly reduced oocyte maturation rates after aging. Furthermore, in vitro preovulatory aging deregulated the protein abundance of the maternal effect genes Smarca4 and Nlrp5, decreased the levels of histone H3K9 trimethylation and caused major deterioration of chromosome alignment and spindle conformation. Protein abundance of YBX2, an important regulator of mRNA stability, storage and recruitment in the oocyte, was not affected by in vitro aging. In contrast, in vivo preovulatory aging led to reduction in Ybx2 transcript and YBX2 protein abundance. Taken together, preovulatory aging seems to affect various processes in the oocyte, which could explain the low maturation rates and the previously described failures in fertilization and embryonic development.
Collapse
Affiliation(s)
- Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Deborah Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | | |
Collapse
|
34
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
35
|
Pánek J, Kolář M, Herrmannová A, Valášek LS. A systematic computational analysis of the rRNA-3' UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation. RNA (NEW YORK, N.Y.) 2016; 22:957-967. [PMID: 27190231 PMCID: PMC4911919 DOI: 10.1261/rna.056119.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Nucleic acid sequence complementarity underlies many fundamental biological processes. Although first noticed a long time ago, sequence complementarity between mRNAs and ribosomal RNAs still lacks a meaningful biological interpretation. Here we used statistical analysis of large-scale sequence data sets and high-throughput computing to explore complementarity between 18S and 28S rRNAs and mRNA 3' UTR sequences. By the analysis of 27,646 full-length 3' UTR sequences from 14 species covering both protozoans and metazoans, we show that the computed 18S rRNA complementarity creates an evolutionarily conserved localization pattern centered around the ribosomal mRNA entry channel, suggesting its biological relevance and functionality. Based on this specific pattern and earlier data showing that post-termination 80S ribosomes are not stably anchored at the stop codon and can migrate in both directions to codons that are cognate to the P-site deacylated tRNA, we propose that the 18S rRNA-mRNA complementarity selectively stabilizes post-termination ribosomal complexes to facilitate ribosome recycling. We thus demonstrate that the complementarity between 18S rRNA and 3' UTRs has a non-random nature and very likely carries information with a regulatory potential for translational control.
Collapse
Affiliation(s)
- Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Academy of Sciences of Czech Republic, 14220 Prague, Czech Republic
| |
Collapse
|
36
|
Silva JRV, van den Hurk R, Figueiredo JR. Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 2016; 55:123-35. [PMID: 26836404 DOI: 10.1016/j.domaniend.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/14/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
During the last 2 decades, research on in vitro preantral follicle growth and oocyte maturation has delivered fascinating advances concerning the knowledge of processes regulating follicle growth and the developmental competence of oocytes. These advances include (1) information about the role of several hormones and growth factors on in vitro activation of primordial follicles; (2) increased understanding of the intracellular pathway involved in the initiation of primordial follicle growth; (3) the growth of primary and secondary follicles up to antral stages; and (4) production of embryos from oocytes from in vitro grown preantral follicles. This review article describes these advances, especially in regard farm animals, and discusses the reasons that limit embryo production from oocytes derived from preantral follicles cultured in vitro.
Collapse
Affiliation(s)
- J R V Silva
- Biotechnology Nucleus of Sobral, Federal University of Ceara, Sobral, CE 62042-280, Brazil.
| | - R van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 80151, The Netherlands
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, CE 62700-000, Brazil
| |
Collapse
|
37
|
Grossman H, Shalgi R. A Role of MicroRNAs in Cell Differentiation During Gonad Development. Results Probl Cell Differ 2016; 58:309-36. [PMID: 27300184 DOI: 10.1007/978-3-319-31973-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles' assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads' physiology and managing reproduction disorders.
Collapse
Affiliation(s)
- Hadas Grossman
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel
| | - Ruth Shalgi
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
38
|
El-Hayek S, Clarke HJ. Control of Oocyte Growth and Development by Intercellular Communication Within the Follicular Niche. Results Probl Cell Differ 2016; 58:191-224. [PMID: 27300180 DOI: 10.1007/978-3-319-31973-5_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the mammalian ovary, each oocyte grows and develops within its own structural and developmental niche-the follicle. Together with the female germ cell in the follicle are somatic granulosa cells, specialized companion cells that surround the oocyte and provide support to it, and an outer layer of thecal cells that serve crucial roles including steroid synthesis. These follicular compartments function as a single physiological unit whose purpose is to produce a healthy egg, which upon ovulation can be fertilized and give rise to a healthy embryo, thus enabling the female germ cell to fulfill its reproductive potential. Beginning from the initial stage of follicle formation and until terminal differentiation at ovulation, oocyte and follicle growth depend absolutely on cooperation between the different cellular compartments. This cooperation synchronizes the initiation of oocyte growth with follicle activation. During growth, it enables metabolic support for the follicle-enclosed oocyte and allows the follicle to fulfill its steroidogenic potential. Near the end of the growth period, intra-follicular interactions prevent the precocious meiotic resumption of the oocyte and ensure its nuclear differentiation. Finally, cooperation enables the events of ovulation, including meiotic maturation of the oocyte and expansion of the cumulus granulosa cells. In this chapter, we discuss the cellular interactions that enable the growing follicle to produce a healthy oocyte, focusing on the communication between the germ cell and the surrounding granulosa cells.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Department of Biology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Tan YJ, Zhang XY, Ding GL, Li R, Wang L, Jin L, Lin XH, Gao L, Sheng JZ, Huang HF. Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation. Sci Rep 2015; 5:17741. [PMID: 26634435 PMCID: PMC4669445 DOI: 10.1038/srep17741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022] Open
Abstract
Hyperosmotic stress may induce apoptosis of different cells. However, oocytes show tolerance to osmotic stress during cryopreservation by vitrification, which is an assisted reproductive technique. The underlying mechanism is still not understood. Here, we demonstrated that hyperosmosis produced by high concentrations of cryoprotectants, including DMSO, ethylene glycol and sucrose, significantly upregulated the protein levels of aquaporin (AQP) 7, but not AQP3 and AQP9, in mouse oocytes. Knockdown of AQP7 expression by siRNA-injection significantly reduced the survival of oocytes after vitrification. In oocytes, AQP7 was shown to bind with F-actin, a protein involved in almost all biological events. Moreover, we found that hyperosmosis could upregulate the phosphorylation levels of CPE-binding protein (CPEB) and Aurora A. Inhibition of the PI3K and PKC pathways blocked the hyperosmosis-induced upregulation of AQP7 and the phosphorylation of CPEB and Aurora A in oocytes. In conclusion, hyperosmosis could upregulate the expression of AQP7 via Aurora A/CPEB phosphorylation mediated by the PI3K and PKC pathways, and upregulation of AQP7 plays an important role in improving of tolerance to hyperosmotic stress and survival of oocytes during cryopreservation by vitrification.
Collapse
Affiliation(s)
- Ya-Jing Tan
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Ying Zhang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Guo-Lian Ding
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Li
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Hua Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Ling Gao
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China.,Department of Pathology &Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- Center of Reproductive Medicine, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| |
Collapse
|
40
|
Liu C, Wu GQ, Fu XW, Mo XH, Zhao LH, Hu HM, Zhu SE, Hou YP. The Extracellular Calcium-Sensing Receptor (CASR) Regulates Gonadotropins-Induced Meiotic Maturation of Porcine Oocytes. Biol Reprod 2015; 93:131. [PMID: 26490840 DOI: 10.1095/biolreprod.115.128579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gonadotropins and epidermal growth factor (EGF) play crucial roles in promoting oocyte maturation. The regulatory network downstream of these key factors is not well understood. The present study was designed to investigate the role of the calcium-sensing receptor (CASR) in porcine oocyte in vitro maturation. CASR expression was up-regulated in oocytes matured in gonadotropin-containing medium. Cortical distribution of CASR was enhanced with gonadotropins but not EGF. Supplementation of a CASR agonist (NPS R-568) in the gonadotropin (FSH and/or LH)-containing maturation medium significantly enhanced oocyte nuclear maturation. Addition of NPS2390, a CASR antagonist, compromised oocyte nuclear maturation. Furthermore, increased cortical distribution and decreased expression of CASR was observed after the NPS R-568 treatment. Oocytes treated with NPS R-568 had higher concentration of CYCLIN B1, decreased reactive oxygen species, and increased glutathione levels, indicative of advanced cytoplasmic maturation. In contrast, NPS2390 treatment compromised oocyte cytoplasmic maturation. A higher blastocyst formation rate after parthenogenetic activation was observed when oocytes were matured in the presence of the CASR agonist, NPS R-568. MAPK3/1 phosphorylation was increased during in vitro maturation and after NPS R-568 treatment, and decreased following CASR antagonist supplementation. Taken together, our data showed that the CASR is a gonadotropin-regulated factor that promotes porcine oocyte maturation in a MAPK-dependent manner.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guo-Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiang-Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian-Hong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Hong Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Mei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Peng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Clarke HJ, Vieux KF. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin Cell Dev Biol 2015; 43:106-116. [DOI: 10.1016/j.semcdb.2015.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
|
42
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
43
|
Abstract
Post-transcriptional gene regulation (PTGR) concerns processes involved in the maturation, transport, stability and translation of coding and non-coding RNAs. RNA-binding proteins (RBPs) and ribonucleoproteins coordinate RNA processing and PTGR. The introduction of large-scale quantitative methods, such as next-generation sequencing and modern protein mass spectrometry, has renewed interest in the investigation of PTGR and the protein factors involved at a systems-biology level. Here, we present a census of 1,542 manually curated RBPs that we have analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression. Our analysis is a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| |
Collapse
|
44
|
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS One 2014; 9:e108907. [PMID: 25271735 PMCID: PMC4182777 DOI: 10.1371/journal.pone.0108907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Maternal effect genes code for oocyte proteins that are important for early embryogenesis. Transcription in oocytes does not take place from the onset of meiotic progression until zygotic genome activation. During this period, protein levels are regulated posttranscriptionally, for example by poly(A) tail length. Posttranscriptional regulation may be impaired in preovulatory and postovulatory aged oocytes, caused by delayed ovulation or delayed fertilization, respectively, and may lead to developmental defects. We investigated transcript levels and poly(A) tail length of ten maternal effect genes in in vivo- and in vitro- (follicle culture) grown oocytes after pre- and postovulatory aging. Quantitative RT-PCR was performed using random hexamer-primed cDNA to determine total transcript levels and oligo(dT)16-primed cDNA to analyze poly(A) tail length. Transcript levels of in vivo preovulatory-aged oocytes remained stable except for decreases in Brg1 and Tet3. Most genes investigated showed a tendency towards increased poly(A) content. Polyadenylation of in vitro preovulatory-aged oocytes was also increased, along with transcript level declines of Trim28, Nlrp2, Nlrp14 and Zar1. In contrast to preovulatory aging, postovulatory aging of in vivo- and in vitro-grown oocytes led to a shortening of poly(A) tails. Postovulatory aging of in vivo-grown oocytes resulted in deadenylation of Nlrp5 after 12 h, and deadenylation of 4 further genes (Tet3, Trim28, Dnmt1, Oct4) after 24 h. Similarly, transcripts of in vitro-grown oocytes were deadenylated after 12 h of postovulatory aging (Tet3, Trim28, Zfp57, Dnmt1, Nlrp5, Zar1). This impact of aging on poly(A) tail length may affect the timed translation of maternal effect gene transcripts and thereby contribute to developmental defects.
Collapse
Affiliation(s)
- Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Katrin Rademacher
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Rajput SK, Lee K, Zhenhua G, Di L, Folger JK, Smith GW. Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reprod Fertil Dev 2014; 26:37-47. [PMID: 24305175 DOI: 10.1071/rd13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
46
|
Frank LA, Sutton-McDowall ML, Gilchrist RB, Thompson JG. The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Mol Reprod Dev 2014; 81:391-408. [DOI: 10.1002/mrd.22299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Laura A. Frank
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Melanie L. Sutton-McDowall
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Robert B. Gilchrist
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| | - Jeremy G. Thompson
- The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
47
|
Liu Y, Zhu Y, Wu X, Li Y, Guo Q, Li W, Ding Z. Increased expression of ERp57 in rat oocytes during meiotic maturation is associated with sperm-egg fusion. Mol Reprod Dev 2014; 81:315-25. [DOI: 10.1002/mrd.22300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/05/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Yue Liu
- Department of Human Anatomy; Histology and Embryology; Shanghai Key Laboratory for Reproductive Medicine; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Xiaohui Wu
- Department of Obstetrics and Gynecology; Putuo Hospital, Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yandong Li
- Department of Clinical Medicine; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Qiangsu Guo
- Department of Human Anatomy; Histology and Embryology; Shanghai Key Laboratory for Reproductive Medicine; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Weiping Li
- Department of Obstetrics and Gynecology; Renji Hospital; School of Medicine Shanghai Jiao Tong University; Shanghai China
| | - Zhide Ding
- Department of Human Anatomy; Histology and Embryology; Shanghai Key Laboratory for Reproductive Medicine; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
48
|
Schatten H, Sun QY. Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and Pre-implantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:57-87. [PMID: 25030760 DOI: 10.1007/978-1-4939-0817-2_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytoskeleton, mainly consisting of microtubules, intermediate filaments and microfilaments, along with cytoskeleton associated and interconnecting proteins as well as the centrosome, plays enormously important roles in all stages of embryogenesis and undergoes significant changes to accommodate a diversity of cellular functions during gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. The varied functions of the cytoskeleton can be accomplished on many different levels, among which are a diversity of different posttranslational modifications (PTMs), chemical modifications that regulate activity, localization and interactions with other cellular molecules. PTMs of the cytoskeleton, including phosphorylation, glycosylation, ubiquitination, detyrosination/tyrosination, (poly)glutamylation and (poly)glycylation, acetylation, sumoylation, and palmitoylation, will be addressed in this chapter. Focus will be on (1) Microtubules, microtubule organizing centers (centrosomes), intermediate filaments, microfilaments and their PTMs; (2) Cytoskeletal functions and cytoskeletal PTMs during gametogenesis and oocyte maturation; and (3) Cytoskeletal functions and cytoskeletal PTMs during fertilization and pre-implantation embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO, 65211, USA,
| | | |
Collapse
|
49
|
Cogswell AA, Kommer VP, Williams DL. Transcriptional analysis of a unique set of genes involved in Schistosoma mansoni female reproductive biology. PLoS Negl Trop Dis 2012; 6:e1907. [PMID: 23166854 PMCID: PMC3499410 DOI: 10.1371/journal.pntd.0001907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/02/2012] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis affects more than 200 million people globally. The pathology of schistosome infections is due to chronic tissue inflammation and damage from immune generated granulomas surrounding parasite eggs trapped in host tissues. Schistosoma species are unique among trematode parasites because they are dioecious; females require paring with male parasites in order to attain reproductive maturity and produce viable eggs. Ex vivo cultured females lose the ability to produce viable eggs due to an involution of the vitellarium and loss of mature oocytes. In order to better understand schistosome reproductive biology we used data generated by serial analysis of gene expression (SAGE) to identify uncharacterized genes which have different transcript abundance in mature females, those that have been paired with males, and immature females obtained from unisexual infections. To characterize these genes we used bioinformatics, transcript localization, and transcriptional analysis during the regression of in vitro cultured females. Genes transcribed exclusively in mature females localize primarily in the vitellocytes and/or the ovary. Genes transcribed exclusively in females from single sex infections localize to vitellocytes and subtegumental cells. As female reproductive tissues regress, eggshell precursor proteins and genes involved in eggshell synthesis largely have decreased transcript abundance. However, some genes with elevated transcript abundance in mature adults have increased gene expression following regression indicating that the genes in this study function both in eggshell biology as well as vitellogenesis and maintenance of female reproductive tissues. In addition, we found that genes enriched in females from single sex infections have increased expression during regression in ex vivo females. By using these transcriptional analyses we can direct research to examine the areas of female biology that are both relevant to understanding the overall process of female development and worm pairing while determining novel therapeutic approaches directed at the maturation of female schistosomes. Schistosomiasis is a chronic, debilitating disease that affects over 200 million people globally. The pathology associated with schistosomiasis is caused by host immune responses to parasite eggs. Therefore, it is imperative to identify pathways responsible for controlling worm reproductive biology. Schistosome females must be in constant contact with male parasites in order to achieve reproductive maturity. The process of pairing and reproductive maturation in female worms is poorly understood, in part, because it does not occur outside of the host. In addition, when female schistosomes are removed from their mammalian host they regress to an immature state. In this study our goal was to characterize a unique set of genes in Schistosoma mansoni whose transcript abundance differs in mature and immature female worms. We found that the genes with higher transcript abundance in sexually mature female worms were expressed in female reproductive tissues, while those transcripts enriched in sexually immature worms were present in sub-surface somatic cells. Transcript abundance of the selected genes changed dramatically when females were removed from their host. These findings inform new approaches to study female worm biology and will provide insights into the processes of worm pairing and reproductive maturation.
Collapse
Affiliation(s)
| | | | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 2012; 11:460-72. [PMID: 22542725 DOI: 10.1016/j.arr.2012.03.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/14/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022]
Abstract
Cytoplasmic elongation of the poly(A) tail was originally identified as a mechanism to activate maternal mRNAs, stored as silent transcripts with short poly(A) tails, during meiotic progression. A family of RNA-binding proteins named CPEBs, which recruit the translational repression or cytoplasmic polyadenylation machineries to their target mRNAs, directly mediates cytoplasmic polyadenylation. Recent years have witnessed an explosion of studies showing that CPEBs are not only expressed in a variety of somatic tissues, but have essential functions controlling gene expression in time and space in the adult organism. These "new" functions of the CPEBs include regulating the balance between senescence and proliferation and its pathological manifestation, tumor development. In this review, we summarize current knowledge on the functions of the CPEB-family of proteins in the regulation of cell proliferation, their target mRNAs and the mechanism controlling their activities.
Collapse
|