1
|
Cambray GA, Kalinski JJ. Microbial Characterization of a Zambian Honey Vinegar. Food Sci Nutr 2025; 13:e4549. [PMID: 39830903 PMCID: PMC11742133 DOI: 10.1002/fsn3.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Forest Fruits Organic Honey Vinegar (FFOHV) is a spontaneously fermented (yeast) and acetified (Acetic Acid Bacteria-AAB) Miombo Woodland honey vinegar developed in Zambia. Live vinegars containing live microbial cultures are marketed for their probiotic health benefits. The correlation between a well-developed gut microbiome and human health is well studied and fermented products such as live vinegar containing AAB contribute to a healthy gut microbiome. This study details a metagenomic analysis of stable, bottled FFOHV (Zambia) alongside two commercially available live vinegar products: Bragg Organic Apple Cider Vinegar (BOACV) and Nature's Source Apple Cider Vinegar (NSACV). FFOHV contained representatives of five bacterial and nine fungal genera, compared to BOACV with two bacterial and five fungal, and NSACV containing no bacterial and six fungal genera. FFOHV and BOACV showed a dominance of Komagataeibacter bacterial species. The dominant yeast was Vanrija humicola present in all three vinegar samples. FFOHV contained greater diversity of genera, with the notable species Monascus purpureus-a microbe that produces several health-enhancing compounds. The analysis showed that FFOHV is a microbially diverse product containing several potentially health-enhancing microbes. Graphical Abstract Text: This study presents a metagenomic analysis of Forest Fruits Organic Honey Vinegar (FFOHV) from Zambia, compared with two commercial live cider vinegars: Bragg Organic Apple Cider Vinegar (BOACV) and Nature's Source Apple Cider Vinegar (NSACV). FFOHV exhibited a richer microbial diversity, containing five bacterial and nine fungal genera, including the health-promoting species Monascus purpureus. Both FFOHV and BOACV were dominated by Komagataeibacter species, with Vanrija humicola as the prevalent yeast across all samples. This confirmed FFOHV's unique potential probiotic benefits.
Collapse
|
2
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
3
|
Coello-Camba A, Díaz-Rúa R, Agusti S. Design and use of a new primer pair for the characterization of the cyanobacteria Synechococcus and Prochlorococcus communities targeting petB gene through metabarcoding approaches. MethodsX 2023; 11:102444. [PMID: 37920873 PMCID: PMC10618751 DOI: 10.1016/j.mex.2023.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
During the last years, the application of next-generation sequencing (NGS) technologies to search for specific genetic markers has become a crucial method for the characterization of microbial communities. Illumina MiSeq, likely the most widespread NGS platform for metabarcoding experiments and taxonomic classification, allows processing shorter reads than the classical SANGER sequencing method and therefore requires specific primer pairs that produce shorter amplicons. Specifically, for the analysis of the commonly studied Prochlorococcus and Synechococcus communities, the petB marker gene has recently stood out as able to provide deep coverage to determine the microdiversity of the community. However, current petB primer set produce a 597 bp amplicon that is not suitable for MiSeq chemistry. Here, we designed and tested a petB primer pair that targets both Prochlorococcus and Synechococcus communities producing an appropriate amplicon to be used with state-of-the-art Illumina MiSeq. This new primer set allows the classification of both groups to a low taxonomic level and is therefore suitable for high throughput experiments using MiSeq technologies, therefore constituting a useful, novel tool to facilitate further studies on Prochlorococcus and Synechococcus communities. •This work describes the de novo design of a Prochlorococcus and Synechococcus-specific petB primer pair, allowing the characterization of both populations to a low taxonomic level.•This primer pair is suitable for widespread Illumina MiSeq sequencing technologies.•petB was confirmed as an adequate target for the characterization of both picocyanobacteria.
Collapse
Affiliation(s)
- Alexandra Coello-Camba
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Abstract
For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.
Collapse
Affiliation(s)
- Nicolas L Louw
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Kasturi Lele
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Collin B Edwards
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| |
Collapse
|
5
|
Shimizu H, Kamada A, Koyama K, Iwashita K, Goto-Yamamoto N. Yeast diversity during the spontaneous fermentation of wine with only the microbiota on grapes cultivated in Japan. J Biosci Bioeng 2023:S1389-1723(23)00108-1. [PMID: 37088673 DOI: 10.1016/j.jbiosc.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Making wine via spontaneous fermentation without sulfur dioxide and commercial yeast (spontaneous winemaking) is increasing in recent year, but there is scant research regarding microbial communities present in Japan during spontaneous winemaking using culture-independent molecular methods. We analyzed fungal communities and populations during laboratory-scale spontaneous winemaking using sterilized labware to avoid winery-resident microbes. In the spontaneous fermentation of four grape varieties (Pinot Noir, Riesling, Koshu, and Koshusanjaku) grown in the same Japanese vineyard, our analysis of yeast and other fungal species by next-generation sequencing based on the ITS1 region demonstrated that Saccharomyces cerevisiae was eventually dominant in seven of 12 fermentation batches (three replications for each grape variety), whereas non-Saccharomyces species (e.g., Schizosaccharomyces japonicus, Lachancea dasiensis, and Hanseniaspora valbyensis) became dominant in four batches at the end of fermentation. In another batch, lactic acid bacteria (LAB) became dominant and the fermentation remained incomplete. Diverse microbes were involved in the spontaneous fermentation (particularly in Koshusanjaku), indicating that residual sugar remained and lactic and acetic acid largely increased. Compared to the control wine made with SO2 and commercial yeast, the concentration of lactic acid was 47-fold higher in the must dominated by L. dasiensis, and the concentrations of acetic acid and lactic acid were 10-fold and 20-fold higher in the must dominated by LAB, respectively. Even when indigenous S. cerevisiae became dominant, the finished wines obtained high sensory-analysis scores for complexity but low scores for varietal typicality, indicating the risk of fermentation with unselected wild yeast on the grapes grown in Japan.
Collapse
Affiliation(s)
- Hideaki Shimizu
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | - Aya Kamada
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
6
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
7
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
8
|
Englezos V, Mota-Gutierrez J, Giacosa S, Río Segade S, Pollon M, Gambino G, Rolle L, Ferrocino I, Rantsiou K. Effect of alternative fungicides and inoculation strategy on yeast biodiversity and dynamics from the vineyard to the winery. Food Res Int 2022; 162:111935. [DOI: 10.1016/j.foodres.2022.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
|
9
|
Ekici H, Kadiroglu P, Ilgaz C. Next‐generation sequencing of shalgam flavor influencing microflora. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Halil Ekici
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
- Molecular Biology and Genetics Department Kilis 7 Aralık University Kilis Turkey
| | - Pınar Kadiroglu
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| | - Ceren Ilgaz
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| |
Collapse
|
10
|
Ruiz-de-Villa C, Poblet M, Bordons A, Reguant C, Rozès N. Differentiation of Saccharomyces species by lipid and metabolome profiles from a single colony. Food Microbiol 2022; 103:103964. [DOI: 10.1016/j.fm.2021.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
|
11
|
Du Z, Yamasaki S, Oya T, Nguluve D, Euridse D, Tinga B, Macome F, Cai Y. Microbial Co-occurrence Network and Fermentation Information of Natural Woody-Plant Silage Prepared With Grass and Crop By-Product in Southern Africa. Front Microbiol 2022; 13:756209. [PMID: 35369476 PMCID: PMC8964296 DOI: 10.3389/fmicb.2022.756209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
To facilitate the use of woody plant (WP) as a natural biomass resource to address the shortage of feed for ruminants in the tropics, we use PacBio SMRT sequencing to explore the microbial co-occurrence network and silage fermentation of gliricidia and leucaena prepared with Napier grass (NG) and corn stover (CS) in Southern Africa. Based on dry matter, the crude protein contents of WP are as high as 25%. Compared with NG, the addition of CS speed up the dynamic succession of microorganisms in the silage fermentation process from Gram-negative bacteria to Gram-positive bacteria, and promoted Lactiplantibacillus plantarum to become the dominant community and enhanced the metabolic pathways of lactic acid and citric acid, thus improved the fermentation flavour and quality of WP silage. WP can be mixed with CS to make high-quality silage, which can alleviate the shortage of feed and promote local animal production.
Collapse
Affiliation(s)
- Zhumei Du
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan.,College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Damiao Nguluve
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Denise Euridse
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Benedito Tinga
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | | | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
12
|
Effect of Low-Temperature-Tolerant Lactic Acid Bacteria on the Fermentation Quality and Bacterial Community of Oat Silage at 5 °C vs. 15 °C. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the effects of low-temperature-tolerant lactic acid bacteria on the fermentation quality and bacterial community of oat silage. Silage treatments were designed as control (with no additives), with FO3, FO5, FO8, and L214 inoculants. After 60 days of ensiling, the fermentation characteristics and bacterial community were analyzed. The results showed that the low-temperature-tolerant lactic acid bacteria were able to reduce the pH and NH3-N and increase crude protein and lactic acid contents. It is worth noting that the addition of FO3 also significantly inhibited butyric acid production. High-throughput sequencing technique showed that at the genus level, Lactiplantibacillus were the dominant bacteria in all oat silages, while at the species level, the bacterial abundance in the treated silages differed significantly from the control. The highest abundance of Lactiplantibacillus sp. was found in the control and L214 groups, while the abundance of Lactiplantibacillus curvatus was most abundant in the silage treated with low-temperature-tolerant lactic acid bacteria. The results indicated the potential effectiveness of low-temperature-tolerant lactic acid bacteria in improving fermentation quality and reducing protein losses.
Collapse
|
13
|
Quijada NM, Dzieciol M, Schmitz-Esser S, Wagner M, Selberherr E. Metatranscriptomic Analyses Unravel Dynamic Changes in the Microbial and Metabolic Transcriptional Profiles in Artisanal Austrian Hard-Cheeses During Ripening. Front Microbiol 2022; 13:813480. [PMID: 35300479 PMCID: PMC8921697 DOI: 10.3389/fmicb.2022.813480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Vorarlberger Bergkäse (VB) is an artisanal Austrian washed-rind hard cheese produced from alpine cows' raw milk without the addition of ripening cultures. Ripening time is a key factor in VB, as it strongly influences the microbial communities present in the cheeses and the organoleptic properties of the product. In this study, the microbial and metabolic transcriptional profiles in VB rinds at different ripening times were investigated. VB products before (30 days of ripening) and after (90 days of ripening) selling were selected, RNA was extracted and subjected to shotgun metatranscriptomic sequencing. The analysis revealed some of the previously described abundant bacterial taxa of Brevibacterium, Corynebacterium, Halomonas, Psychrobacter, and Staphylococcus to be highly active in VB rinds. Additionally, the investigation of most important metabolic pathways in cheese ripening clearly showed differences in the gene transcription profiles and the active microbiota between the two ripening points investigated. At 30 days of ripening, metabolic events related with the degradation of residual lactose, lactate, citrate, proteolysis, and lipolysis were significantly more transcribed and mainly associated with Staphylococcus. On the other hand, genes involved in the degradation of smaller compounds derived from previous metabolism (i.e., metabolism of free amino acids and fatty acids) were significantly more expressed in VB rinds with 90 of ripening, and mainly associated with Brevibacterium and Corynebacterium. These latter metabolic activities are responsible of the generation of compounds, such as methanethiol and 2,3-butanediol, that are very important for the flavor and aroma characteristics of cheeses. This study shows the dynamic changes in the gene transcriptional profiles associated with energy substrates metabolism and the generation of organoleptic compounds during VB ripening and uncovers bacterial taxa as key drivers of the ripening process. These taxa might be the target for future studies toward an accelerated cheese ripening and the enhancement of its organoleptic properties.
Collapse
Affiliation(s)
- Narciso Martín Quijada
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Monika Dzieciol
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
14
|
Bian X, Chen JR, Yang Y, Yu DH, Ma ZQ, Ren LK, Wu N, Chen FL, Liu XF, Wang B, Zhang N. Effects of fermentation on the structure and physical properties of glutinous proso millet starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
16
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
17
|
Abstract
Yeasts constitute an important part of cheeses, and especially the artisanal ones. The current study reviews the occurrence of yeasts in different cheese varieties and the role of yeasts in cheesemaking process. The use of molecular methods for identification and strain typing has extended the knowledge for yeast diversity in cheeses. For the study of the occurrence of yeasts in different cheese types, seven categories are used, that is: 1) hard, 2) semi-hard, 3) soft, which includes soft pasta-filata and whey cheeses, 4) white brined cheeses, 5) mould surface ripened, 6) bacterial surface ripened cheeses, and 7) blue cheeses. For some cheese types, yeasts are the main microbial group, at least for some part of their ripening process, while for some other types, yeasts are absent. Differences between industrially manufactured cheeses and artisanal cheeses have specified. Artisanal cheeses possess a diverse assortment of yeast species, mainly belonging to the genera Candida, Clavisporalus, Cryptococcus, Debaryomyces, Geotrichum, Issatchenkia, Kazachstania, Kluyveromyces, Kodemaea, Pichia, Rhodotorula, Saccharomyces, Saturnispora, Torulaspora, Trichosporon, Yarrowia and ZygoSaccharomyces. The role of the yeasts for selected cheeses from the seven cheese categories is discussed.
Collapse
Affiliation(s)
- Thomas Bintsis
- Collaborating Teaching Staff at Hellenic Open University, Greece
| |
Collapse
|
18
|
Deciphering Succession and Assembly Patterns of Microbial Communities in a Two-Stage Solid-State Fermentation System. Microbiol Spectr 2021; 9:e0071821. [PMID: 34549993 PMCID: PMC8557893 DOI: 10.1128/spectrum.00718-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although the importance of microbiota in the natural environment and in industrial production has been widely recognized, little is known about the formation and succession patterns of the microbial community, particularly secondary succession after disturbance. Here, we choose the Xiaoqu liquor brewing process as an experimental model in which sorghum grains were first aerobically saccharified and then anaerobically fermented after being stirred and acidified to explore multistage community succession patterns. We analyzed microbial composition, physicochemical factors, and metabolites of brewing grains inoculated with two different starters, pure starter and traditional starter, respectively. Two groups showed similar succession patterns where the saccharification microbiota was mainly derived from starters, while environmental microorganisms, mainly Lactobacillaceae and Saccharomyces, dominated the fermentation microbiota regardless of the original saccharification community composition. Species replacement shaped the bacterial community, while species replacement and loss both contributed to fungal community succession in both groups. Grain acidification and hypoxia led to the succession of bacterial and fungal communities during fermentation, respectively. Despite inoculation with starters containing different microorganisms, similar microbial communities during the fermentation stage of the two groups exhibited similar metabolite composition. However, higher abundance of Rhizopus in the saccharification of the pure starter group led to more alcohols, while higher abundance of Monascus and Saccharomycopsis in the traditional starter group promoted acid and ester metabolism. These results revealed the microbial succession patterns of two-stage liquor brewing and its influence on flavor metabolism, which could be used to regulate the microbial community in food fermentation to further promote the modernization of the fermented food industry. IMPORTANCE Revealing formation and assembly mechanisms of microbiota can help us to understand and further regulate its roles in the ecosystems. The Xiaoqu liquor brewing system is a tractable microbial ecosystem with low complexity. This two-stage microbial ecosystem can be used as an experimental model to analyze the multistage temporal succession pattern of microbial communities. Our results demonstrated the dynamic composition and succession pattern of a microbial community in the two-stage liquor brewing system. The results also revealed the microbial origins determining community composition, the ecological processes dominating microbial community succession patterns, the determinants affecting microbial community successions, and the effect of microbial community changes on metabolite synthesis. Overall, our study not only provides an insight into multistage succession patterns of microbial communities in liquor brewing systems but also provides reference for optimizing the quality of fermented products, which will be helpful to understand the succession patterns of microbial communities in other natural ecosystems.
Collapse
|
19
|
Wadhawan K, Steinberger A, Rankin S, Suen G, Czuprynski C. Characterizing the microbiota of wooden boards used for cheese ripening. JDS COMMUNICATIONS 2021; 2:171-176. [PMID: 36338451 PMCID: PMC9623629 DOI: 10.3168/jdsc.2020-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022]
Abstract
The phyla Actinobacteria, Firmicutes, and Proteobacteria dominated the microbiota of the boards. The boards displayed differences in both diversity and richness. We identified 288 total operational taxonomic units (OTU), with 7 OTU forming a core microbiota across all boards. The boards appeared to select for salt- and cold-tolerant bacteria.
Wooden boards are commonly used for aging artisan cheeses. Although considered critical to the development of desired flavors and aromas, knowledge about the microbial communities associated with these boards is limited. To begin to address this need, we performed a 16S ribosomal RNA analysis of the bacterial communities present on the surface and within 5 wooden boards used for cheese ripening that were obtained from 3 cheese-processing facilities. The 5 boards were dominated by bacteria in the phyla Actinobacteria, Firmicutes, and Proteobacteria and displayed differences in both diversity and richness. Analysis of these boards also identified significant board-to-board variation. A total of 288 operational taxonomic units were identified across all samples, with 7 operational taxonomic units forming a core microbiota across all boards. Taken together, these data reflect the cheese-ripening environment, which appears to select for salt- and cold-tolerant bacteria.
Collapse
Affiliation(s)
- K. Wadhawan
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706
| | - A.J. Steinberger
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | - S.A. Rankin
- Department of Food Science, University of Wisconsin, Madison 53706
| | - G. Suen
- Department of Bacteriology, University of Wisconsin, Madison 53706
- Food Research Institute, University of Wisconsin, Madison 53706
| | - C.J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706
- Food Research Institute, University of Wisconsin, Madison 53706
- Corresponding author
| |
Collapse
|
20
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
21
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
22
|
Phylotype-Level Characterization of Complex Communities of Lactobacilli Using a High-Throughput, High-Resolution Phenylalanyl-tRNA Synthetase ( pheS) Gene Amplicon Sequencing Approach. Appl Environ Microbiol 2020; 87:AEM.02191-20. [PMID: 33097506 DOI: 10.1128/aem.02191-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
The lactobacilli identified to date encompass more than 270 closely related species that were recently reclassified into 26 genera. Because of their relevance to industry, there is a need to distinguish between closely related and yet metabolically and regulatory distinct species, e.g., during monitoring of biotechnological processes or screening of samples of unknown composition. Current available methods, such as shotgun metagenomics or rRNA gene-based amplicon sequencing, have significant limitations (high cost, low resolution, etc.). Here, we generated a phylogeny of lactobacilli based on phenylalanyl-tRNA synthetase (pheS) genes and, from it, developed a high-resolution taxonomic framework which allows for comprehensive and confident characterization of the community diversity and structure of lactobacilli at the species level. This framework is based on a total of 445 pheS gene sequences, including sequences of 276 validly described species and subspecies (of a total of 282, including the proposed L. timonensis species and the reproposed L. zeae species; coverage of 98%), and allows differentiation between 265 species-level clades of lactobacilli and the subspecies of L. sakei The methodology was validated through next-generation sequencing of mock communities. At a sequencing depth of ∼30,000 sequences, the minimum level of detection was approximately 0.02 pg per μl DNA (equaling approximately 10 genome copies per μl template DNA). The pheS approach, along with parallel sequencing of partial 16S rRNA genes, revealed considerable diversity of lactobacilli and distinct community structures across a broad range of samples from different environmental niches. This novel complementary approach may be applicable to industry and academia alike.IMPORTANCE Species formerly classified within the genera Lactobacillus and Pediococcus have been studied extensively at the genomic level. To accommodate their exceptional functional diversity, the over 270 species were recently reclassified into 26 distinct genera. Despite their relevance to both academia and industry, methods that allow detailed exploration of their ecology are still limited by low resolution, high cost, or copy number variations. The approach described here makes use of a single-copy marker gene which outperforms other markers with regard to species-level resolution and availability of reference sequences (98% coverage). The tool was validated against a mock community and used to address diversity of lactobacilli and community structure in various environmental matrices. Such analyses can now be performed at a broader scale to assess and monitor the assembly, structure, and function of communities of lactobacilli at the species level (and, in some cases, even at the subspecies level) across a wide range of academic and commercial applications.
Collapse
|
23
|
Maillet A, Bouju-Albert A, Roblin S, Vaissié P, Leuillet S, Dousset X, Jaffrès E, Combrisson J, Prévost H. Impact of DNA extraction and sampling methods on bacterial communities monitored by 16S rDNA metabarcoding in cold-smoked salmon and processing plant surfaces. Food Microbiol 2020; 95:103705. [PMID: 33397623 DOI: 10.1016/j.fm.2020.103705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and β diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. β-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. β-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, β-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.
Collapse
Affiliation(s)
- Aurélien Maillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France; UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Agnès Bouju-Albert
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Steven Roblin
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Pauline Vaissié
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Sébastien Leuillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Xavier Dousset
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Emmanuel Jaffrès
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Jérôme Combrisson
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Hervé Prévost
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France.
| |
Collapse
|
24
|
Inhibition of Bacillus cereus by garlic (Allium sativum) essential oil during manufacture of white sufu, a traditional Chinese fermented soybean curd. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Characterization of microbial communities in ethanol biorefineries. J Ind Microbiol Biotechnol 2019; 47:183-195. [PMID: 31848793 DOI: 10.1007/s10295-019-02254-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Bacterial contamination of corn-based ethanol biorefineries can reduce their efficiency and hence increase their carbon footprint. To enhance our understanding of these bacterial contaminants, we temporally sampled four biorefineries in the Midwestern USA that suffered from chronic contamination and characterized their microbiomes using both 16S rRNA sequencing and shotgun metagenomics. These microbiotas were determined to be relatively simple, with 13 operational taxonomic units (OTUs) accounting for 90% of the bacterial population. They were dominated by Firmicutes (89%), with Lactobacillus comprising 80% of the OTUs from this phylum. Shotgun metagenomics confirmed our 16S rRNA data and allowed us to characterize bacterial succession at the species level, with the results of this analysis being that Lb. helveticus was the dominant contaminant in this fermentation. Taken together, these results provide insights into the microbiome of ethanol biorefineries and identifies a species likely to be commonly responsible for chronic contamination of these facilities.
Collapse
|
26
|
Branco P, Candeias A, Caldeira AT, González‐Pérez M. An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment. Microb Biotechnol 2019; 12:1237-1248. [PMID: 31197952 PMCID: PMC6801150 DOI: 10.1111/1751-7915.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells' autofluorescence, fluorophore inadequate selection and probes' low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells' fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.
Collapse
Affiliation(s)
- Patrícia Branco
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
| | - António Candeias
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | - Ana Teresa Caldeira
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | | |
Collapse
|
27
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
28
|
Keshri J, Chen Y, Pinto R, Kroupitski Y, Weinberg ZG, Sela Saldinger S. Bacterial Dynamics of Wheat Silage. Front Microbiol 2019; 10:1532. [PMID: 31354651 PMCID: PMC6632545 DOI: 10.3389/fmicb.2019.01532] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Knowledge regarding bacterial dynamics during crop ensiling is important for understanding of the fermentation process and may facilitate the production of nutritious and stable silage. The objective of this study was to analyze the bacterial dynamics associated with whole crop wheat silage with and without inoculants. Whole crop wheat was ensiled in laboratory silos, with and without Lactobacillus inoculants (L. plantarum, L. buchneri), for 3 months. Untreated and L. plantarum-treated silages were sampled at several times during ensiling, while L. buchneri-treated silage was sampled only at 3 months. Bacterial composition was studied using next generation sequencing approach. Dominant bacteria, before ensiling, were Pantoea (34.7%), Weissella (28.4%) and Pseudomonas (10.4%), Exiguobacterium (7.8%), and Paenibacillus (3.4%). Exogenous inoculants significantly affected bacterial composition and dynamics during ensiling. At 3 months of ensiling, Lactobacillus dominated the silage bacterial population and reached an abundance of 59.5, 92.5, and 98.2% in untreated, L. plantarum- and L. buchneri-treated silages, respectively. The bacterial diversity of the mature silage was lower in both treated silages compared to untreated silage. Functional profiling of the bacterial communities associated with the wheat ensiling demonstrated that the abundant pathways of membrane transporters, carbohydrate and amino acids metabolisms followed different pattern of relative abundance in untreated and L. plantarum-treated silages. Only three pathways, namely base-excision repair, pyruvate metabolism and transcription machinery, were significantly different between untreated and L. buchneri-treated silages upon maturation. Lactic acid content was higher in L. plantarum-treated silage compared to untreated and L. buchneri-treated silage. Still, the pH of both treated silages was lower in the two Lactobacillus-treated silages compared to untreated silage. Aerobic stability test demonstrated that L. plantarum-, but not L. buchneri-supplement, facilitated silage deterioration. The lower aerobic stability of the L. plantarum-treated silage may be attributed to lower content of acetic acid and other volatile fatty acids which inhibit aerobic yeasts and molds. Indeed, high yeast count was recorded, following exposure to air, only in L. plantarum-treated silage, supporting this notion. Analysis of bacterial community of crop silage can be used for optimization of the ensiling process and the selection of appropriate inoculants for improving aerobic stability.
Collapse
Affiliation(s)
- Jitendra Keshri
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| | - Yaira Chen
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| | - Riky Pinto
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| | - Zwi G Weinberg
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute for Postharvest and Food Sciences, Agriculture Research Organization Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
29
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
30
|
Tachibana Y, Kageyama K, Suzuki M, Koshigumo H, Takeno H, Tachibana Y, Kasuya KI. Microbial composition and polymer hydrolytic activity of Japanese washed-rind cheeses. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Xu D, Ding W, Ke W, Li F, Zhang P, Guo X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front Microbiol 2019; 9:3299. [PMID: 30728817 PMCID: PMC6352740 DOI: 10.3389/fmicb.2018.03299] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with antimicrobial activity were detected in whole crop corn silage, such as catechol, 3-phenyllactic acid, 4-hydroxybenzoic acid, azelaic acid, 3,4-dihydroxybenzoic acid and 4-hydroxycinnamic acid. Catechol, pyrogallol and ferulic acid with antioxidant property, 4-hydroxybutyrate with nervine activity, and linoleic acid with cholesterol lowering effects, were detected in present study. In addition, a flavoring agent of myristic acid and a depression mitigation substance of phenylethylamine were also found in this study. Samples treated with inoculants presented more biofunctional metabolites of organic acids, amino acids and phenolic acids than untreated samples. The Lactobacillus species covered over 98% after ensiling, and were mainly comprised by the L. acetotolerans, L. silagei, L. parafarraginis, L. buchneri and L. odoratitofui. As compared to the control silage, inoculation of L. plantarum increased the relative abundances of L. acetotolerans, L. buchneri and L. parafarraginis, and a considerable decline in the proportion of L. silagei was observed; whereas an obvious decrease in L. acetotolerans and increases in L. odoratitofui and L. farciminis were observed in the L. buchneri inoculated silage. Therefore, inoculation of L. plantarum and L. buchneri regulated the microbial composition and metabolome of the corn silage with different behaviors. The present results indicated that profiling of silage microbiome and metabolome might improve our current understanding of the biological process underlying silage formation.
Collapse
Affiliation(s)
- Dongmei Xu
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Wurong Ding
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Fuhou Li
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
- Stay Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ping Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Lactococci dominate the bacterial communities of fermented maize, sorghum and millet slurries in Zimbabwe. Int J Food Microbiol 2019; 289:77-87. [DOI: 10.1016/j.ijfoodmicro.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/13/2018] [Accepted: 09/01/2018] [Indexed: 11/18/2022]
|
33
|
Huang X, Yu S, Han B, Chen J. Bacterial community succession and metabolite changes during sufu fermentation. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Kamelamela N, Zalesne M, Morimoto J, Robbat A, Wolfe BE. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese. Food Microbiol 2018; 76:543-552. [PMID: 30166186 DOI: 10.1016/j.fm.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/17/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
The rinds of surface-ripened cheeses have expected aesthetic properties, including distinct colors, that contribute to overall quality and consumer acceptance. Atypical rind pigments are frequently reported in small-scale cheese production, but the causes of these color defects are largely unknown. We provide a potential microbial explanation for a striking purple rind defect in a surface-ripened cheese. A cheese producer in the United States reported to us several batches of a raw-milk washed-rind cheese with a distinctly purple rind. We isolated a Proteus species from samples with purple rind defect, but not from samples with typical rind pigments, suggesting that this strain of Proteus could be causing the defect. When provided tryptophan, a precursor in the indigo and indirubin biosynthesis pathway, the isolated strain of Proteus secreted purple-red pigments. A Psychrobacter species isolated from both purple and normal rinds also secreted purple-red pigments. Using thin-layer chromatography and liquid chromatography-mass spectrometry, we confirmed that these bacteria produced indigo and indirubin from tryptophan just as closely related bacteria make these compounds in purple urine bag syndrome in medical settings. Experimental cheese communities with or without Proteus and Psychrobacter confirmed that these Proteobacteria cause purple pigmentation of cheese rinds. Reports of purple rinds in two other cheeses from Europe and the observation of pigment production by Proteus and Psychrobacter strains isolated from other cheese rinds suggest that purple rind defect has the potential to be widespread in surface-ripened cheeses.
Collapse
Affiliation(s)
- Noelani Kamelamela
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Michael Zalesne
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Joshua Morimoto
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Albert Robbat
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA; Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
35
|
Yunita D, Dodd CE. Microbial community dynamics of a blue-veined raw milk cheese from the United Kingdom. J Dairy Sci 2018; 101:4923-4935. [DOI: 10.3168/jds.2017-14104] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/10/2018] [Indexed: 11/19/2022]
|
36
|
Colabella C, Corte L, Roscini L, Bassetti M, Tascini C, Mellor JC, Meyer W, Robert V, Vu D, Cardinali G. NGS barcode sequencing in taxonomy and diagnostics, an application in " Candida" pathogenic yeasts with a metagenomic perspective. IMA Fungus 2018; 9:91-105. [PMID: 30018874 PMCID: PMC6048569 DOI: 10.5598/imafungus.2018.09.01.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/10/2018] [Indexed: 11/29/2022] Open
Abstract
Species identification of yeasts and other Fungi is currently carried out with Sanger sequences of selected molecular markers, mainly from the ribosomal DNA operon, characterized by hundreds of tandem repeats of the 18S, ITS1, 5.8S, ITS2 and LSU loci. The ITS region has been recently proposed as a primary barcode marker making this region the most used one in taxonomy, phylogeny and diagnostics. The introduction of NGS is providing tools of high efficacy and relatively low cost to amplify two or more markers simultaneously with great sequencing depth. However, the presence of intra-genomic variability between the repeats requires specific analytical procedures and pipelines. In this study, 286 strains belonging to 11 pathogenic yeasts species were analysed with NGS of the region spanning from ITS1 to the D1/D2 domain of the LSU encoding ribosomal DNA. Results showed that relatively high heterogeneity can hamper the use of these sequences for the identification of single strains and even more of complex microbial mixtures. These observations point out that the metagenomics studies could be affected by species inflection at levels higher than currently expected.
Collapse
Affiliation(s)
- Claudia Colabella
- Microbiology Section, Department of Pharmaceutical Sciences, University of Perugia, 06121, Italy
| | - Laura Corte
- Microbiology Section, Department of Pharmaceutical Sciences, University of Perugia, 06121, Italy
| | - Luca Roscini
- Microbiology Section, Department of Pharmaceutical Sciences, University of Perugia, 06121, Italy
| | - Matteo Bassetti
- Infectious Diseases Division, Santa Maria Misericordia University Hospital, Udine, 33100, Italy
| | - Carlo Tascini
- Infectious Diseases Division, Cotugno Hospital Napoli, 80131, Italy
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, NSW 2006, Australia
| | - Vincent Robert
- Bioinformatics Unit, Westerdijk Fungal Biodiversity Institute, 3508 CT, Utrecht, Netherlands
| | - Duong Vu
- Bioinformatics Unit, Westerdijk Fungal Biodiversity Institute, 3508 CT, Utrecht, Netherlands
| | - Gianluigi Cardinali
- Microbiology Section, Department of Pharmaceutical Sciences, University of Perugia, 06121, Italy.,CEMIN Research Centre of Excellence, University of Perugia, Borgo 20 Giugno 74, 06121, Italy
| |
Collapse
|
37
|
Nakano M. 16S rRNA Gene Primer Validation for Bacterial Diversity Analysis of Vegetable Products. J Food Prot 2018; 81:848-859. [PMID: 29664320 DOI: 10.4315/0362-028x.jfp-17-346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-throughput sequencing of the 16S rRNA gene enhances understanding of microbial diversity from complex environmental samples. The 16S rRNA gene is currently the most important target in bacterial evolution and ecology studies, particularly for determination of phylogenetic relationships among taxa, exploration of bacterial diversity in a given environment, and quantification of the relative abundance of taxa at various levels. However, some parts of the conserved region of the bacterial 16S rRNA gene are similar to the conserved regions of plant chloroplasts and eukaryotic mitochondria. Therefore, if DNA contains a large amount of nontarget DNA, this nontarget DNA can be coamplified and consequently produce useless sequence reads. We experimentally assessed the primer pair 335f/769r and the widely used bacterial primer pair SD (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21). The primer pair 335f/769r was examined for its ability to amplify bacterial DNA in plant and animal feed samples by using the single-strand confirmation polymorphism method. In our present study, these primer pairs were validated for microbial community structure analysis with complex food matrices by using next-generation sequencing. The sequencing results revealed that the primer pair 335f/769r successfully resulted in fewer chloroplast and mitochondrial sequence reads than generated by the universal primer pair SD and therefore is comparatively suitable for metagenomic analyses of complex food matrices, particularly those that are rich in plant DNA. Additionally, some taxonomic groups were missed entirely when only the SD primer pair was used.
Collapse
Affiliation(s)
- Miyo Nakano
- Division of Food Science, Toyo Institute of Food Technology, 23-2, 4-chome, Minami-hanayashiki, Kawanishi-shi, Hyogo, 666-0026 Japan
| |
Collapse
|
38
|
Gonçalves MTP, Benito MJ, Córdoba MDG, Egas C, Merchán AV, Galván AI, Ruiz-Moyano S. Bacterial Communities in Serpa Cheese by Culture Dependent Techniques, 16S rRNA Gene Sequencing and High-throughput Sequencing Analysis. J Food Sci 2018; 83:1333-1341. [PMID: 29660816 DOI: 10.1111/1750-3841.14141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 11/30/2022]
Abstract
Serpa cheese is one of the traditional regional Portuguese cheeses having the Protected Denomination of Origin (PDO) designation. This study investigated the bacterial community in the traditional Portuguese Serpa cheese. The microorganisms identified at the end of ripening (30 days) mainly were lactic acid bacteria (LAB). Lactobacillus paracasei/Lactobacillus casei was the main species in cheese from PDO registered industries, whereas in non-PDO registered industries Lactobacillus brevis was highlighted, among other LAB. Enterobacteriaceae species were detected at 20% to 40% of the total isolates. The results obtained by high-throughput sequencing analysis confirmed that LAB was the main microbial group, with Lactococcus genus contributing to approximately 40% to 60% of the population, followed by Leuconostoc and Lactobacillus. The Enterobacteriaceae family was also important. The differences between bacterial communities from PDO and non-PDO registered industries suggest that the lack of regulation of the cheese-making practices may influence unfavorably. The new knowledge about bacterial diversity in Serpa cheese could be useful to set up new ripening conditions, which favor the development of desirable microorganisms. PRACTICAL APPLICATION The control of the manufacturing process of traditional cheeses can be improved through the knowledge of the bacterial diversity that develops. Thus, the growth of desirable microorganisms can be promoted to homogenize the final product.
Collapse
Affiliation(s)
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Univ. de Extremadura, Avd. Adolfo Suárez s/n, 06007, Badajoz, Spain.,Inst. Univ. de Investigación en Recursos Agrarios (INURA), Avd. De la Investigación s/n, Univ. de Extremadura, 06006, Badajoz, Spain
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Univ. de Extremadura, Avd. Adolfo Suárez s/n, 06007, Badajoz, Spain.,Inst. Univ. de Investigación en Recursos Agrarios (INURA), Avd. De la Investigación s/n, Univ. de Extremadura, 06006, Badajoz, Spain
| | - Conceição Egas
- UCBiotech-CNC, BiocantPark, Núcleo 04, Lote 08, 3060-197, Cantanhede, Portugal
| | - Almudena V Merchán
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Univ. de Extremadura, Avd. Adolfo Suárez s/n, 06007, Badajoz, Spain.,Inst. Univ. de Investigación en Recursos Agrarios (INURA), Avd. De la Investigación s/n, Univ. de Extremadura, 06006, Badajoz, Spain
| | - Ana I Galván
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Univ. de Extremadura, Avd. Adolfo Suárez s/n, 06007, Badajoz, Spain.,Inst. Univ. de Investigación en Recursos Agrarios (INURA), Avd. De la Investigación s/n, Univ. de Extremadura, 06006, Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Univ. de Extremadura, Avd. Adolfo Suárez s/n, 06007, Badajoz, Spain.,Inst. Univ. de Investigación en Recursos Agrarios (INURA), Avd. De la Investigación s/n, Univ. de Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
39
|
Keshri J, Chen Y, Pinto R, Kroupitski Y, Weinberg ZG, Sela S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8903-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Quijada NM, Mann E, Wagner M, Rodríguez-Lázaro D, Hernández M, Schmitz-Esser S. Autochthonous facility-specific microbiota dominates washed-rind Austrian hard cheese surfaces and its production environment. Int J Food Microbiol 2017; 267:54-61. [PMID: 29291459 DOI: 10.1016/j.ijfoodmicro.2017.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/27/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
Cheese ripening involves the succession of complex microbial communities that are responsible for the organoleptic properties of the final products. The food processing environment can act as a source of natural microbial inoculation, especially in traditionally manufactured products. Austrian Vorarlberger Bergkäse (VB) is an artisanal washed-rind hard cheese produced in the western part of Austria without the addition of external ripening cultures. Here, the composition of the bacterial communities present on VB rinds and on different processing surfaces from two ripening cellars was assessed by near full length 16S rRNA gene amplification, cloning and sequencing. Non-inoculated aerobic bacteria dominated all surfaces in this study. VB production conditions (long ripening time, high salt concentration and low temperatures) favor the growth of psychro- and halotolerant bacteria. Several bacterial groups, such as coryneforms, Staphylococcus equorum and Halomonas dominated VB and were also found on most environmental surfaces. Analysis of OTUs shared between different surfaces suggests that VB rind bacteria are inoculated naturally during the ripening from the processing environment and that cheese surfaces exert selective pressure on these communities, as only those bacteria better adapted flourished on VB rinds. This study analyzed VB processing environment microbiota and its relationship with VB rinds for the first time, elucidating that the processing environment and the cheese microbiota should be considered as microbiologically linked ecosystems with the goal of better defining the events that take place during cheese maturation.
Collapse
Affiliation(s)
- Narciso M Quijada
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria; Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Evelyne Mann
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Marta Hernández
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Gonçalves Dos Santos MTP, Benito MJ, Córdoba MDG, Alvarenga N, Ruiz-Moyano Seco de Herrera S. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches. Int J Food Microbiol 2017; 262:63-70. [DOI: 10.1016/j.ijfoodmicro.2017.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/23/2017] [Indexed: 12/24/2022]
|
42
|
|
43
|
Ceugniez A, Taminiau B, Coucheney F, Jacques P, Delcenserie V, Daube G, Drider D. Fungal diversity of “Tomme d'Orchies” cheese during the ripening process as revealed by a metagenomic study. Int J Food Microbiol 2017; 258:89-93. [DOI: 10.1016/j.ijfoodmicro.2017.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
|
44
|
Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. Front Microbiol 2017; 8:1737. [PMID: 28955315 PMCID: PMC5601074 DOI: 10.3389/fmicb.2017.01737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Metal corrosion is of worldwide concern because it is the cause of major economic losses, and because it creates significant safety issues. The mechanism of the corrosion process, as influenced by bacteria, has been studied extensively. However, the bacterial communities that create the biofilms that form on metals are complicated, and have not been well studied. This is why we sought to analyze the composition of bacterial communities living on steel structures, together with the influence of ecological factors on these communities. The corrosion samples were collected from rust layers on steel plates that were immersed in seawater for two different periods at Sanya and Xiamen, China. We analyzed the bacterial communities on the samples by targeted 16S rRNA gene (V3–V4 region) sequencing using the Illumina MiSeq. Phylogenetic analysis revealed that the bacteria fell into 13 phylotypes (similarity level = 97%). Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla, accounting for 88.84% of the total. Deltaproteobacteria, Clostridia and Gammaproteobacteria were the dominant classes, and accounted for 70.90% of the total. Desulfovibrio spp., Desulfobacter spp. and Desulfotomaculum spp. were the dominant genera and accounted for 45.87% of the total. These genera are sulfate-reducing bacteria that are known to corrode steel. Bacterial diversity on the 6 months immersion samples was much higher than that of the samples that had been immersed for 8 years (P < 0.001, Student’s t-test). The average complexity of the biofilms from the 8-years immersion samples from Sanya was greater than those from Xiamen, but not significantly so (P > 0.05, Student’s t-test). Overall, the data showed that the rust layers on the steel plates carried many bacterial species. The bacterial community composition was influenced by the immersion time. The results of our study will be of benefit to the further studies of bacterial corrosion mechanisms and corrosion resistance.
Collapse
Affiliation(s)
- Xiaohong Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Yongqian Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Haixia Liu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| |
Collapse
|
45
|
He GQ, Liu TJ, Sadiq FA, Gu JS, Zhang GH. Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches. J Zhejiang Univ Sci B 2017; 18:289-302. [PMID: 28378567 DOI: 10.1631/jzus.b1600148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chinese traditional fermented foods have a very long history dating back thousands of years and have become an indispensable part of Chinese dietary culture. A plethora of research has been conducted to unravel the composition and dynamics of microbial consortia associated with Chinese traditional fermented foods using culture-dependent as well as culture-independent methods, like different high-throughput sequencing (HTS) techniques. These HTS techniques enable us to understand the relationship between a food product and its microbes to a greater extent than ever before. Considering the importance of Chinese traditional fermented products, the objective of this paper is to review the diversity and dynamics of microbiota in Chinese traditional fermented foods revealed by HTS approaches.
Collapse
Affiliation(s)
- Guo-Qing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Tong-Jie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Faizan A Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Jing-Si Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Guo-Hua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Bacterial diversity of the Colombian fermented milk "Suero Costeño" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiol 2017; 68:129-136. [PMID: 28800820 DOI: 10.1016/j.fm.2017.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/13/2017] [Accepted: 07/16/2017] [Indexed: 11/22/2022]
Abstract
"Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC.
Collapse
|
47
|
Song Z, Du H, Zhang Y, Xu Y. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing. Front Microbiol 2017; 8:1294. [PMID: 28769888 PMCID: PMC5509801 DOI: 10.3389/fmicb.2017.01294] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces) and lactic acid bacteria (genus Lactobacillus) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the effects of the core functional microbiota in soy sauce aroma type liquor production and the characteristics of the fermentation microbiota under different environmental conditions.
Collapse
Affiliation(s)
- Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology - Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| |
Collapse
|
48
|
Abstract
The production of alcoholic beverages, such as winemaking, has a long history, dating back well over 7000 years. The winemaking process is not vastly different to that used by the ancient Greeks and Egyptians. The main difference is that modern-day winemakers have much more control over the different steps; time and method of grape harvesting, use of selected yeast and bacteria, and maturation techniques. The various yeast and bacteria involved in winemaking originate in the vineyard, on grapes and winemaking equipment. Even though yeast and bacteria can impart desirable sensory characteristics to wine, this is not always the case – there are numerous microbes that are unwanted. This overview of wine microbiology will be limited to yeast and bacterial fermentations and microbiological spoilage by these microbes, and will not cover vineyard moulds.
Collapse
|
49
|
Ceugniez A, Taminiau B, Coucheney F, Jacques P, Delcenserie V, Daube G, Drider D. Use of a metagenetic approach to monitor the bacterial microbiota of "Tomme d'Orchies" cheese during the ripening process. Int J Food Microbiol 2016; 247:65-69. [PMID: 27817942 DOI: 10.1016/j.ijfoodmicro.2016.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
The study of microbial ecosystems in artisanal foodstuffs is important to complete in order to unveil its diversity. The number of studies performed on dairy products has increased during the last decade, particularly those performed on milk and cheese derivative products. In this work, we investigated the bacterial content of "Tomme d'Orchies" cheese, an artisanal pressed and uncooked French cheese. To this end, a metagenetic analysis, using Illumina technology, was utilized on samples taken from the surface and core of the cheese at 0, 1, 3, 14 and 21days of ripening process. In addition to the classical microbiota found in cheese, various strains likely from environmental origin were identified. A large difference between the surface and the core content was observed within samples withdrawn during the ripening process. The main species encountered in the core of the cheese were Lactococcus spp. and Streptococcus spp., with an inversion of this ratio during the ripening process. Less than 2.5% of the whole population was composed of strains issued from environmental origin, as Lactobacillales, Corynebacterium and Brevibacterium. In the core, about 85% of the microbiota was attributed to the starters used for the cheese making. In turn, the microbiota of the surface contained less than 30% of these starters and interestingly displayed more diversity. The predominant genus was Corynebacterium sp., likely originating from the environment. The less abundant microbiota of the surface was composed of Bifidobacteria, Brevibacterium and Micrococcales. To summarize, the "Tomme d'Orchies" cheese displayed a high diversity of bacterial species, especially on the surface, and this diversity is assumed to arise from the production environment and subsequent ripening process.
Collapse
Affiliation(s)
- Alexandre Ceugniez
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Françoise Coucheney
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - Philippe Jacques
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France
| | - Véronique Delcenserie
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France
| |
Collapse
|
50
|
Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl Microbiol Biotechnol 2016; 101:1385-1394. [DOI: 10.1007/s00253-016-7900-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|