1
|
Lin S, Hou L, Wang Y, Lin H, Deng J, Li S, Long H, Zhao G. Antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation by promoting PGC-1α/LXRα/ABCA1/G1 pathway. Gene 2024; 909:148302. [PMID: 38401833 DOI: 10.1016/j.gene.2024.148302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.
Collapse
Affiliation(s)
- Shuyun Lin
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Huiling Lin
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jiefeng Deng
- College of Pharmacy, Dali University, Dali 671000, China
| | - Shuang Li
- College of Pharmacy, Dali University, Dali 671000, China
| | - Haijiao Long
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China.
| |
Collapse
|
2
|
Omeljaniuk WJ, Laudański P, Miltyk W. The role of miRNA molecules in the miscarriage process. Biol Reprod 2023; 109:29-44. [PMID: 37104617 PMCID: PMC10492520 DOI: 10.1093/biolre/ioad047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The etiology and pathogenesis of miscarriage, which is the most common pregnancy complication, have not been fully elucidated. There is a constant search for new screening biomarkers that would allow for the early diagnosis of disorders associated with pregnancy pathology. The profiling of microRNA expression is a promising research area, which can help establish the predictive factors for pregnancy diseases. Molecules of microRNAs are involved in several processes crucial for the development and functioning of the body. These processes include cell division and differentiation, programmed cell death, blood vessel formation or tumorigenesis, and the response to oxidative stress. The microRNAs affect the number of individual proteins in the body due to their ability to regulate gene expression at the post-transcriptional level, ensuring the normal course of many cellular processes. Based on the scientific facts available, this paper presents a compendium on the role of microRNA molecules in the miscarriage process. The expression of potential microRNA molecules as early minimally invasive diagnostic biomarkers may be evaluated as early as the first weeks of pregnancy and may constitute a monitoring factor in the individual clinical care of women in early pregnancy, especially after the first miscarriage. To summarize, the described scientific data set a new direction of research in the development of preventive care and prognostic monitoring of the course of pregnancy.
Collapse
Affiliation(s)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women’s Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Bian S, Jiang Y, Dai Z, Wu X, Li B, Wang N, Bian W, Zhong W. Lin28b delays vasculature aging by reducing platelet-derived growth factor-beta resistance in senescent vascular smooth muscle cells. Atherosclerosis 2023; 364:29-38. [PMID: 36529087 DOI: 10.1016/j.atherosclerosis.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Platelet-derived growth factor-β (PDGFB) is an important mediator of vascular smooth muscle cell (VSMC) proliferation, and PDGFB resistance is observed in senescent VSMCs. Lin28b is a stemness regulator in the embryo; however, its role in vasculature aging and VSMC senescence is unknown. We aimed to investigate whether Lin28b could restore the VSMC response to PDGFB and delay vasculature aging. METHODS ApoE-/- mice were fed a high-fat diet for different weeks to establish an aging model. PDGFB resistance was observed using EdU staining in vessel culture in vitro. Quantitative polymerase chain reaction and in situ hybridization were used to detect let-7 expression. Senescence was identified by Western blotting, senescence-associated beta-galactosidase activity or Sudan Black B staining, and VSMC function was determined using CCK-8, migration, and enzyme-linked immunosorbent assays. RESULTS Vessels from aged mice showed poor responses to PDGFB stimulation compared with those from young mice; similar results were found in senescent VSMCs. The expression levels of Lin28b and PDGF receptor-β were downregulated in aging vasculature and senescent VSMCs, whereas let-7 family levels increased with aging and VSMC passage growth. Transfection of VSMCs with let-7c induced PDGFB resistance and accelerated VSMC senescence, whereas blocking let-7c restored PDGFB reactions in VSMCs. Overexpression of Lin28b protein by lentivirus resulted in the restoration of PDGFB reactions and delayed VSMC senescence, which was blocked by a let-7c mimic. CONCLUSIONS This study reveals the role of Lin28b in delaying vasculature aging by decreasing senescent VSMC PDGFB resistance mediated by let-7.
Collapse
Affiliation(s)
- Shihui Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xi Wu
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Bo Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Nan Wang
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wenyan Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
4
|
Circulating microRNAs Showed Specific Responses according to Metabolic Syndrome Components and Sex of Adults from a Population-Based Study. Metabolites 2022; 13:metabo13010002. [PMID: 36676927 PMCID: PMC9861536 DOI: 10.3390/metabo13010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate several metabolic pathways and are potential biomarkers for early risk prediction of metabolic syndrome (MetS). Our aim was to evaluate the levels of 21 miRNAs in plasma according to MetS components and sex in adults. We employed a cross-sectional study of 192 adults aged 20 to 59 years old from the 2015 Health Survey of São Paulo with Focus in Nutrition. Data showed reduced levels of miR-16 and miR-363 in women with MetS; however, men with one or more risk factors showed higher levels of miR-let-7c and miR-30a. Individuals with raised waist circumference showed higher levels of miR-let-7c, miR-122, miR-30a, miR-146a, miR-15a, miR-30d and miR-222. Individuals with raised blood pressure had higher miR-30a, miR-122 and miR-30a levels. Plasma levels of four miRNAs (miR-16, miR-363, miR-375 and miR-486) were lower in individuals with low HDL-cholesterol concentrations. In addition, plasma levels of five miRNAs (miR-122, miR-139, miR-let-7c, miR-126 and miR-30a) were increased in individuals with high fasting plasma glucose and/or insulin resistance. Our results suggest that the pattern of miRNA levels in plasma may be a useful early biomarker of cardiometabolic components of MetS and highlight the sex differences in the plasma levels of miRNAs in individuals with MetS.
Collapse
|
5
|
Jiang Q, Li Y, Wu Q, Huang L, Xu J, Zeng Q. Pathogenic role of microRNAs in atherosclerotic ischemic stroke: Implications for diagnosis and therapy. Genes Dis 2022; 9:682-696. [PMID: 35782982 PMCID: PMC9243347 DOI: 10.1016/j.gendis.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke resulting from atherosclerosis (particularly in the carotid artery) is one of the major subtypes of stroke and has a high incidence of death. Disordered lipid homeostasis, lipid deposition, local macrophage infiltration, smooth muscle cell proliferation, and plaque rupture are the main pathological processes of atherosclerotic ischemic stroke. Hepatocytes, macrophages, endothelial cells and vascular smooth muscle cells are the main cell types participating in these processes. By inhibiting the expression of the target genes in these cells, microRNAs play a key role in regulating lipid disorders and atherosclerotic ischemic stroke. In this article, we listed the microRNAs implicated in the pathology of atherosclerotic ischemic stroke and aimed to explain their pro- or antiatherosclerotic roles. Our article provides an update on the potential diagnostic use of miRNAs for detecting growing plaques and impending clinical events. Finally, we provide a perspective on the therapeutic use of local microRNA delivery and discuss the challenges for this potential therapy.
Collapse
|
6
|
Profiles of microRNA in aqueous humor of normal tension glaucoma patients using RNA sequencing. Sci Rep 2021; 11:19024. [PMID: 34561506 PMCID: PMC8463707 DOI: 10.1038/s41598-021-98278-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
We aimed to identify and compare microRNAs (miRNAs) from individual aqueous humor samples between normal-tension glaucoma (NTG) patients and normal controls. Aqueous humor (80 to 120 µl) was collected before cataract surgery. Six stable NTG patients and seven age-matched controls were included in the final analysis. RNA sequencing was conducted for RNA samples extracted from the 13 aqueous humor samples, and bioinformatics analysis was employed for the miRNA targets and related pathways. Two hundred and twenty-eight discrete miRNAs were detected in the aqueous humor and consistently expressed in all samples. Eight significantly upregulated miRNAs were found in the NTG patients compared to the controls (fold-change > 2, p < 0.05). They were hsa-let-7a-5p, hsa-let-7c-5p, hsa-let-7f-5p, hsa-miR-192-5p, hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-375, and hsa-miR-143-3p. These miRNAs were predicted to be associated with the biological processes of apoptosis, autophagy, neurogenesis, and aging in the gene ontology categories. The related Kyoto encyclopedia of genes and genomes pathways were extracellular matrix-receptor interaction, mucin-type O-glycan biosynthesis, biotin metabolism, and signaling pathways regulating the pluripotency of stem cells. The differentially expressed miRNA in the NTG samples compared to the controls suggest the possible roles of miRNA in the pathogenesis of NTG. The underlying miRNA-associated pathways further imply novel targets for the pathogenesis of NTG.
Collapse
|
7
|
Zha W, Guan S, Liu N, Li Y, Tian Y, Chen Y, Wang Y, Wu F. Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:139919. [PMID: 32721616 DOI: 10.1016/j.scitotenv.2020.139919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of the MicroRNA (miR) Let-7 family has been implicated in preeclampsia (PE). Abnormal trophoblast cell proliferation and apoptosis associate with the pathogenesis of PE. The present study was designed to test the hypothesis whether let-7a could regulate the biological functions of trophoblasts and explore the mechanism how it works in the development of early-onset severe PE. The putative target genes Bcl-xl and YAP1 of let-7a were verified by luciferase assay. The roles of let-7a, Bcl-xl and YAP1 in regulating JEG-3 cell functions were examined by altering their expression with mimic, overexpression plasmids or siRNAs. The methylation status of let-7a-3 in PE was assessed by methylation-specific and bisulfite sequencing PCR assays. JEG-3 cells were treated with DNA methyltransferase inhibitor to analyze whether let-7a-3 demethylation functioned in PE. Tumor growth and cell apoptosis were measured from nude mice inoculated with JEG-3 cells overexpressing let-7a. The results revealed let-7a was highly expressed in early-onset severe PE and let-7a-3 presented a low methylation level. Functionally, let-7a upregulation could inhibit the viability and cell cycle progression but induce the apoptosis of JEG-3 cells. Bcl-xl and YAP1, target genes of let-7a, could rescue cell apoptosis induced by let-7a. The demethylation of let-7a-3 was also observed to elevate the expression of let-7a and enhance JEG-3 cell apoptosis. Let-7a inhibited tumorigenic ability of JEG-3 cells and enhanced cell apoptosis in vivo. Altogether, let-7a could enhance cell apoptosis in trophoblasts through downregulation of Bcl-xl and YAP1, which suggests that let-7a might be a key regulator in the progression of PE.
Collapse
Affiliation(s)
- Wenhui Zha
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shuang Guan
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ning Liu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130041, PR China
| | - Yuan Tian
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Chen
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yan Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fuju Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
8
|
Zhang Y, Lin F, Yan Z, Chen Z, Chen Y, Zhao Y, Zhao G. Salidroside downregulates microRNA‑133a and inhibits endothelial cell apoptosis induced by oxidized low‑density lipoprotein. Int J Mol Med 2020; 46:1433-1442. [PMID: 32945356 PMCID: PMC7447316 DOI: 10.3892/ijmm.2020.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cell apoptosis is regulated by microRNA-133a (miR-133a), which participates in the formation of atherosclerotic (AS) plaques, leading to the development of several cardiovascular diseases. Salidroside (SAL), the main component of Rhodiola, is considered to exert anti-AS effect; however, its mode of action remains unclear. Thus, the present study aimed to determine whether SAL inhibits endothelial cell apoptosis through the miR-133a pathway. Cultured human coronary artery endothelial cells (HCAECs) were exposed to oxidized low-density lipoprotein (ox-LDL). Cell viability and cytotoxicity were monitored by MTT assay. In parallel, the mRNA expression levels of miR-133a and Bcl-xL, and the protein levels of anti-apoptotic Bcl-xL and activated caspase-3 were measured. The apoptotic levels were examined by flow cytometry. Furthermore, the effects of silencing and overexpressing miR-133a on the parameters mentioned above were evaluated. Exposure to ox-LDL induced an increase in the expression of miR-133a, with a concomitant decrease in the level of Bcl-xL in the HCAECs; these effects were reversed by treatment with SAL. Importantly, the effects of SAL were impaired upon the silencing of miR-133a, whereas the overexpression of miR-133a partly restored the effects of SAL. On the whole, the findings of the present study demonstrate that SAL inhibits the ox-LDL-induced upregulation of miR-133a expression, while promoting the expression of Bcl-xL, thereby preventing endothelial cell apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Zhigang Yan
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Zhigang Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Yingen Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Yilin Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Guoan Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
9
|
Liu X, Li S, Yang Y, Sun Y, Yang Q, Gu N, Li J, Huang T, Liu Y, Dong H, Sun S, Fu G, Wu J, Yu B. The lncRNA ANRIL regulates endothelial dysfunction by targeting the let-7b/TGF-βR1 signalling pathway. J Cell Physiol 2020; 236:2058-2069. [PMID: 32783191 DOI: 10.1002/jcp.29993] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023]
Abstract
The long noncoding RNA antisense noncoding RNA in the INK4 locus (ANRIL) plays a critical role in the development of atherosclerosis. However, the precise effect of ANRIL on endothelial dysfunction remains unclear. In this study, we investigated ANRIL expression in patients with coronary artery disease and elucidated the molecular mechanism underlying its effect. ANRIL expression was detected in the blood plasma of 111 patients. We analysed the correlation between ANRIL and endothelial dysfunction markers. We also examined the effect of ANRIL on the regulation of endothelial dysfunction. ANRIL levels were increased in patients with acute coronary syndrome. The expression of ANRIL is associated with the inflammatory cytokines monocyte chemoattractant protein-1 and interleukin-10, which are secreted in response to endothelial dysfunction. Knockdown of ANRIL significantly promoted cell proliferation and tubule formation and inhibited inflammatory activation and apoptosis of human umbilical vein endothelial cells (HUVEC). ANRIL-mediated inhibition of let-7b regulates HUVEC dysfunction by targeting the TGF-βR1/Smad signalling pathway. This study highlights a new therapeutic strategy for preventing endothelial dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Xianglan Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shufeng Li
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yang
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong Sun
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingyuan Yang
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Nan Gu
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tuo Huang
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Liu
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Dong
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Song Sun
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischaemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants (Basel) 2020; 9:antiox9070607. [PMID: 32664383 PMCID: PMC7402144 DOI: 10.3390/antiox9070607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the obesity pandemic is one of the most relevant health issues worldwide. This condition is tightly related to comorbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs), namely atherosclerosis. Dysregulated lipid metabolism and inflammation link these three diseases, leading to a subsequent increase of oxidative stress (OS) causing severe cellular damage. On the other hand, microRNAs (miRNAs) are short, single-stranded, non-coding RNAs that act as post-transcriptional negative regulators of gene expression, thus being involved in the molecular mechanisms that promote the development of many pathologies including obesity and its comorbidities. The involvement of miRNAs in promoting or opposing OS in disease progression is becoming more evident. Some miRNAs, such as miR-200a and miR.421, seem to play important roles in OS control in NAFLD. On the other hand, miR-92a and miR-133, among others, are important in the development of atherosclerosis. Moreover, since both diseases are linked to obesity, they share common altered miRNAs, being miR-34a and miR-21 related to OS. This review summarizes the latest advances in the knowledge about the mechanisms of oxidative stress (OS) generation in obesity-associated NAFLD and atherosclerosis, as well as the role played by miRNAs in the regulation of such mechanisms.
Collapse
|
12
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
13
|
Duan S, Yu S, Yuan T, Yao S, Zhang L. Exogenous Let-7a-5p Induces A549 Lung Cancer Cell Death Through BCL2L1-Mediated PI3Kγ Signaling Pathway. Front Oncol 2019; 9:808. [PMID: 31508368 PMCID: PMC6716507 DOI: 10.3389/fonc.2019.00808] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Elevated expression of let-7a-5p contributes to suppression of lung cancer, in which let-7a-5p, as exosome cargo, can be transported from macrophages to lung cancer cells, yet the role of let-7a-5p remains unclear. Utilizing bioinformatics methods and cellular experiments, this study was designed and conducted to identify let-7a-5p regulatory network in lung cancer. Bioinformatics analysis and Kaplan-Meier survival analysis revealed that let-7a-5p could directly target BCL2L1, and aberrant expression of let-7a-5p affects the survival of lung cancer patients, which was confirmed in A549 lung cancer cells using luciferase reporter assay. Moreover, let-7a-5p inhibited BCL2L1 expression and suppressed lung cancer cell proliferation, migration, and invasion. Functionally, overexpression of let-7a-5p promoted both autophagy and cell death in A549 lung cancer cells through PI3Kγ signaling pathway, whereas the apoptosis and pyroptosis of A549 lung cancer cells were unaffected. Furthermore, aberrant expression of BCL2L1 significantly altered the expression of lung cancer biomarkers such as MYC, EGFR, and Vimentin. To sum up, these data demonstrate that exogenous let-7a-5p induces A549 lung cancer cell death through BCL2L1-mediated PI3Kγ signaling pathway, which may be a useful target for lung cancer treatment.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Songcheng Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Yuan
- College of Jitang, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: Therapeutic implication for atherosclerosis. Life Sci 2019; 232:116590. [PMID: 31228514 DOI: 10.1016/j.lfs.2019.116590] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) apoptosis is fundamental for the pathophysiology of atherosclerosis, in which microRNAs (miRNAs) emerge as critical regulators. miR-122 has been shown to regulate the apoptosis of various cell types, however, whether miR-122 is associated with atherosclerosis and EC apoptosis remains unknown. In this study, we found that miR-122 expression was increased in the aortic ECs of ApoE-/- mice fed with a high-fat diet (HFD), as compared to normal-diet (ND), implying a potential association between miR-122 elevation and atherogenesis. In addition, in vitro, miR-122 expression was also induced in human aortic ECs (HAECs) by the treatment of oxidized low-density lipoprotein (ox-LDL), a common atherogenic factor. Functionally, miR-122 knockdown suppressed ox-LDL-induced apoptosis of HAECs, suggesting a pro-apoptotic role of miR-122 in HAECs under this pro-atherogenic condition. Further evidence revealed that the X-linked inhibitor-of-apoptosis protein (XIAP) was directly targeted and suppressed by miR-122 in HAECs, and more importantly, XIAP knockdown diminished miR-122 effect on apoptosis, thus establishing XIAP as a prominent target that mediates miR-122 regulation of the apoptosis of HAECs. Together, these results may identify miR-122 as a novel regulator in EC apoptosis, which offers it as a possible target for therapeutic interventions of atherosclerosis.
Collapse
|
15
|
Issa F, Milward K, Goto R, Betts G, Wood KJ, Hester J. Transiently Activated Human Regulatory T Cells Upregulate BCL-XL Expression and Acquire a Functional Advantage in vivo. Front Immunol 2019; 10:889. [PMID: 31068951 PMCID: PMC6491764 DOI: 10.3389/fimmu.2019.00889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) can control excessive or undesirable immune responses toward autoantigens, alloantigens, and pathogens. In transplantation, host immune responses against the allograft are suppressed through the use of immunosuppressive drugs, however this often results in life-threatening side effects including nephrotoxicity and an increased incidence of cancer and opportunistic infections. Tregs can control graft-vs.-host disease and transplant rejection in experimental models, providing impetus for the use of Tregs as a cellular therapy in clinical transplantation. One of the major barriers to the widespread use of Treg cellular therapy is the requirement to expand cells ex vivo to large numbers in order to alter the overall balance between regulatory and effector cells. Methods that enhance suppressive capacity thereby reducing the need for expansion are therefore of interest. Here, we have compared the function of freshly-isolated and ex vivo-manipulated human Tregs in a pre-clinical humanized mouse model of skin transplantation. Sorted human CD127loCD25+CD4+ Tregs were assessed in three different conditions: freshly-isolated, following transient in vitro activation with antiCD3/antiCD28 beads or after ex vivo-expansion for 2 weeks in the presence of antiCD3/antiCD28 beads and recombinant human IL2. While ex vivo-expansion of human Tregs increased their suppressive function moderately, transient in vitro-activation of freshly isolated Tregs resulted in a powerful enhancement of Treg activity sufficient to promote long-term graft survival of all transplants in vivo. In order to investigate the mechanisms responsible for these effects, we measured the expression of Treg-associated markers and susceptibility to apoptosis in activated Tregs. Transiently activated Tregs displayed enhanced survival and proliferation in vitro and in vivo. On a molecular level, Treg activation resulted in an increased expression of anti-apoptotic BCL2L1 (encoding BCL-XL) which may be at least partially responsible for the observed enhancement in function. Our results suggest that in vitro activation of human Tregs arms them with superior proliferative and survival abilities, enabling them to more effectively control alloresponses. Importantly, this transient activation results in a rapid functional enhancement of freshly-isolated Tregs, thereby providing an opportunity to eliminate the need for in vitro expansion in select circumstances. A protocol employing this technique would therefore benefit from a reduced requirement for large cell numbers for effective therapy.
Collapse
|
16
|
MiR-323b-5p acts as a novel diagnostic biomarker for critical limb ischemia in type 2 diabetic patients. Sci Rep 2018; 8:15080. [PMID: 30305681 PMCID: PMC6179988 DOI: 10.1038/s41598-018-33310-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major contributor to peripheral artery disease (PAD), especially in cases that advance to critical limb ischemia (CLI). Accumulating evidence indicates that miRNAs play an important role in the development of PAD and T2DM. Due to the limited value of current diagnostic methods for CLI in T2DM patients, we compared the miRNA expression profiles of Chinese T2DM patients with or without CLI to find out whether distinctive miRNAs could serve as potential diagnostic biomarkers. We statistically identified 7 miRNAs (hsa-miR-200b-3p, hsa-miR-2115-3p, hsa-miR-431-5p, hsa-miR-486-5p, hsa-miR-210-3p, hsa-miR-1264, hsa-miR-323b-5p) which were up-regulated in the CLI group, whereas other 4 miRNAs (hsa-miR-5579-3p, hsa-miR-665, hsa-miR-4285, hsa-miR-500a-3p) were down-regulated. Our validation test suggested a relatively high diagnostic accuracy of serum hsa-miR-323b-5p levels for the detection of CLI in T2DM patients, with a sensitivity of 62.67% and a specificity of 80.65%. The area under the curve (AUC) for miR-323b-5p + confounding risk factors was 0.94 (95% CI: 0.884-0.994, P < 0.001), which was higher than that for miR-323b-5p. Taken together, our results indicate that circulating hsa-miR-323b-5p could be a promising serum biomarker for the diagnosis of critical limb ischemia in type 2 diabetic patients.
Collapse
|
17
|
Han L, Zhou Y, Zhang R, Wu K, Lu Y, Li Y, Duan R, Yao Y, Zhu D, Jia Y. MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model. Front Neurosci 2018; 12:333. [PMID: 29872375 PMCID: PMC5972183 DOI: 10.3389/fnins.2018.00333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Widespread death of transplanted mesenchymal stem cells (MSCs) hampers the development of stem cell therapy for Alzheimer disease (AD). Cell pre-conditioning might help cope with this challenge. We tested whether let-7f-5p-modified MSCs could prolong the survival of MSCs after transplantation. When exposed to Aβ25−35in vitro, MSCs showed significant early apoptosis with decrease in the let-7f-5p levels and increased caspase-3 expression. Upregulating microRNA let-7f-5p in MSCs alleviated Aβ25−35-induced apoptosis by decreasing the caspase-3 levels. After computerized analysis and the luciferase reporter assay, we identified that caspases-3 was the target gene of let-7f-5p. In vivo, hematoxylin and eosin staining confirmed the success of MSCs transplantation into the lateral ventricles, and the let-7f-5p upregulation group showed the lowest apoptotic rate of MSCs detected by TUNEL immunohistochemistry analysis and immunofluorescence. Similarly, bioluminescent imaging showed that let-7f-5p upregulation moderately prolonged the retention of MSCs in brain. In summary, we identified the anti-apoptotic role of let-7f-5p in Aβ25−35-induced cytotoxicity, as well as the protective effect of let-7f-5p on survival of grafted MSCs by targeting caspase-3 in AD models. These findings show a promising approach of microRNA-modified MSCs transplantation as a therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Hosseini MK, Gunel T, Gumusoglu E, Benian A, Aydinli K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep 2018; 17:4941-4952. [PMID: 29393376 PMCID: PMC5865953 DOI: 10.3892/mmr.2018.8530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023] Open
Abstract
Early pregnancy loss (EPL), also termed early miscarriage, is determined as the unintentional expulsion of an embryo or fetus prior to the 12th week of gestation. EPL frequency is ~15% in pregnancies. Fetal development and growth is associate with placental function and vessel development; therefore, the placental genome would represent a useful miscarriage model for (epi)genetic and genomic studies. An important factor of placental development and function is epigenetic regulation of gene expression. microRNAs (miRNAs) are the primary epigenetic regulators which have an important role in placental development and function. In the present study, maternal plasma and villous tissue were collected from 16 EPL cases in 6th-8th gestational weeks (GWs) and 8 abortions (control group) in 6th-8th GWs. Detection of the differences in miRNA expression was performed using microarrays and dysregulated miRNAs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miRNA microarray findings revealed that four miRNAs, including hsa-miRNA (miR)-125a-3p, hsa-miR-3663-3p, hsa-miR-423-5p and hsa-miR-575 were upregulated in tissue samples. In maternal plasma, two miRNAs (hsa-let-7c, hsa-miR-122) were upregulated and one miRNA (hsa-miR-135a) was downregulated. A total of 6 out of 7 dysregulated miRNAs were validated using RT-qPCR. The target genes of these dysregulated miRNAs were detected using the GeneSpring database. The aim of the present study was to detect dysregulated miRNAs in maternal plasma and villous cells and identify the target genes of dysregulated miRNAs and their associated pathways. The target gene analyses have revealed that the affected genes are primarily associated with cell migration, proliferation, implantation, adhesion, angiogenesis and differentiation and all are involved with EPL pathogenesis. Therefore, the present study may contribute to the understanding of the molecular mechanisms which lead to EPL.
Collapse
Affiliation(s)
- Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ece Gumusoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ali Benian
- Department of Obstetrics and Gynecology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | | |
Collapse
|
19
|
Heinemann FM, Jindra PT, Bockmeyer CL, Zeuschner P, Wittig J, Höflich H, Eßer M, Abbas M, Dieplinger G, Stolle K, Vester U, Hoyer PF, Immenschuh S, Heinold A, Horn PA, Li W, Eisenberger U, Becker JU. Glomerulocapillary miRNA response to HLA-class I antibody in vitro and in vivo. Sci Rep 2017; 7:14554. [PMID: 29109529 PMCID: PMC5673998 DOI: 10.1038/s41598-017-14674-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/16/2017] [Indexed: 01/12/2023] Open
Abstract
Changes in miRNA expression glomerular of capillaries during antibody-mediated rejection (ABMR) are poorly understood and could contribute to the deleterious inflammation and fibrosis of ABMR via suppression of target genes. A better understanding could lead to novel diagnostic tools and reveal novel therapeutic targets. We explored deregulated miRNAs in an glomeruloendothelial in vitro model of ABMR due to class I human leukocyte antigen (HLA) with and without complement activation. We studied a set of 16 promising candidate miRNAs in microdissected glomeruli a confirmation set of 20 human transplant biopsies (DSA+) compared to 10 matched controls without evidence for ABMR. Twelve out of these 16 glomerulocapillary miRNAs could successfully be confirmed as dysregulated in vivo with 10 upregulated (let-7c-5p, miR-28-3p, miR-30d-5p, miR-99b-5p, miR-125a-5p, miR-195-5p, miR-374b-3p, miR-484, miR-501-3p, miR-520e) and 2 downregulated (miR29b-3p, miR-885-5p) in DSA+ vs. CONTROLS A random forest analysis based on glomerular miRNAs identified 18/20 DSA+ and 8/10 controls correctly. This glomerulocapillary miRNA signature associated with HLA class I-DSA could improve our understanding of ABMR and be useful for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter T Jindra
- Immune Evaluation Laboratory, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clemens L Bockmeyer
- Institute of Pathology, Department of Nephropathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Zeuschner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Juliane Wittig
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Heike Höflich
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Marc Eßer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Georg Dieplinger
- Department of General, Visceral and Cancer Surgery, Transplant Center Cologne, University of Cologne, Cologne, Germany
| | - Katharina Stolle
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Udo Vester
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Peter F Hoyer
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ute Eisenberger
- Clinic for Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Borosch S, Dahmen E, Beckers C, Stoppe C, Buhl EM, Denecke B, Goetzenich A, Kraemer S. Characterization of extracellular vesicles derived from cardiac cells in an in vitro model of preconditioning. J Extracell Vesicles 2017; 6:1390391. [PMID: 29479396 PMCID: PMC5819478 DOI: 10.1080/20013078.2017.1390391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Preconditioning is a promising technique to protect the heart from ischaemia-reperfusion injury. In this context, the crosstalk between different cardiac cell types and especially the exchange of cardioprotective mediators has come into the focus of current research. Recently, extracellular vesicles (EVs), nano-sized structures, emerged as possible communication mediators. They are taken up by recipient cells and can alter gene expression or activate intracellular signal cascades. It has been shown that all cardiac cell types are able to secrete EVs, but so far the influence of an in vitro preconditioning stimulus on EV concentration and composition has not been investigated. Therefore, we stimulated primary cardiac myocytes and fibroblasts from neonatal rats, as well as H9c2 cells, with two known in vitro preconditioning stimuli: hypoxia or isoflurane. EVs were isolated from cell culture supernatants 48 h after stimulation by differential centrifugation and size exclusion chromatography. They were characterized by transmission electron microscopy, tunable resistive pulse sensing, miRNA array and Western blot analysis. The detected EVs had the typical cup-shaped morphology and a size of about 150 nm. No significant differences in EV concentration were observed between the different groups. The protein and miRNA load was affected by in vitro preconditioning with isoflurane or hypoxia. EV markers like Alix, CD63, flotillin-1 and especially heat shock protein 70 were significantly up-regulated by the treatments. Several miRNAs like miR-92b-3p, miR-761 and miR-101a-5p were also significantly affected. A migration assay confirmed the physiological benefit of these EVs. Taken together, our findings show that a model of in vitro preconditioning of cardiac cells does not influence EV concentration but strongly regulates the EV cargo and affects migration. This might indicate a role for EV-mediated communication in isoflurane- and hypoxia-induced in vitro preconditioning.
Collapse
Affiliation(s)
- Sebastian Borosch
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Eva Dahmen
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Beckers
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Stoppe
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, University Hospital RWTH Aachen, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia research and evaluation (3CARE), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
Zhang R, Sui L, Hong X, Yang M, Li W. MiR-448 promotes vascular smooth muscle cell proliferation and migration in through directly targeting MEF2C. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22294-22300. [PMID: 28799067 DOI: 10.1007/s11356-017-9771-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a critical process in various cardiovascular diseases such as coronary artery disease (CAD), atherosclerosis, stroke, and hypertension. MicroRNAs (miRNAs) are small, short, and noncoding RNAs that inhibit gene expression through binding to the 3'-UTR (3' untranslated regions) of target gene mRNAs. We showed that the expression of miR-448 was upregulated in VSMCs from coronary atherosclerotic plaques compared with normal coronary artery tissues. We also found that PDGF-bb promoted VSMCs proliferation and could induce miR-448 expression. Ectopic miR-448 expression induced VSMCs proliferation. Overexpression of miR-448 induced ki-67 mRNA and protein expression. Moreover, we identified MEF2C was a direct target of miR-448 in VSMCs. Overexpression of miR-448 promoted VSMCs migration. Furthermore, overexpression of MEF2C decreased miR-448-induced VSMCs proliferation and migration. These evidences suggested that miR-448 played an important role in the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Ruihong Zhang
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Li Sui
- Department of Emergency, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaojian Hong
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Mao Yang
- Department of Cardiovascular, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Weimin Li
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
22
|
Wright KR, Mitchell B, Santanam N. Redox regulation of microRNAs in endometriosis-associated pain. Redox Biol 2017; 12:956-966. [PMID: 28499250 PMCID: PMC5429229 DOI: 10.1016/j.redox.2017.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is a chronic, painful condition with unknown etiology. A differential expression of microRNAs in the endometriotic tissues from women with endometriosis with pain compared to those without suggested a plausible role for miRNA or epigenetic mechanisms in the etiology of endometriotic pain. The peritoneal milieu is involved in maintenance of endometriotic lesion and nociception. We recently showed the mechanistic role for oxidized-lipoproteins (ox-LDLs) present in peritoneal fluid (PF) in endometriosis and pain. We explored the possibility of ox-LDLs modulating the expression of miRNAs in a manner similar to PF from women with endometriosis. Expression levels of miRNAs and their predicted nociceptive and inflammatory targets were determined in PF and ox-LDL treated human endometrial cell-lines. Samples from IRB-approved and consented patients with and without endometriosis or pain were used. These were compared to endometrial cell-lines treated with various forms of oxidized-lipoproteins. RNA (including miRNAs) were isolated from treated endometrial cells and expression levels were determined using commercial miRNome arrays. Cell lysates were used in immunoblotting for inflammatory proteins using a protein array. Twenty miRNAs including isoforms of miR-29, miR-181 and let-7 were mutually differentially expressed in cells treated with PF from endometriosis patients with pain and those treated with ox-LDL components. The ox-LDLs and endo-PF treatment also produced significant overexpression of microRNA predicted target genes nerve growth factor, interleukin-6 and prostaglandin E synthase and overexpression of their downstream protein targets Mip1α and MCP1. This study showed similarities between miRNA regulation in PF from endometriotic women and ox-LDLs present in abundance in the PF of these women. Key miRNAs responsible for targeting nociceptive and inflammatory molecules were downregulated in the presence of ox-LDLs and endo-PF, thus playing a role in the etiology of endometriotic pain. These redox-sensitive miRNAs can be of potential use as targets in the treatment of endometriosis-associated pain.
Collapse
Affiliation(s)
- Kristeena Ray Wright
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
23
|
Brennan E, Wang B, McClelland A, Mohan M, Marai M, Beuscart O, Derouiche S, Gray S, Pickering R, Tikellis C, de Gaetano M, Barry M, Belton O, Ali-Shah ST, Guiry P, Jandeleit-Dahm KAM, Cooper ME, Godson C, Kantharidis P. Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes 2017; 66:2266-2277. [PMID: 28487436 DOI: 10.2337/db16-1405] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/30/2017] [Indexed: 12/15/2022]
Abstract
The let-7 miRNA family plays a key role in modulating inflammatory responses. Vascular smooth muscle cell (SMC) proliferation and endothelial cell (EC) dysfunction are critical in the pathogenesis of atherosclerosis, including in the setting of diabetes. Here we report that let-7 levels are decreased in diabetic human carotid plaques and in a model of diabetes-associated atherosclerosis, the diabetic ApoE-/- mouse. In vitro platelet-derived growth factor (PDGF)- and tumor necrosis factor-α (TNF-α)-induced vascular SMC and EC activation was associated with reduced let-7 miRNA expression via Lin28b, a negative regulator of let-7 biogenesis. Ectopic overexpression of let-7 in SMCs inhibited inflammatory responses including proliferation, migration, monocyte adhesion, and nuclear factor-κB activation. The therapeutic potential of restoring let-7 levels using a let-7 mimic was tested: in vitro in SMCs using an endogenous anti-inflammatory lipid (lipoxin A4), ex vivo in murine aortas, and in vivo via tail vein injection in a 24-h murine model. Furthermore, we delivered let-7 mimic to human carotid plaque ex vivo and observed significant changes to the secretome in response to let-7 therapy. Restoration of let-7 expression could provide a new target for an anti-inflammatory approach in diabetic vascular disease.
Collapse
Affiliation(s)
- Eoin Brennan
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Diabetes Complications Research Centre, Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Bo Wang
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Aaron McClelland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Mariam Marai
- Diabetes Complications Research Centre, Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Ophelie Beuscart
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sinda Derouiche
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Stephen Gray
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Raelene Pickering
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Chris Tikellis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Mary Barry
- St. Vincent's University Hospital, Dublin, Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Karin A M Jandeleit-Dahm
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Mark E Cooper
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Catherine Godson
- Diabetes Complications Research Centre, Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:494-507. [PMID: 28918050 PMCID: PMC5565632 DOI: 10.1016/j.omtn.2017.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.
Collapse
Affiliation(s)
- Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Helen Spencer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Kerrie L Ford
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK
| | - Lauriane Y M Michel
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jean-Luc Balligand
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
| | | |
Collapse
|
25
|
Faccini J, Ruidavets JB, Cordelier P, Martins F, Maoret JJ, Bongard V, Ferrières J, Roncalli J, Elbaz M, Vindis C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep 2017; 7:42916. [PMID: 28205634 PMCID: PMC5311865 DOI: 10.1038/srep42916] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the most prevalent cause of mortality and morbidity worldwide and the number of individuals at risk is increasing. To better manage cardiovascular diseases, improved tools for risk prediction including the identification of novel accurate biomarkers are needed. MicroRNA (miRNA) are essential post-transcriptional modulators of gene expression leading to mRNA suppression or translational repression. Specific expression profiles of circulating miRNA have emerged as potential noninvasive diagnostic biomarkers of diseases. The aim of this study was to identify the potential diagnostic value of circulating miRNA with CAD. Circulating miR-145, miR-155, miR-92a and let-7c were selected and validated by quantitative PCR in 69 patients with CAD and 30 control subjects from the cross-sectional study GENES. The expression of miR-145, miR-155 and let-7c showed significantly reduced expression in patients with CAD compared to controls. Multivariate logistic regression analysis revealed that low levels of circulating let-7c, miR-145 and miR-155 were associated with CAD. Receiver operating curves analysis showed that let-7c, miR-145 or miR-155 were powerful markers for detecting CAD. Furthermore, we demonstrated that the combination of the three circulating miRNA managed to deliver a specific signature for diagnosing CAD.
Collapse
Affiliation(s)
- Julien Faccini
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Toulouse Paul Sabatier University, Toulouse, France
| | - Jean-Bernard Ruidavets
- Toulouse Paul Sabatier University, Toulouse, France.,CHU Toulouse, Department of Cardiology, Toulouse, France.,INSERM UMR-1027, Epidémiologie et Analyses en Santé publique, Toulouse, France
| | | | | | | | - Vanina Bongard
- Toulouse Paul Sabatier University, Toulouse, France.,CHU Toulouse, Department of Cardiology, Toulouse, France
| | - Jean Ferrières
- Toulouse Paul Sabatier University, Toulouse, France.,CHU Toulouse, Department of Cardiology, Toulouse, France.,INSERM UMR-1027, Epidémiologie et Analyses en Santé publique, Toulouse, France
| | | | - Meyer Elbaz
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Toulouse Paul Sabatier University, Toulouse, France.,CHU Toulouse, Department of Cardiology, Toulouse, France
| | - Cécile Vindis
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Toulouse Paul Sabatier University, Toulouse, France
| |
Collapse
|
26
|
Pienimaeki‐Roemer A, Konovalova T, Musri MM, Sigruener A, Boettcher A, Meister G, Schmitz G. Transcriptomic profiling of platelet senescence and platelet extracellular vesicles. Transfusion 2016; 57:144-156. [DOI: 10.1111/trf.13896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tatiana Konovalova
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Melina M. Musri
- Institute for Biochemistry I, Faculty of Biology and Preclinical Medicine, University of RegensburgRegensburg Germany
| | - Alexander Sigruener
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Alfred Boettcher
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Gunter Meister
- Institute for Biochemistry I, Faculty of Biology and Preclinical Medicine, University of RegensburgRegensburg Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| |
Collapse
|
27
|
Zhou Z, Lu X, Wang J, Xiao J, Liu J, Xing F. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling. Sci Rep 2016; 6:24434. [PMID: 27087117 PMCID: PMC4834478 DOI: 10.1038/srep24434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 11/24/2022] Open
Abstract
Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xijian Lu
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jin Wang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jia Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou 510632, China
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Ma J, Wang T, Guo R, Yang X, Yin J, Yu J, Xiang Q, Pan X, Zu X, Peng C, Tang H, Lei X. MicroRNA‑133a and microRNA‑326 co‑contribute to hepatocellular carcinoma 5‑fluorouracil and cisplatin sensitivity by directly targeting B‑cell lymphoma‑extra large. Mol Med Rep 2015; 12:6235-40. [PMID: 26239225 DOI: 10.3892/mmr.2015.4134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is one of the most common treatments used for hepatocellular carcinoma (HCC), which effectively improves outcome and reduces tumor recurrence. However, the drug resistance mechanisms involved in chemotherapy, which is the predominant challenge in HCC treatment, remain to be fully elucidated. Therefore, there is an urgent requirement for the identification of novel therapeutic strategies or drugs. MicroRNAs (miRs) have become an area of interest, and in the present study, the effects of miR‑133a and miR‑326 on HepG2 cells, and their function on B‑cell lymphoma‑extra large (Bcl‑xl) in HepG2 cells were investigated. Using computational programs, Bcl‑xl was predicted as the common target gene of miR‑133a and miR‑326. A dual‑luciferase reporter assay was used to verify the target genes of miRs. The mRNA and protein levels of Bcl‑xl were observed to be downregulated following transfection with miR‑133a or miR‑326 mimics. Combining miR‑133a or miR‑326 with 5‑fluorouracil (5‑FU) or cisplatin (DDP) resulted in increased cell death. The results of the present study indicated that miR‑133a, miR‑326 and Bcl‑xl acted protectively against the apoptosis, induced by 5‑FU or DDP, in HepG2 cells. This suggested the potential use of miRs either as ancillary anti‑cancer drugs or as anti‑cancer drugs themselves.
Collapse
Affiliation(s)
- Jin Ma
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Rui Guo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Yin
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiong Xiang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xia Pan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cuiying Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Huifang Tang
- Cardiology Department, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
29
|
Wang T, Wang G, Hao D, Liu X, Wang D, Ning N, Li X. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer 2015; 14:125. [PMID: 26123544 PMCID: PMC4512107 DOI: 10.1186/s12943-015-0402-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.
Collapse
Affiliation(s)
- Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Dapeng Hao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Xi Liu
- Center of Cardiovascular, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Ning Ning
- Department of Gastrointestinal Surgery, International Hospital of Pecking University, Beijing, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Tong HX, Zhou YH, Hou YY, Zhang Y, Huang Y, Xie B, Wang JY, Jiang Q, He JY, Shao YB, Han WM, Tan RY, Zhu J, Lu WQ. Expression profile of microRNAs in gastrointestinal stromal tumors revealed by high throughput quantitative RT-PCR microarray. World J Gastroenterol 2015; 21:5843-5855. [PMID: 26019448 PMCID: PMC4438018 DOI: 10.3748/wjg.v21.i19.5843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the microRNA (miRNA) expression profile in gastrointestinal stromal tumor (GIST) tissues that could serve as a novel diagnostic biomarker for GIST detection.
METHODS: We performed a quantitative real-time quantitative reverse transcriptase polymerase chain reaction assay to analyze the expression of 1888 miRNAs in a sample set that included 54 GIST tissue samples.
RESULTS: We found that dysregulation of several miRNAs may be related to the malignant potential of GISTs. Six of these miRNAs, hsa-let-7c, miR-218, miR-488#, miR-4683, miR-34c-5p and miR-4773, were selected as the final list of biomarkers to separate the malignant GISTs (M group) from the benign GISTs (B group). In addition, MiR-29b-2#, hsa-let-7c, miR-891b, miR-218, miR-204, miR-204-3p, miR-628-5p, miR-744, miR-29c#, miR-625 and miR-196a were used to distinguish between the borderline (BO group) and M groups. There were 11 common miRNAs selected to separate the benign and borderline (BB) group from the M group, including hsa-let-7c, miR-218, miR-628-5p, miR-204-3p, miR-204, miR-891b, miR-488#, miR-145, miR-891a, miR-34c-5p and miR-196a.
CONCLUSION: The identified miRNAs appear to be novel biomarkers to distinguish malignant from benign GISTs, which may be helpful to understand the mechanisms of GIST oncogenesis and progression, and to further elucidate the characteristics of GIST subtypes.
Collapse
|
31
|
Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y, Wang ZM, Wang F, Yang ZJ, Lu X, Wang LS. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res 2015; 772:15-22. [PMID: 25772106 DOI: 10.1016/j.mrfmmm.2014.12.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
H19 is an imprinted gene transcribing a long non-coding RNA and is downregulated postnatally. Re-expression of H19 has been observed in patients with atherosclerosis. However, to date, no data has been published on the association of H19 polymorphisms with the risk of coronary artery disease (CAD). In this study, four polymorphisms, rs217727, rs2067051, rs2251375, rs4929984, were analyzed in 701 CAD patients and 873 age- and sex-matched control subjects. Polymorphisms were genotyped by TaqMan technology. Our data showed that the T variant of rs217727 was associated with an increased risk of CAD [additive model: odds ratio (OR)=2.05, 95%CI=1.35-3.12; dominant model: OR=1.46, 95% confidence interval (CI)=1.12-1.90; recessive model: OR=1.75, 95%CI=1.18-2.58], while A variant of rs2067051 was associated with a decreased risk of CAD (additive model: OR=0.66, 95%CI=0.45-0.96; recessive model: OR=0.71, 95%CI=0.50-0.99). Combined analysis showed that subjects carrying 3 or 4 risk alleles had a significantly increased risk of CAD, relative to those with 0-2 risk alleles (OR=1.61, 95%CI=1.20-2.15). Moreover, CAD patients with 3 or 4 risk alleles also had significantly higher Gensini scores than those with 0-2 risk alleles (P=0.001). Further haplotype-based analysis revealed that individuals with C-G-C-C, T-G-A-A, and T-A-A-A haplotypes indicated a higher prevalence of CAD (OR=1.88, 95%CI=1.03-3.43; OR=2.26, 95%CI=1.19-4.31; OR=2.66, 95%CI=1.34-5.25, respectively), compared to individuals with the most common C-G-A-C haplotype. In conclusion, our study demonstrates for the first time that common polymorphisms of H19 are associated with the risk and severity of CAD in a Chinese population. Future studies are needed to explore the underlying mechanisms of our findings.
Collapse
Affiliation(s)
- Wei Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Hunsberger JG, Chibane FL, Elkahloun AG, Henderson R, Singh R, Lawson J, Cruceanu C, Nagarajan V, Turecki G, Squassina A, Medeiros CD, Del Zompo M, Rouleau GA, Alda M, Chuang DM. Novel integrative genomic tool for interrogating lithium response in bipolar disorder. Transl Psychiatry 2015; 5:e504. [PMID: 25646593 PMCID: PMC4445744 DOI: 10.1038/tp.2014.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.
Collapse
Affiliation(s)
- J G Hunsberger
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA,Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA. E-mail: or
| | - F L Chibane
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA
| | - A G Elkahloun
- National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, USA
| | - R Henderson
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - R Singh
- Lockheed Martin Corporation, IS&GS, Bethesda, MD,USA
| | - J Lawson
- KG Science Associates, LLC, San Diego, CA, USA
| | - C Cruceanu
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - V Nagarajan
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - G Turecki
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - A Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C D Medeiros
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - M Del Zompo
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - G A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - D-M Chuang
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA,Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA. E-mail: or
| |
Collapse
|
33
|
Li XX, Gao SY, Wang PY, Zhou X, Li YJ, Yu Y, Yan YF, Zhang HH, Lv CJ, Zhou HH, Xie SY. Reduced expression levels of let-7c in human breast cancer patients. Oncol Lett 2015; 9:1207-1212. [PMID: 25663883 PMCID: PMC4315068 DOI: 10.3892/ol.2015.2877] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022] Open
Abstract
Circulating microRNAs (miRNAs) are important in the diagnosis of a number of diseases, since serum or plasma miRNAs are more stable compared with miRNA isolated from blood samples. The aim of the present study was to investigate the association between the expression levels of serum let-7c miRNA and the clinical diagnosis of breast cancer (BC). The circulating let-7c levels of 90 BC patients and 64 healthy controls were determined by performing a reverse transcription-quantitative polymerase chain reaction assay. The results demonstrated that let-7c expression was downregulated in the BC tissues compared with the paracarcinoma control tissues. In addition, the let-7c expression in the serum of BC patients was significantly lower compared with the healthy controls (P<0.01). Using a cutoff value of 0.374×103 copies/ml, the serum expression levels of let-7c exhibited 87.5% sensitivity and 78.9% specificity for distinguishing BC patients from healthy controls (area under the receiver operating characteristic curve, 0.848; 95% confidence interval, 0.785-0.911). Furthermore, the results demonstrated that the serum expression levels of let-7c were significantly higher in premenopausal compared with postmenopausal patients (P<0.05), supporting the hypothesis that postmenopausal status may affect the serum expression levels of let-7c. However, no statistically significant differences were detected in the serum levels of let-7c between ER (or PR)-positive and -negative patients. Therefore, the current study hypothesized that serum let-7c may be used as a novel and valuable biomarker for the diagnosis of BC.
Collapse
Affiliation(s)
- Xin-Xin Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shu-Yan Gao
- Department of Clinical Medicine, Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xue Zhou
- Department of Clinical Medicine, Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuan Yu
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yun-Fei Yan
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Han-Han Zhang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Chang-Jun Lv
- Department of Clinical Medicine, Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hui-Hui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital, Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
34
|
Chi SW. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep 2014; 47:167-72. [PMID: 24499665 PMCID: PMC4163879 DOI: 10.5483/bmbrep.2014.47.3.261] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/16/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
Reactivating the p53 pathway in tumors is an important strategy for anticancer therapy. In response to diverse cellular stresses, the tumor suppressor p53 mediates apoptosis in a transcriptionindependent and transcription-dependent manner. Although extensive studies have focused on the transcription-dependent apoptotic pathway of p53, the transcription-independent apoptotic pathway of p53 has only recently been discovered. Molecular interactions between p53 and Bcl-2 family proteins in the mitochondria play an essential role in the transcriptionindependent apoptosis of p53. This review describes the structural basis for the transcription-independent apoptotic pathway of p53 and discusses its potential application to anticancer therapy. [BMB Reports 2014; 47(3): 167-172]
Collapse
Affiliation(s)
- Seung-Wook Chi
- Medical Proteomics Research Center, KRIBB, Daejeon 305-806; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-350, Korea
| |
Collapse
|
35
|
Ma J, Guo R, Wang T, Pan X, Lei X. Let-7b binding site polymorphism in the B-cell lymphoma-extra large 3'UTR is associated with fluorouracil resistance of hepatocellular carcinoma. Mol Med Rep 2014; 11:677-81. [PMID: 25333670 DOI: 10.3892/mmr.2014.2692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
B-cell lymphoma-extra large (Bcl-xl) is an anti-apoptotic member of the B-cell lymphoma 2 (Bcl-2) family that is often found to be overexpressed in human hepatocellular carcinoma (HCC), therefore conferring a survival advantage to tumor cells. microRNA (miRNA) let-7b is downregulated in HCC and its expression correlates with multidrug resistance. Using computational programs, it was predicted that the 3' untranslated region (UTR) of the Bcl-xl gene contains a potential miRNA binding site for let-7b, and that a single nucleotide polymorphism (SNP) site rs3208684 (A or C allele) resides within this binding site. Luciferase assays and western blot analysis demonstrated that let‑7b targeted Bcl-xl gene expression and negatively regulated the amount of Bcl-xl protein. SNP rs3208684 (A>C) variation enhanced the expression of Bcl-xl by disrupting the binding of let-7b to the 3'UTR of Bcl-xl. The effects of the two polymorphic variants on chemotherapeutic drug sensitivity were determined by cell counting kit 8 assays. Overexpression of the Bcl-xl mutated (C) allele in BEL-7402 HCC cells significantly decreased fluorouracil (5-FU) sensitivity, as compared with mock transfection and overexpression of the wild-type allele. From this, it was concluded that let-7b increased 5-FU sensitivity by repressing Bcl-xl expression in HCC cells. These results suggest that SNP (rs3208684) may be a potential marker for personalized treatment.
Collapse
Affiliation(s)
- Jin Ma
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Rui Guo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xia Pan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
36
|
Björner S, Fitzpatrick PA, Li Y, Allred C, Howell A, Ringberg A, Olsson H, Miller CJ, Axelson H, Landberg G. Epithelial and stromal microRNA signatures of columnar cell hyperplasia linking Let-7c to precancerous and cancerous breast cancer cell proliferation. PLoS One 2014; 9:e105099. [PMID: 25122196 PMCID: PMC4133372 DOI: 10.1371/journal.pone.0105099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/21/2014] [Indexed: 01/22/2023] Open
Abstract
Columnar cell hyperplasia (CCH) is the earliest histologically identifiable breast lesion linked to cancer progression and is characterized by increased proliferation, decreased apoptosis and elevated oestrogen receptor α (ERα) expression. The mechanisms underlying the initiation of these lesions have not been clarified but might involve early and fundamental changes in cancer progression. MiRNAs are key regulators of several biological processes, acting by influencing the post-transcriptional regulation of numerous targets, thus making miRNAs potential candidates in cancer initiation. Here we have defined novel epithelial as well as stromal miRNA signatures from columnar cell hyperplasia lesions compared to normal terminal duct lobular units by using microdissection and miRNA microarrays. Let-7c were among the identified downregulated epithelial miRNAs and its functions were delineated in unique CCH derived cells and breast cancer cell line MCF-7 suggesting anti-proliferative traits potentially due to effects on Myb and ERα. MiR-132 was upregulated in the stroma surrounding CCH compared to stoma surrounding normal terminal duct lobular units (TDLUs), and overexpression of miR-132 in immortalized fibroblasts and in fibroblasts co-cultured with epithelial CCH cells caused substantial expression changes of genes involved in metabolism, DNA damage and cell motility. The miRNA signatures identified in CCH indicate early changes in the epithelial and stromal compartment of CCH and could represent early key alterations in breast cancer progression that potentially could be targeted in novel prevention or treatment schedules.
Collapse
Affiliation(s)
- Sofie Björner
- Center for Molecular Pathology, Skåne University Hospital, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom
- Sahlgrenska Cancer Center, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Paul A. Fitzpatrick
- Sahlgrenska Cancer Center, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yaoyong Li
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | - Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Anthony Howell
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Anita Ringberg
- Department of Plastic and Reconstructive Surgery, SUS Malmö, Institute of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Håkan Olsson
- Department of Oncology, Skåne University Hospital, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Crispin J. Miller
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | - Håkan Axelson
- Translational Cancer Research, Medicon Village, Department of Laboratory Medicine Malmö, Lund University, Lund, Sweden
| | - Göran Landberg
- Center for Molecular Pathology, Skåne University Hospital, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom
- Sahlgrenska Cancer Center, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Tolonen AM, Magga J, Szabó Z, Viitala P, Gao E, Moilanen AM, Ohukainen P, Vainio L, Koch WJ, Kerkelä R, Ruskoaho H, Serpi R. Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice. Pharmacol Res Perspect 2014; 2:e00056. [PMID: 25505600 PMCID: PMC4186442 DOI: 10.1002/prp2.56] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/14/2022] Open
Abstract
The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c-kit+ cardiac stem cells and Ki-67+ proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure.
Collapse
Affiliation(s)
- Anna-Maria Tolonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Zoltán Szabó
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Pirkko Viitala
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine Philadelphia, Pennsylvania
| | - Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Pauli Ohukainen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Laura Vainio
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine Philadelphia, Pennsylvania
| | - Risto Kerkelä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Medical Research Center Oulu Oulu, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Division of Pharmacology and Pharmacotherapy, University of Helsinki Helsinki, Finland
| | - Raisa Serpi
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu Oulu, Finland
| |
Collapse
|
38
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
39
|
Shin JS, Ha JH, Chi SW. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem Biophys Res Commun 2014; 443:882-7. [DOI: 10.1016/j.bbrc.2013.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
40
|
Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y, Zhou HH. Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci 2013; 14:23086-102. [PMID: 24284400 PMCID: PMC3856107 DOI: 10.3390/ijms141123086] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
The let-7 family is the second microRNA found in C. elegans. Recent researches have found it is highly expressed in the cardiovascular system. Studies have revealed the aberrant expression of let-7 members in cardiovascular diseases, such as heart hypertrophy, cardiac fibrosis, dilated cardiomyopathy (DCM), myocardial infarction (MI), arrhythmia, angiogenesis, atherosclerosis, and hypertension. Let-7 also participates in cardiovascular differentiation of embryonic stem cells. TLR4, LOX-1, Bcl-xl and AGO1 are by now the identified target genes of let-7. The circulating let-7b is suspected to be the biomarker of acute MI and let-7i, the biomarker of DCM. Further studies are necessary for identifying the gene targets and signaling pathways of let-7 in cardiovascular diseases. Let-7 might be a potential therapeutic target for cardiovascular diseases. This review focuses on the research progresses regarding the roles of let-7 in cardiovascular development and diseases.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China; E-Mails: (M.-H.B.); (Y.-W.Z.); (X.-Y.L.); (Y.C.)
- Department of Pharmacy, Changsha Medical University, Changsha 410219, China
| | - Xing Feng
- College of Medicine, Hunan Normal University, Changsha 410006, China; E-Mail:
| | - Yi-Wen Zhang
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China; E-Mails: (M.-H.B.); (Y.-W.Z.); (X.-Y.L.); (Y.C.)
| | - Xiao-Ya Lou
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China; E-Mails: (M.-H.B.); (Y.-W.Z.); (X.-Y.L.); (Y.C.)
| | - Yu Cheng
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China; E-Mails: (M.-H.B.); (Y.-W.Z.); (X.-Y.L.); (Y.C.)
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China; E-Mails: (M.-H.B.); (Y.-W.Z.); (X.-Y.L.); (Y.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-731-8480-5380; Fax: +86-731-8235-4476
| |
Collapse
|
41
|
Aranda JF, Madrigal-Matute J, Rotllan N, Fernández-Hernando C. MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases. Free Radic Biol Med 2013; 64:31-9. [PMID: 23871755 PMCID: PMC4145589 DOI: 10.1016/j.freeradbiomed.2013.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
Abstract
The regulation of the metabolism of cholesterol has been one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species can oxidize LDL particles, increasing the levels of the highly proatherogenic oxidized LDL. Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or (high levels of) glucose. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, oxidative derivatives of lipoprotein, and redox balance. Here, we summarize recent findings in the field, highlighting the contributions of some miRNAs to lipid- and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL, and ameliorate lipid- and oxidative-related disorders, including atherosclerosis, nonalcoholic fatty liver disease, and metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Noemi Rotllan
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
42
|
Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7g. Int J Cardiol 2013; 168:1378-85. [DOI: 10.1016/j.ijcard.2012.12.045] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/10/2012] [Accepted: 12/06/2012] [Indexed: 11/17/2022]
|
43
|
Kujiraoka T, Satoh Y, Ayaori M, Shiraishi Y, Arai-Nakaya Y, Hakuno D, Yada H, Kuwada N, Endo S, Isoda K, Adachi T. Hepatic extracellular signal-regulated kinase 2 suppresses endoplasmic reticulum stress and protects from oxidative stress and endothelial dysfunction. J Am Heart Assoc 2013; 2:e000361. [PMID: 23954796 PMCID: PMC3828781 DOI: 10.1161/jaha.113.000361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Insulin signaling comprises 2 major cascades: the insulin receptor substrate/phosphatidylinositol 3′‐kinase/protein kinase B and Ras/Raf/mitogen‐activated protein kinase/kinase/ERK pathways. While many studies on the tissue‐specific effects of the insulin receptor substrate/phosphatidylinositol 3′ ‐kinase/protein kinase B pathway have been conducted, the role of the other cascade in tissue‐specific insulin resistance has not been investigated. High glucose/fatty acid toxicity, inflammation, and oxidative stress, all of which are associated with insulin resistance, can activate ERK. The liver plays a central role in metabolism, and hepatosteatosis is associated with vascular diseases. The aim of study was to elucidate the role of hepatic ERK2 in hepatosteatosis, metabolic remodeling, and endothelial dysfunction. Methods and Results We created liver‐specific ERK2 knockout mice and fed them with a high‐fat/high‐sucrose diet for 20 weeks. The high‐fat/high‐sucrose diet–fed liver‐specific ERK2 knockout mice exhibited a marked deterioration in hepatosteatosis and metabolic remodeling represented by impairment of glucose tolerance and decreased insulin sensitivity without changes in body weight, blood pressure, and serum cholesterol/triglyceride levels. In the mice, endoplasmic reticulum stress was induced together with decreased mRNA and protein expressions of hepatic sarco/endoplasmic reticulum Ca2+‐ATPase 2. In a hepatoma cell line, inhibition of ERK activation– induced endoplasmic reticulum stress only in the presence of palmitate. Vascular reactive oxygen species were elevated with upregulation of nicotinamide adenine dinucleotide phosphate oxidase1 (Nox1) and Nox4 and decreased phosphorylation of endothelial nitric oxide synthase, which resulted in the remarkable endothelial dysfunction in high‐fat/high‐sucrose diet–fed liver‐specific ERK2 knockout mice. Conclusions Hepatic ERK2 suppresses endoplasmic reticulum stress and hepatosteatosis in vivo, which results in protection from vascular oxidative stress and endothelial dysfunction. These findings demonstrate a novel role of hepatic ERK2 in obese‐induced insulin resistance in the protection from hepatovascular metabolic remodeling and vascular diseases.
Collapse
Affiliation(s)
- Takehiko Kujiraoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, National Defense Medical College, Sayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|