1
|
Qin D, Jia XF, Hanna A, Lee J, Pekson R, Elrod JW, Calvert JW, Frangogiannis NG, Kitsis RN. BAK contributes critically to necrosis and infarct generation during reperfused myocardial infarction. J Mol Cell Cardiol 2023; 184:1-12. [PMID: 37709008 PMCID: PMC10841630 DOI: 10.1016/j.yjmcc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.
Collapse
Affiliation(s)
- Dongze Qin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Xiaotong F Jia
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jaehoon Lee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John W Elrod
- Department of Cardiovascular Sciences and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States of America
| | - John W Calvert
- Department of Surgery Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nikolaos G Frangogiannis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
2
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
3
|
Sharma S, Carmona A, Skowronek A, Yu F, Collins MO, Naik S, Murzeau CM, Tseng PL, Erdmann KS. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95. Nat Commun 2019; 10:3105. [PMID: 31308371 PMCID: PMC6629679 DOI: 10.1038/s41467-019-11025-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fas plays a major role in regulating ligand-induced apoptosis in many cell types. It is well known that several cancers demonstrate reduced cell surface levels of Fas and thus escape a potential control system via ligand-induced apoptosis, although underlying mechanisms are unclear. Here we report that the endosome associated trafficking regulator 1 (ENTR1), controls cell surface levels of Fas and Fas-mediated apoptotic signalling. ENTR1 regulates, via binding to the coiled coil domain protein Dysbindin, the delivery of Fas from endosomes to lysosomes thereby controlling termination of Fas signal transduction. We demonstrate that ENTR1 is cleaved during Fas-induced apoptosis in a caspase-dependent manner revealing an unexpected interplay of apoptotic signalling and regulation of endolysosomal trafficking resulting in a positive feedback signalling-loop. Our data provide insights into the molecular mechanism of Fas post-endocytic trafficking and signalling, opening possible explanations on how cancer cells regulate cell surface levels of death receptors. Fas is a death receptor that regulates apoptosis in many cell types and is downregulated on the cell surface in many cancers. Here, Sharma et al. show that endosome associated trafficking regulator ENTR1 regulates delivery of Fas to lysosomes, thereby controlling its degradation and signalling.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Antonio Carmona
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Agnieszka Skowronek
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fangyan Yu
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark O Collins
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sindhu Naik
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Claire M Murzeau
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Pei-Li Tseng
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kai S Erdmann
- Department of Biomedical Science & Centre of Membrane Interactions and Dynamics, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
5
|
Noël A, Zhou L, Foveau B, Sjöström PJ, LeBlanc AC. Differential susceptibility of striatal, hippocampal and cortical neurons to Caspase-6. Cell Death Differ 2018; 25:1319-1335. [PMID: 29352267 PMCID: PMC6030053 DOI: 10.1038/s41418-017-0043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Active cysteinyl protease Caspase-6 is associated with early Alzheimer and Huntington diseases. Higher entorhinal cortex and hippocampal Caspase-6 levels correlate with lower cognitive performance in aged humans. Caspase-6 induces axonal degeneration in human primary neuron cultures and causes inflammation and neurodegeneration in mouse hippocampus, and age-dependent memory impairment. To assess whether Caspase-6 causes damage to another neuronal system, a transgenic knock-in mouse overexpressing a self-activated form of Caspase-6 five-fold in the striatum, the area affected in Huntington disease, and 2.5-fold in the hippocampus and cortex, was generated. Detection of Tubulin cleaved by Caspase-6 confirmed Caspase-6 activity. The Caspase-6 expressing mice and control littermates were subjected to behavioral tests to assess Huntington disease-relevant psychiatric, motor, and cognitive deficits. Depression was excluded with the forced swim and sucrose consumption tests. Motor deficits were absent in the nesting, clasping, rotarod, vertical pole, gait, and open field analyzes. However, Caspase-6 mice developed age-dependent episodic and spatial memory deficits identified by novel object recognition, Barnes maze and Morris water maze assays. Neuron numbers were maintained in the striatum, hippocampus, and cortex. Microglia and astrocytes were increased in the hippocampal stratum lacunosum molecular and in the cortex, but not in the striatum. Synaptic mRNA profiling identified two differentially expressed genes in transgenic hippocampus, but none in striatum. Caspase-6 impaired synaptic transmission and induced neurodegeneration in hippocampal CA1 neurons, but not in striatal medium spiny neurons. These data revealed that active Caspase-6 in the striatal medium spiny neurons failed to induce inflammation, neurodegeneration or behavioral abnormalities, whereas active Caspase-6 in the cortex and hippocampus impaired episodic and spatial memories, and induced inflammation, neuronal dysfunction, and neurodegeneration. The results indicate age and neuronal subtype-dependent Caspase-6 toxicity and highlight the importance of targeting the correct neuronal subtype to identify underlying molecular mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - Libin Zhou
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
| | - P Jesper Sjöström
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada
- Centre for Research in Neuroscience, The BRAIN Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, QC, H3G 1A4, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Côte Ste Catherine, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3755 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
7
|
Röwer C, George C, Reimer T, Stengel B, Radtke A, Gerber B, Glocker MO. Distinct Ezrin Truncations Differentiate Metastases in Sentinel Lymph Nodes from Unaffected Lymph Node Tissues, from Primary Breast Tumors, and from Healthy Glandular Breast Tissues. Transl Oncol 2018; 11:1-10. [PMID: 29132012 PMCID: PMC5684437 DOI: 10.1016/j.tranon.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lymph node metastasis status is a prognostic factor for further lymph node involvement and for patient survival in breast cancer patients. Frozen section analysis of lymph nodes is a reliable method for detection of macro-metastases. However, this method is far less effective in detecting micro-metastases, requesting improved diagnostic procedures. METHODS We investigated expression and truncation of ezrin in (i) sentinel lymph node metastases, (ii) unaffected axillary lymph nodes, (iii) primary breast tumors, and (iv) healthy glandular breast tissues using 2D gel electrophoresis, SDS-PAGE, and mass spectrometry in addition to Western blotting. RESULTS Full-length ezrin (E1; amino acids 1-586) is present in all four investigated tissues. Two truncated ezrin forms, one missing about the first hundred amino acids (E2a) and the other lacking about 150 C-terminal amino acids (E2b) were detectable in primary tumor tissues and in sentinel lymph node metastases but not in glandular tissues. Strikingly, an ezrin truncation (E3) which consists approximately of amino acids 238-586 was found strongly expressed in all sentinel lymph node metastases. Moreover, an N-terminal ezrin fragment (E4) that consists approximately of amino acids 1-273 was identified in sentinel lymph node metastases as well. CONCLUSIONS We show for the first time the existence of tissue-dependent specific ezrin truncations. The distinguished strong Western blot staining of ezrin E3 in sentinel lymph node metastases underlines its capability to substantiate the occurrence of lymph node (micro)metastases in breast cancer patients.
Collapse
Affiliation(s)
- Claudia Röwer
- Proteome Center Rostock, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Christian George
- Proteome Center Rostock, University of Rostock, Schillingallee 69, 18057 Rostock, Germany; Department of Obstetrics and Gynecology, University of Rostock, Südring 81, 18059 Rostock, Germany
| | - Toralf Reimer
- Department of Obstetrics and Gynecology, University of Rostock, Südring 81, 18059 Rostock, Germany
| | - Bernd Stengel
- Partnerschaft der Fachärzte für Pathologie, Südstadt Clinical Center, Südring 81, 18059 Rostock, Germany
| | - Anngret Radtke
- Partnerschaft der Fachärzte für Pathologie, Südstadt Clinical Center, Südring 81, 18059 Rostock, Germany
| | - Bernd Gerber
- Department of Obstetrics and Gynecology, University of Rostock, Südring 81, 18059 Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University of Rostock, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
8
|
Janečková E, Bíliková P, Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J Histochem Cytochem 2018; 66:47-58. [PMID: 29091523 PMCID: PMC5761947 DOI: 10.1369/0022155417739283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic
| |
Collapse
|
9
|
Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1468957. [PMID: 29250124 PMCID: PMC5698829 DOI: 10.1155/2017/1468957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
Collapse
|
10
|
Identification of cleavage of NS5A of C-strain classical swine fever virus. Arch Virol 2016; 162:391-400. [PMID: 27766426 DOI: 10.1007/s00705-016-3117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
NS5A is a multifunctional non-structural protein of classical swine fever virus (CSFV) that plays an important role in viral replication, but how it exerts its functions is unknown. Here, we report the cleavage of NS5A of the vaccine C-strain, resulting in two truncated forms (b and c). Further experiments using calpain- and caspase-family-specific inhibitors, followed by a caspase-6-specific shRNAs and inhibitor, showed that the cleavage of C-strain NS5A to produce truncated form c is mediated by caspase-6, mapping to 272DTTD275, while the cleavage producing truncated form b is probably mediated by another unknown protease. shRNA-mediated downregulation of caspase-6 and blocking of enzyme activity in ST cells significantly impaired genome replication and virus production, indicating that NS5A cleavage is required for CSFV replication.
Collapse
|
11
|
Li M, Gao P, Zhang J. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases. Int J Mol Sci 2016; 17:332. [PMID: 26950124 PMCID: PMC4813194 DOI: 10.3390/ijms17030332] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Ping Gao
- Department of Medical Imaging, Urumqi General Hospital of Lanzhou Military Area Command, Urumqi 830000, China.
| | - Junping Zhang
- Department of cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medcine, Tianjin 300192, China.
| |
Collapse
|
12
|
Xu M, Choi EY, Paik YK. Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans. BMB Rep 2014; 47:15-20. [PMID: 24195791 PMCID: PMC4163843 DOI: 10.5483/bmbrep.2014.47.1.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022] Open
Abstract
Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial β-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans. [BMB Reports 2014; 47(1): 15-20]
Collapse
Affiliation(s)
| | | | - Young-Ki Paik
- Department of Biochemistry and Department of the Integrated Omics for the Biomedical Science, WCU Program, College of Life Science and Biotechnology, Yonsei Proteome Research Center, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
13
|
Kim MY, Yoo BC, Cho JY. Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J Ginseng Res 2014; 38:251-5. [PMID: 25379004 PMCID: PMC4213851 DOI: 10.1016/j.jgr.2014.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Background Ginsenoside Rp1 (G-Rp1) is a novel ginsenoside derived from ginsenoside Rk1. This compound was reported to have anticancer, anti-platelet, and anti-inflammatory activities. In this study, we examined the molecular target of the antiproliferative and proapoptotic activities of G-Rp1. Methods To examine the effects of G-Rp1, cell proliferation assays, propidium iodine staining, proteomic analysis by two-dimensional gel electrophoresis, immunoblotting analysis, and a knockdown strategy were used. Results G-Rp1 dose-dependently suppressed the proliferation of colorectal cancer LoVo cells and increased their apoptosis. G-Rp1 markedly upregulated the protein level of apolipoprotein (Apo)-A1 in LoVo, SNU-407, DLD-1, SNU-638, AGS, KPL-4, and SK-BR-3 cells. The knockdown of Apo-A1 by its small-interfering RNA increased the levels of cleaved poly(ADP-ribose) polymerase and p53 and diminished the proliferation of LoVo cells. Conclusion These results suggest that G-Rp1 may act as an anticancer agent by strongly inhibiting cell proliferation and enhancing apoptosis through upregulation of Apo-A1.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Byong Chul Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
14
|
Dong X, Zhu F, Liu Q, Zhang Y, Wu J, Jiang W, Zhang L, Dong S. Transplanted bone marrow mesenchymal stem cells protects myocardium by regulating 14-3-3 protein in a rat model of diabetic cardiomyopathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3714-3723. [PMID: 25120747 PMCID: PMC4128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study examined the mechanism of bone marrow mesenchymal stem cells (BMSCs) up-regulating the expression of 14-3-3 protein, blocking the myocardial apoptosis in diabetic cardiomyopathy and thereby improving cardiac function. METHODS AND RESULTS (1) Rat model of diabetic cardiomyopathy was made by feeding rats with high fat/high sugar diet and intraperitoneal injection of small dose of streptozocin (STZ). The model was successfully established as confirmed by the detection of blood sugar, lipid profile, ultrasonographic and hemodynamic examinations. (2) Bone marrow (BM) liquid was taken from the rat femur and tibia bones. The BMSCs were obtained by culture and were confirmed by phase-contrast microscopy and flow cytometry. The BMSCs were transplanted into the rats and fluorescent microscopy showed that transplantation was successful. (3) TUNNEL, Western blotting revealed that in rats of DCM group, myocardial apoptosis was more severe and expression of capase-3 was significantly up-regulated while in rats receiving transplantation of BMSCs showed opposite changes, with the differences being statistically significant (P < 0.05). (4) Western blotting exhibited that, compared with DCM group, 14-3-3 and p-Ask1 protein was significantly increased while Ask1 was obviously decreased. CONCLUSION Our findings suggested that transplantation of bone marrow mesenchymal stem cells could inhibit the myocardial apoptosis in diabetic cardiomyopathy, possibly by up-regulating the expression of 14-3-3 protein and inhibiting the phosphorylation of Ask1.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Fen Zhu
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Qun Liu
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Yuanheng Zhang
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Jun Wu
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Wen Jiang
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Lei Zhang
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| | - Shuguang Dong
- Department of Cardiology, Wuhan No. 3 Hospital Wuhan 430060, Hubei, China
| |
Collapse
|