1
|
Png CW, Weerasooriya M, Li H, Hou X, Teo FY, Huang S, Ser Z, Weng FYK, Rethnam M, Chia G, Sobota RM, Chong CS, Tan KK, Zhang Y. DUSP6 regulates Notch1 signalling in colorectal cancer. Nat Commun 2024; 15:10087. [PMID: 39572549 PMCID: PMC11582695 DOI: 10.1038/s41467-024-54383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Notch1 plays various roles in cancer development, and Notch1-induced transactivation is controlled by phosphorylation of its cleaved intracellular domain. However, it is unclear whether there are phosphatases capable of dephosphorylating the cleaved Notch1 transmembrane/intracellular region (NTM) to regulate its function. Here, we show that DUSP6 can function as a phosphatase for Notch1, thereby regulating NTM stability and transcriptional activity, thus influencing colorectal cancer (CRC) development. In human CRC cells, elevated DUSP6 expression correlates with increased NTM levels, leading to enhanced CRC cell proliferation both in vitro and in vivo. High tumoral DUSP6 protein expression is associated with poorer overall CRC patient survival. In mice, DUSP6 deficiency results in reduced CRC development. Mechanistically, DUSP6 dephosphorylates phospho-Y2116, which in turn reduces NTM ubiquitination, leading to increased NTM stability and transcriptional activity. As a result, the expression of Notch1-targeted proliferation genes is increased to promote tumour cell growth.
Collapse
Affiliation(s)
- Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaowen Hou
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Fiona Yayuan Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shiying Huang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Franklin Yau Kok Weng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Malini Rethnam
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Gloryn Chia
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Choon Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
2
|
Halasa M, Uosef A, Ubelaker HV, Subuddhi A, Mysore KR, Kubiak JZ, Ghobrial RM, Wosik J, Kloc M. Gadolinium retention effect on macrophages - a potential cause of MRI contrast agent Dotarem toxicity. Cell Tissue Res 2024; 397:51-60. [PMID: 38625373 DOI: 10.1007/s00441-024-03885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Gadolinium is a component of the MRI contrast agent Dotarem. Although Dotarem is the least toxic among MRI contrasts used, gadolinium present in Dotarem accumulates for many years in various organs and tissues exerting toxic effects. We showed previously that gadolinium remains in macrophages for at least 7 days after exposure to Dotarem. However, very little is known about the effect of gadolinium retention on the immune cells such as macrophages. We studied the effect of 1-day and 7-day retention of gadolinium on various functions and molecular pathways of macrophages. Gadolinium retention for 7 days decreased macrophage adhesion and motility and dysregulated the expression of adhesion and fibrotic pathway-related proteins such as Notch1 and its ligand Jagged1, adhesion/migration-related proteins PAK1 and Shp1, immune response-related transcription factors Smad3 and TCF19, and chemokines CXCL10 and CXCL13, and dysregulated the mRNA expression of fibrosis-related genes involved in extracellular matrix (ECM) synthesis, such as Col6a1, Fibronectin, MMP9, and MMP12. It also completely (below a level of detection) shut down the transcription of anti-inflammatory M2 macrophage polarization marker the Arg-1. Such changes, if they occur in MRI patients, can be potentially detrimental to the patient's immune system and immune response-related processes.
Collapse
Affiliation(s)
- Marta Halasa
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Ahmed Uosef
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Henry V Ubelaker
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Arijita Subuddhi
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Tuberculosis Research Advancement Center (TRAC), Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Krupa R Mysore
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute (WIM-PIB), Szaserow 128, 04-141, Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, CNRS, UMR 6290, Faculty of Medicine, University of Rennes, 35043, Rennes, France
| | - Rafik M Ghobrial
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston Science Center Building, Room 324, 4302 University Drive, Houston, TX, 77204, USA.
- Texas Center for Superconductivity, University of Houston, Houston Science Center Building, Room 324, 4302 University Drive, Houston, TX, 77204, USA.
| | - Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave., Houston, TX, 77030, USA.
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX, USA.
| |
Collapse
|
3
|
Li YM, Chung YL, Wu YF, Wang CK, Chen CM, Chen YH. Maternal exposure to hyperbaric oxygen at the preimplantation stages increases apoptosis and ectopic Cdx2 expression and decreases Oct4 expression in mouse blastocysts via Nrf2-Notch1 upregulation and Nf2 downregulation. Dev Dyn 2024; 253:467-489. [PMID: 37850827 DOI: 10.1002/dvdy.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The environmental oxygen tension has been reported to impact the blastocyst quality and cell numbers in the inner cell mass (ICM) during human and murine embryogenesis. While the molecular mechanisms leading to increased ICM cell numbers and pluripotency gene expression under hypoxia have been deciphered, it remains unknown which regulatory pathways caused the underweight fetal body and overweight placenta after maternal exposure to hyperbaric oxygen (HBO). RESULTS The blastocysts from the HBO-exposed pregnant mice revealed significantly increased signals of reactive oxygen species (ROS) and nuclear Nrf2 staining, decreased Nf2 and Oct4 expression, increased nuclear Tp53bp1 and active caspase-3 staining, and ectopic nuclear signals of Cdx2, Yap, and the Notch1 intracellular domain (N1ICD) in the ICM. In the ICM of the HBO-exposed blastocysts, both Nf2 cDNA microinjection and Nrf2 shRNA microinjection significantly decreased the ectopic nuclear expression of Cdx2, Tp53bp1, and Yap whereas increased Oct4 expression, while Nrf2 shRNA microinjection also significantly decreased Notch1 mRNA levels and nuclear expression of N1ICD and active caspase-3. CONCLUSION We show for the first time that maternal exposure to HBO at the preimplantation stage induces apoptosis and impairs ICM cell specification via upregulating Nrf2-Notch1-Cdx2 expression and downregulating Nf2-Oct4 expression.
Collapse
Grants
- MAB-108-027 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MAB-109-029 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-110-031 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C06-111022 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C14-112058 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MOST-111-2635-B-016-002 Ministry of Science and Technology, Taiwan
- TSGH-D-109177 Tri-Service General Hospital in Taiwan, R.O.C.
- TSGH-E-109261 Tri-Service General Hospital in Taiwan, R.O.C.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu Lang Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-Kuo Wang
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
4
|
Ma Z, Zeng Y, Wang M, Liu W, Zhou J, Wu C, Hou L, Yin B, Qiang B, Shu P, Peng X. N4BP1 mediates RAM domain-dependent notch signaling turnover during neocortical development. EMBO J 2023; 42:e113383. [PMID: 37807845 PMCID: PMC10646556 DOI: 10.15252/embj.2022113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.
Collapse
Affiliation(s)
- Zhihua Ma
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yi Zeng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren HospitalCapital Medical University, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of OtolaryngologyBeijingChina
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jiafeng Zhou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chao Wu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lin Hou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Bin Yin
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Vriend J, Klonisch T. Genes of the Ubiquitin Proteasome System Qualify as Differential Markers in Malignant Glioma of Astrocytic and Oligodendroglial Origin. Cell Mol Neurobiol 2023; 43:1425-1452. [PMID: 35896929 PMCID: PMC10079750 DOI: 10.1007/s10571-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada.
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada
| |
Collapse
|
6
|
Saini N, Bheeshmachar G, Sarin A. Sirtuin1 meditated modification of Notch1 intracellular domain regulates nucleolar localization and activation of distinct signaling cascades. Front Cell Dev Biol 2022; 10:988816. [PMID: 36211456 PMCID: PMC9539544 DOI: 10.3389/fcell.2022.988816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Notch signaling is involved in cell fate decisions in the development and maintenance of tissue homeostasis. Spatial regulation of the Notch1 intracellular domain (NIC1), has been shown to underpin signaling outcomes mediated by this receptor. We recently reported a putative Nucleolar Localization Sequence (NoLS) in NIC1. Here we investigate if the putative NoLS identified in NIC1 regulates localization in the nucleolus and anti-apoptotic activity. Confocal imaging of live cells expressing NIC1 or forms modified by deletion or site-directed mutagenesis established that the putative NoLS in NIC1 is required for nucleolar localization and regulated by the deacetylase Sirtuin1. Subsequent analysis of anti-apoptotic activity revealed signaling cascades linked to nucleolar localization. For this, etoposide and 4-Nitroquinoline 1-oxide, an inhibitor of topoisomerase-II and a UV mimetic drug respectively, were used as prototypic triggers of genomic damage in a mammalian cell line. While NIC1 blocked apoptosis regardless of its localization to the nucleoplasm or nucleolus, modifications of NIC1 which promoted localization to the nucleolus triggered a dependence on the nucleolar proteins fibrillarin and nucleolin for anti-apoptotic activity. Further, cells co-expressing NIC1 and Sirtuin1 (but not its catalytically inactive form), confirmed both spatial regulation and the switch to dependence on the nucleolar proteins. Finally, site-directed mutagenesis showed that the NoLS lysine residues are targets of Sirtuin1 activity. NIC1 mediated transcription is not similarly regulated. Thus, NIC1 localization to the nucleolus is regulated by Sirtuin1 modification of the lysine residues in NoLS and triggers a distinct signaling cascade involving nucleolar intermediates for anti-apoptotic activity.
Collapse
|
7
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
8
|
Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus. Front Immunol 2022; 12:734008. [PMID: 34987500 PMCID: PMC8721097 DOI: 10.3389/fimmu.2021.734008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Collapse
Affiliation(s)
- Mariame Mohamed Ahamada
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Minguzzi M, Panichi V, D’Adamo S, Cetrullo S, Cattini L, Flamigni F, Mariani E, Borzì RM. Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms222112012. [PMID: 34769441 PMCID: PMC8585104 DOI: 10.3390/ijms222112012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.
Collapse
Affiliation(s)
- Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Veronica Panichi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Stefania D’Adamo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Erminia Mariani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence:
| |
Collapse
|
10
|
Qiu K, Ma C, Lu L, Wang J, Chen B, Mao H, Wang Y, Wang H. DAPT suppresses proliferation and migration of hepatocellular carcinoma by regulating the extracellular matrix and inhibiting the Hes1/PTEN/AKT/mTOR signaling pathway. J Gastrointest Oncol 2021; 12:1101-1116. [PMID: 34295560 DOI: 10.21037/jgo-21-235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Background The aim of the present study was to investigate the antitumor properties of N-(N-[3,5-difluorophenacetyl]-1-alanyl)-S-phenylglycine t-butyl ester (DAPT) against hepatocellular carcinoma (HCC), as well as the underlying mechanism. Methods Immunohistochemistry and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay were used to determine the expression of Notch1 in HCC tissues. The expression of Notch1 in 3 HCC cell lines was evaluated by qRT-PCR and Western blot. The proliferation ability of cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays. Flow cytometry and Transwell assay were used to check the apoptosis and migration of HepG2 cells, respectively. Western blot was used to determine the expression level of Notch1, Hes1, Phosphatase and tensin homolog (PTEN), protein kinase B1 (AKT1), phosphorylated AKT1, mammalian target of rapamycin (mTOR), phosphorylated mTOR, intracellular adhesion molecule-1, vascular cell adhesion protein 1, matrix metalloproteinase (MMP)-2, MMP-9, and focal adhesion kinase in cells and tumor tissues. A HepG2 xenograft experiment was conducted to evaluate the in vivo antitumor properties of DAPT. Results Notch1 was found to be significantly upregulated in both HCC tissues and cell lines. DAPT significantly inhibited the proliferation and migration of HepG2 cells in a dose-dependent manner, accompanied by the suppression of Notch1/Hes1 signaling, inactivation of AKT/mTOR signaling, downregulation of MMPs, and decreased expression of adhesion molecules. The activation of Notch1/Hes1 or AKT/mTOR signaling removed the inhibitory effect of DAPT on the proliferation and migration of HepG2 cells, as well as the inhibitory properties of DAPT on the expression of MMPs and adhesion molecules. The antitumor properties and regulatory effect of DAPT against the extracellular matrix (ECM) and Hes1/PTEN/AKT/mTOR signaling were verified by the HepG2 xenograft experiments. Conclusions DAPT could suppress the proliferation and migration of HCC by regulating the ECM and inhibiting the Hes1/PTEN/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Kaijie Qiu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chenyang Ma
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Lingchao Lu
- Department of Common Surgery, Yuyao Fourth People's Hospital, Ningbo, China
| | - Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Baiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Haixiang Mao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yanmin Wang
- Department of operation room, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
11
|
Liu L, Tao T, Liu S, Yang X, Chen X, Liang J, Hong R, Wang W, Yang Y, Li X, Zhang Y, Li Q, Liang S, Yu H, Wu Y, Guo X, Lai Y, Ding X, Guan H, Wu J, Zhu X, Yuan J, Li J, Su S, Li M, Cai X, Cai J, Tian H. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat Commun 2021; 12:2693. [PMID: 33976158 PMCID: PMC8113560 DOI: 10.1038/s41467-021-22971-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling represents a key mechanism mediating cancer metastasis and stemness. To understand how Notch signaling is overactivated to couple tumor metastasis and self-renewal in NSCLC cells, we performed the current study and showed that RFC4, a DNA replication factor amplified in more than 40% of NSCLC tissues, directly binds to the Notch1 intracellular domain (NICD1) to competitively abrogate CDK8/FBXW7-mediated degradation of NICD1. Moreover, RFC4 is a functional transcriptional target gene of Notch1 signaling, forming a positive feedback loop between high RFC4 and NICD1 levels and sustained overactivation of Notch signaling, which not only leads to NSCLC tumorigenicity and metastasis but also confers NSCLC cell resistance to treatment with the clinically tested drug DAPT against NICD1 synthesis. Furthermore, together with our study, analysis of two public datasets involving more than 1500 NSCLC patients showed that RFC4 gene amplification, and high RFC4 and NICD1 levels were tightly correlated with NSCLC metastasis, progression and poor patient prognosis. Therefore, our study characterizes the pivotal roles of the positive feedback loop between RFC4 and NICD1 in coupling NSCLC metastasis and stemness properties and suggests its therapeutic and diagnostic/prognostic potential for NSCLC therapy.
Collapse
MESH Headings
- A549 Cells
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Feedback, Physiological
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Kaplan-Meier Estimate
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/therapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Neoplasm Metastasis
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Replication Protein C/genetics
- Replication Protein C/metabolism
- Signal Transduction/genetics
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Lei Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyu Tao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xuwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiaer Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ruohui Hong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wenting Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyi Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Youhong Zhang
- Cancer Institute, Southern Medical University, Guangzhou, China
| | - Quanfeng Li
- Cancer Institute, Southern Medical University, Guangzhou, China
| | - Shujun Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Haocheng Yu
- Guangzhou No. 2 High School, Guangzhou, China
| | - Yun Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyu Guo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Lai
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofan Ding
- Department of Surgery at the Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xun Zhu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Cancer Institute, Southern Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of General Internal Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Junchao Cai
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China.
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China.
| | - Han Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Bhore N, Wang BJ, Wu PF, Lee YL, Chen YW, Hsu WM, Lee H, Huang YS, Yang DI, Liao YF. Dual-Specificity Phosphatase 15 (DUSP15) Modulates Notch Signaling by Enhancing the Stability of Notch Protein. Mol Neurobiol 2021; 58:2204-2214. [PMID: 33417224 DOI: 10.1007/s12035-020-02254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer's disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.
Collapse
Affiliation(s)
- Noopur Bhore
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
| | - Bo-Jeng Wang
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
| | - Po-Fan Wu
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan
| | - Yen-Lurk Lee
- TIGP in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen Chen
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuian Huang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan
- TIGP in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ding-I Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Feng Liao
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Landor SKJ, Santio NM, Eccleshall WB, Paramonov VM, Gagliani EK, Hall D, Jin SB, Dahlström KM, Salminen TA, Rivero-Müller A, Lendahl U, Kovall RA, Koskinen PJ, Sahlgren C. PIM-induced phosphorylation of Notch3 promotes breast cancer tumorigenicity in a CSL-independent fashion. J Biol Chem 2021; 296:100593. [PMID: 33775697 PMCID: PMC8100066 DOI: 10.1016/j.jbc.2021.100593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Dysregulation of the developmentally important Notch signaling pathway is implicated in several types of cancer, including breast cancer. However, the specific roles and regulation of the four different Notch receptors have remained elusive. We have previously reported that the oncogenic PIM kinases phosphorylate Notch1 and Notch3. Phosphorylation of Notch1 within the second nuclear localization sequence of its intracellular domain (ICD) enhances its transcriptional activity and tumorigenicity. In this study, we analyzed Notch3 phosphorylation and its functional impact. Unexpectedly, we observed that the PIM target sites are not conserved between Notch1 and Notch3. Notch3 ICD (N3ICD) is phosphorylated within a domain, which is essential for formation of a transcriptionally active complex with the DNA-binding protein CSL. Through molecular modeling, X-ray crystallography, and isothermal titration calorimetry, we demonstrate that phosphorylation of N3ICD sterically hinders its interaction with CSL and thereby inhibits its CSL-dependent transcriptional activity. Surprisingly however, phosphorylated N3ICD still maintains tumorigenic potential in breast cancer cells under estrogenic conditions, which support PIM expression. Taken together, our data indicate that PIM kinases modulate the signaling output of different Notch paralogs by targeting distinct protein domains and thereby promote breast cancer tumorigenesis via both CSL-dependent and CSL-independent mechanisms.
Collapse
Affiliation(s)
- Sebastian K J Landor
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Turku, Finland
| | - William B Eccleshall
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biology, University of Turku, Turku, Finland
| | - Valeriy M Paramonov
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Ellen K Gagliani
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | - Daniel Hall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Käthe M Dahlström
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi, Turku, Finland
| | - Adolfo Rivero-Müller
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biology, University of Turku, Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | | | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021; 296:100233. [PMID: 33376136 PMCID: PMC7948649 DOI: 10.1074/jbc.rev120.015217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the CMGC kinase DYRK2 has been reported as a tumor suppressor across various cancers triggering major antitumor and proapoptotic signals in breast, colon, liver, ovary, brain, and lung cancers, with lower DYRK2 expression correlated with poorer prognosis in patients. Contrary to this, various medicinal chemistry studies reported robust antiproliferative properties of DYRK2 inhibitors, whereas unbiased 'omics' and genome-wide association study-based studies identified DYRK2 as a highly overexpressed kinase in various patient tumor samples. A major paradigm shift occurred in the last 4 years when DYRK2 was found to regulate proteostasis in cancer via a two-pronged mechanism. DYRK2 phosphorylated and activated the 26S proteasome to enhance degradation of misfolded/tumor-suppressor proteins while also promoting the nuclear stability and transcriptional activity of its substrate, heat-shock factor 1 triggering protein folding. Together, DYRK2 regulates proteostasis and promotes protumorigenic survival for specific cancers. Indeed, potent and selective small-molecule inhibitors of DYRK2 exhibit in vitro and in vivo anti-tumor activity in triple-negative breast cancer and myeloma models. However, with conflicting and contradictory reports across different cancers, the overarching role of DYRK2 remains enigmatic. Specific cancer (sub)types coupled to spatiotemporal interactions with substrates could decide the procancer or anticancer role of DYRK2. The current review aims to provide a balanced and critical appreciation of the literature to date, highlighting top substrates such as p53, c-Myc, c-Jun, heat-shock factor 1, proteasome, or NOTCH1, to discuss DYRK2 inhibitors available to the scientific community and to shed light on this duality of protumorigenic and antitumorigenic roles of DYRK2.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
16
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Morrugares R, Correa-Sáez A, Moreno R, Garrido-Rodríguez M, Muñoz E, de la Vega L, Calzado MA. Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2. Cell Mol Life Sci 2020; 77:2621-2639. [PMID: 31605148 PMCID: PMC7320039 DOI: 10.1007/s00018-019-03309-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
NOTCH proteins constitute a receptor family with a widely conserved role in cell cycle, growing and development regulation. NOTCH1, the best characterised member of this family, regulates the expression of key genes in cell growth and angiogenesis, playing an essential role in cancer development. These observations provide a relevant rationale to propose the inhibition of the intracellular domain of NOTCH1 (Notch1-IC) as a strategy for treating various types of cancer. Notch1-IC stability is mainly controlled by post-translational modifications. FBXW7 ubiquitin E3 ligase-mediated degradation is considered one of the most relevant, being the previous phosphorylation at Thr-2512 residue required. In the present study, we describe for the first time a new regulation mechanism of the NOTCH1 signalling pathway mediated by DYRK2. We demonstrate that DYRK2 phosphorylates Notch1-IC in response to chemotherapeutic agents and facilitates its proteasomal degradation by FBXW7 ubiquitin ligase through a Thr-2512 phosphorylation-dependent mechanism. We show that DYRK2 regulation by chemotherapeutic agents has a relevant effect on the viability, motility and invasion capacity of cancer cells expressing NOTCH1. In summary, we reveal a novel mechanism of regulation for NOTCH1 which might help us to better understand its role in cancer biology.
Collapse
Affiliation(s)
- Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Innohealth Group, Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laureano de la Vega
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
18
|
Salt inducible kinases as novel Notch interactors in the developing Drosophila retina. PLoS One 2020; 15:e0234744. [PMID: 32542037 PMCID: PMC7295197 DOI: 10.1371/journal.pone.0234744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Developmental processes require strict regulation of proliferation, differentiation and patterning for the generation of final organ size. Aberrations in these fundamental events are critically important in tumorigenesis and cancer progression. Salt inducible kinases (Siks) are evolutionarily conserved genes involved in diverse biological processes, including salt sensing, metabolism, muscle, cartilage and bone formation, but their role in development remains largely unknown. Recent findings implicate Siks in mitotic control, and in both tumor suppression and progression. Using a tumor model in the Drosophila eye, we show that perturbation of Sik function exacerbates tumor-like tissue overgrowth and metastasis. Furthermore, we show that both Drosophila Sik genes, Sik2 and Sik3, function in eye development processes. We propose that an important target of Siks may be the Notch signaling pathway, as we demonstrate genetic interaction between Siks and Notch pathway members. Finally, we investigate Sik expression in the developing retina and show that Sik2 is expressed in all photoreceptors, basal to cell junctions, while Sik3 appears to be expressed specifically in R3/R4 cells in the developing eye. Combined, our data suggest that Sik genes are important for eye tissue specification and growth, and that their dysregulation may contribute to tumor formation.
Collapse
|
19
|
Hunter GL, Giniger E. Phosphorylation and Proteolytic Cleavage of Notch in Canonical and Noncanonical Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:51-68. [DOI: 10.1007/978-3-030-36422-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Wolf D, Smylla TK, Reichmuth J, Hoffmeister P, Kober L, Zimmermann M, Turkiewicz A, Borggrefe T, Nagel AC, Oswald F, Preiss A, Maier D. Nucleo-cytoplasmic shuttling of Drosophila Hairless/Su(H) heterodimer as a means of regulating Notch dependent transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1520-1532. [PMID: 31326540 DOI: 10.1016/j.bbamcr.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Activation and repression of Notch target genes is mediated by transcription factor CSL, known as Suppressor of Hairless (Su(H)) in Drosophila and CBF1 or RBPJ in human. CSL associates either with co-activator Notch or with co-repressors such as Drosophila Hairless. The nuclear translocation of transcription factor CSL relies on co-factor association, both in mammals and in Drosophila. The Drosophila CSL orthologue Su(H) requires Hairless for repressor complex formation. Based on its role in transcriptional silencing, H protein would be expected to be strictly nuclear. However, H protein is also cytosolic, which may relate to its role in the stabilization and nuclear translocation of Su(H) protein. Here, we investigate the function of the predicted nuclear localization signals (NLS 1-3) and single nuclear export signal (NES) of co-repressor Hairless using GFP-fusion proteins, reporter assays and in vivo analyses using Hairless wild type and shuttling-defective Hairless mutants. We identify NLS3 and NES to be critical for Hairless function. In fact, H⁎NLS3 mutant flies match H null mutants, whereas H⁎NLS3⁎NES double mutants display weaker phenotypes in agreement with a crucial role for NES in H export. As expected for a transcriptional repressor, Notch target genes are deregulated in H⁎NLS3 mutant cells, demonstrating nuclear requirement for its activity. Importantly, we reveal that Su(H) protein strictly follows Hairless protein localization. Together, we propose that shuttling between the nucleo-cytoplasmic compartments provides the possibility to fine tune the regulation of Notch target gene expression by balancing of Su(H) protein availability for Notch activation.
Collapse
Affiliation(s)
- Dorina Wolf
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Thomas K Smylla
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jan Reichmuth
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ludmilla Kober
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mirjam Zimmermann
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Aleksandra Turkiewicz
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Anja C Nagel
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Anette Preiss
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dieter Maier
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
21
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
22
|
Kong X, Zhai J, Yan C, Song Y, Wang J, Bai X, Brown JAL, Fang Y. Recent Advances in Understanding FOXN3 in Breast Cancer, and Other Malignancies. Front Oncol 2019; 9:234. [PMID: 31214487 PMCID: PMC6555274 DOI: 10.3389/fonc.2019.00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
FOXN3 (forkhead box N3; CHES1: check point suppressor 1) belongs to the forkhead box (FOX) protein family. FOXN3 displays transcriptional inhibitory activity, and is involved in cell cycle regulation and tumorigenesis. FOXN3 is a tumor suppresser and alterations in FOXN3 are found in of a variety of cancers including melanoma, osteosarcoma, and hepatocellular carcinoma. While the roles of FOXN3 role in some cancers have been explored, its role in breast cancer remains unclear. Here we describe current state of knowledge of FOXN3 functions, and focus on its roles (known and potential) in breast cancer.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Bai
- Department of Pancreatic-Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James A L Brown
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.,Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
24
|
MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage. Int Immunopharmacol 2018; 63:220-226. [DOI: 10.1016/j.intimp.2018.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
|
25
|
Kang HG, Kim DH, Kim SJ, Cho Y, Jung J, Jang W, Chun KH. Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain. Oncotarget 2018; 7:68229-68241. [PMID: 27626163 PMCID: PMC5356551 DOI: 10.18632/oncotarget.11920] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic disease because usually, it is lately sensed, easily acquires chemoresistance, and has a high recurrence rate. Recent studies suggest that ovarian cancer stem cells (CSCs) are involved in these malignancies. Here, we demonstrated that galectin-3 maintains ovarian CSCs by activating the Notch1 intracellular domain (NICD1). The number and size of ovarian CSCs decreased in the absence of galectin-3, and overexpression of galectin-3 increased them. Overexpression of galectin-3 increased the resistance for cisplatin and paclitaxel-induced cell death. Silencing of galectin-3 decreased the migration and invasion of ovarian cancer cells, and overexpression of galectin-3 reversed these effects. The Notch signaling pathway was strongly activated by galectin-3 overexpression in A2780 cells. Silencing of galectin-3 reduced the levels of cleaved NICD1 and expression of the Notch target genes, Hes1 and Hey1. Overexpression of galectin-3 induced NICD1 cleavage and increased expression of Hes1 and Hey1. Moreover, overexpression of galectin-3 increased the nuclear translocation of NICD1. Interestingly, the carbohydrate recognition domain of galectin-3 interacted with NICD1. Overexpression of galectin-3 increased tumor burden in A2780 ovarian cancer xenografted mice. Increased expression of galectin-3 was detected in advanced stages, compared to stage 1 or 2 in ovarian cancer patients, suggesting that galectin-3 supports stemness of these cells. Based on these results, we suggest that targeting galectin-3 may be a potent approach for improving ovarian cancer therapy.
Collapse
Affiliation(s)
- Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Seok-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Yunhee Cho
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Junghyun Jung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Li Z, Tang Y, Xing W, Dong W, Wang Z. LncRNA, CRNDE promotes osteosarcoma cell proliferation, invasion and migration by regulating Notch1 signaling and epithelial-mesenchymal transition. Exp Mol Pathol 2017; 104:19-25. [PMID: 29246789 DOI: 10.1016/j.yexmp.2017.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most common bone malignancy in adolescence. Recently, the long non-coding RNAs (lncRNAs) were reported to play important roles in osteosarcoma progression. The present study examined the potential role of the lncRNA, Colorectal Neoplasia Differentially Expressed (CRNDE) and molecular mechanisms underlying osteosarcoma progression. In the present study, we identified that CRNDE was up-regulated in osteosarcoma tissues and cell lines, and CRNDE expression level was significantly higher in osteosarcoma tissues from patients with advanced stage and metastasis. Overexpression of CRNDE promoted cell growth, cell proliferation, cell invasion and migration, and increased cell population at S phase with a decreased cell population at G0/G1 phase in MG-63 cells. Knock-down of CRNDE suppressed cell growth, cell proliferation, cell invasion and migration, and decreased cell population at S phase with an increased cell population at G0/G1 phase in U2OS cells. Overexpression of CRNDE was found to enhance the activity of Notch1 signaling and promote epithelial-mesenchymal transition (EMT) in MG-63 cells, while knock-down of CRNDE exerted the opposite effects in U2OS cells. The in vivo results showed that knock-down of CRNDE suppressed the tumor growth in the nude mice inoculated with osteosarcoma cells, and knock-down of CRNDE also suppressed the mRNA expression of Notch1, JAG1, N-cadherin, vimentin, and increased the mRNA expression of E-cadherin in the tumor tissues. Collectively, our results indicated that CRNDE functioned as an oncogene in osteosarcoma cell lines, and CRNDE may exert its oncogenic role via regulating Notch1 signaling and EMT in osteosarcoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency, the First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi, China
| | - Yonghua Tang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi, China
| | - Wujun Xing
- Department of Emergency, the First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi, China
| | - Wei Dong
- Department of Emergency, the First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi, China
| | - Zhichou Wang
- Department of Orthopaedic Oncology, Xi'an Honghui Hospital, Xi'an City, Shaanxi, China.
| |
Collapse
|
27
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
28
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
29
|
Landor SKJ, Lendahl U. The interplay between the cellular hypoxic response and Notch signaling. Exp Cell Res 2017; 356:146-151. [PMID: 28456549 DOI: 10.1016/j.yexcr.2017.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
The ability to sense and adapt to low oxygen levels (hypoxia) is central for most organisms and cell types. At the center of this process is a molecular mechanism, the cellular hypoxic response, in which the hypoxia inducible factors (HIFs) are stabilized by hypoxia, allowing the HIF proteins to act as master transcriptional regulators to adjust the cell to a low oxygen environment. In recent years, it has become increasingly appreciated that the cellular hypoxic response does not always operate in splendid isolation, but intersects with signaling mechanisms such as Notch signaling, a key regulatory signaling mechanism operating in most cell types controlling stem cell maintenance and differentiation. In this review, which is dedicated to the memory of Lorenz Poellinger,1 we discuss how the intersection between Notch and the cellular hypoxic response was discovered and our current understanding of the molecular basis for the cross-talk. We also provide examples of where Notch and hypoxia intersect in various physiological and disease contexts.
Collapse
Affiliation(s)
- Sebastian K-J Landor
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
30
|
Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T, Keegan S, Binley JM, Cristea IM, Fenyö D, Rout MP, Chait BT, Muesing MA. HIV-host interactome revealed directly from infected cells. Nat Microbiol 2016; 1:16068. [PMID: 27375898 PMCID: PMC4928716 DOI: 10.1038/nmicrobiol.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Erica Y. Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Todd M. Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - Kevin D. Mohammed
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Sarah Keegan
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - James M. Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - David Fenyö
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mark A. Muesing
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| |
Collapse
|