1
|
Zheng Y, Lu C, Jiang Y, Wei N, Chang C, Li W, Chen L, Chen R, Chen Z. Unveiling potent bioactive compounds and anti-angiogenic pathways in Gekko swinhonis Guenther for gastric cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119156. [PMID: 39613008 DOI: 10.1016/j.jep.2024.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gekko swinhonis Guenther, commonly referred to as Gecko in the following text, belongs to the genus Gekko within the family Gekko. Its dried whole body is a widely utilized traditional Chinese medicine, demonstrating significant efficacy in the treatment of gastrointestinal malignancies, particularly gastric cancer (GC). Nevertheless, the composition of the gecko is complex, necessitating further research into its active ingredients for the treatment of GC. AIM OF THE STUDY Isolation and characterization of the most active components in Gecko based on their anti-GC mechanisms of vascular endothelial cell inhibition and anti-neovascularization. MATERIALS AND METHODS We utilized the enzymatic hydrolysate of Geckos to investigate its effectiveness and underlying mechanisms. Initially, we assessed its efficacy in ectopic and in-situ GC tumor-bearing mouse models. Subsequently, we evaluated the effectiveness of peptides, aliphatics, and small molecules derived from Gecko using CCK-8 and 3D tumor spheroid assays. The activities of peptides S1-S4 were further examined through these experiments. Finally, we screened, synthesized, and investigated five potential peptides for their pharmacodynamics in the CCK-8 assay and in the in-situ GC model mice. RESULTS The Gecko can inhibit the formation of blood vessels in the tumor microenvironment, providing a localized treatment for GC. The peptide components significantly inhibit vascular endothelial cells and impede the formation of new blood vessels, with the S2 peptide sections (0.3 KD - 3 KD) demonstrating the most potent inhibitory activity against angiogenesis. One of the active peptides effectively suppresses the growth of in-situ GC in nude mice through angiogenesis inhibition and also modulates immunity, all while exhibiting excellent biosafety. CONCLUSIONS We have achieved a significant breakthrough in the local treatment of GC using Gecko. Through pharmacodynamic experiments and a systematic process of isolation and identification, we identified the most effective anti-GC ingredients of Gecko, based on their mechanisms of inhibiting vascular endothelial cells and promoting anti-angiogenesis. Furthermore, we synthesized a lead peptide that demonstrates promising therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Yu Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Yong Jiang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Nina Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chenqi Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Mao QY, Wang XQ, Lin F, Yu MW, Fan HT, Zheng Q, Liu LC, Zhang CC, Li DR, Lin HS. Scorpiones, Scolopendra and Gekko Inhibit Lung Cancer Growth and Metastasis by Ameliorating Hypoxic Tumor Microenvironment via PI3K/AKT/mTOR/HIF-1α Signaling Pathway. Chin J Integr Med 2024; 30:799-808. [PMID: 38850481 DOI: 10.1007/s11655-024-3803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) in mice. RESULTS Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-β1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Qi-Yuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xue-Qian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fei Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hui-Ting Fan
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lan-Chun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chu-Chu Zhang
- Institute of Traditional Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dao-Rui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Hong-Sheng Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|
4
|
Lv X, Li R, Li Z, Wang J. Purification of Gekko Small Peptide Fraction and Its Effect of Inducing Apoptosis of EC 9706 Esophageal Cancer Cells by Inhibiting PI3K/Akt/GLUT1 Signaling Pathway. Chem Biodivers 2021; 18:e2000720. [PMID: 33534194 DOI: 10.1002/cbdv.202000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/02/2021] [Indexed: 11/07/2022]
Abstract
This study aimed to isolate and purify a cytotoxic extraction from Gekko japonicus, identify its components and determine its cytotoxic activity in vitro. We isolated and identified the most potent cytotoxic Gekko small peptide LH-20-15. The identification and analysis of peptide sequences of LH-20-15 were performed by de novo peptide sequencing, and two new peptides were found. LH-20-15 significantly inhibited the proliferation of human esophageal squamous carcinoma EC 9706 cells in a dose-dependent manner. Furthermore, LH-20-15 induced apoptosis in esophageal cancer cells by activating the mitochondrial apoptotic pathway. Further research showed that LH-20-15 inhibited the PI3 K/Akt/GLUT1 signaling pathway. In conclusion, LH-20-15 from Gekko japonicus is a peptide mixture and may inhibit EC 9706 cell proliferation and induce apoptosis by activating the mitochondrial apoptotic pathway. It also regulates glucose metabolism by targeting the PI3 K/Akt/GLUT1 signaling pathway. These small peptides could be new sources of natural cytotoxic ingredients against esophageal cancer with potential drug values.
Collapse
Affiliation(s)
- Xingzhi Lv
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Ruifang Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Zhongjie Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Jiangang Wang
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| |
Collapse
|
5
|
Xia Y, Zhang X, Bo A, Sun J, Li M. Sodium citrate inhibits the proliferation of human gastric adenocarcinoma epithelia cells. Oncol Lett 2018; 15:6622-6628. [PMID: 29616124 DOI: 10.3892/ol.2018.8111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2017] [Indexed: 01/28/2023] Open
Abstract
The objective of the present study was to investigate the cytotoxic effects of sodium citrate on human gastric adenocarcinoma epithelia AGS cells. Numerous cytotoxicity-associated sodium citrate-induced effects were assessed, including cell viability and proliferation, cytokine expression and caspase activity. In vitro studies demonstrated that incubation with sodium citrate (>3.125 mM) inhibited AGS cell viability and proliferation in a dose-dependent manner. Incubation with sodium citrate for 24 h revealed that the levels of interleukin-1β (IL-1β), IL-8 and tumor necrosis factor increased with an increasing of dose of sodium citrate, whereas the IL-6 levels exhibited only a slight alteration. In addition, increases in caspase-3 and -9 activities were associated with increased duration of treatment and dosage of sodium citrate. Collectively, the results of the present study demonstrated that treatment with sodium citrate at higher concentrations or for longer durations exerts a cytotoxic effect on AGS cells via the induction of the intrinsic apoptosis pathway and the alteration in the levels of certain cytokines.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Inner Mongolia Autonomous Region 010021, P.R. China.,School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Xulong Zhang
- Department of Immunology, College of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Agula Bo
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Juan Sun
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Minhui Li
- Department of National Medicine, Inner Mongolia Institute of Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| |
Collapse
|
6
|
Kim HY, Cho Y, Kang H, Yim YS, Kim SJ, Song J, Chun KH. Targeting the WEE1 kinase as a molecular targeted therapy for gastric cancer. Oncotarget 2018; 7:49902-49916. [PMID: 27363019 PMCID: PMC5226556 DOI: 10.18632/oncotarget.10231] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 05/28/2016] [Indexed: 12/23/2022] Open
Abstract
Wee1 is a member of the Serine/Threonine protein kinase family and is a key regulator of cell cycle progression. It has been known that WEE1 is highly expressed and has oncogenic functions in various cancers, but it is not yet studied in gastric cancers. In this study, we investigated the oncogenic role and therapeutic potency of targeting WEE1 in gastric cancer. At first, higher expression levels of WEE1 with lower survival probability were determined in stage 4 gastric cancer patients or male patients with accompanied lymph node metastasis. To determine the function of WEE1 in gastric cancer cells, we determined that WEE1 ablation decreased the proliferation, migration, and invasion, while overexpression of WEE1 increased these effects in gastric cancer cells. We also validated the clinical application of WEE1 targeting by a small molecule, AZD1775 (MK-1775), which is a WEE1 specific inhibitor undergoing clinical trials. AZD1775 significantly inhibited cell proliferation and induced apoptosis and cell cycle arrest in gastric cancer cells, which was more effective in WEE1 high-expressing gastric cancer cells. Moreover, we performed combination treatments with AZD1775 and anti-cancer agents, 5- fluorouracil or Paclitaxel in gastric cancer cells and in gastric cancer orthotopic-transplanted mice to maximize the therapeutic effect and safety of AZD1775. The combination treatments dramatically inhibited the proliferation of gastric cancer cells and tumor burdens in stomach orthotopic-transplanted mice. Taken together, we propose that WEE1 is over-expressed and could enhance gastric cancer cell proliferation and metastasis. Therefore, we suggest that WEE1 is a potent target for gastric cancer therapy.
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Seodaemun-gu, Seoul 03722, Korea
| | - Yunhee Cho
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - HyeokGu Kang
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Ye-Seal Yim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Seok-Jun Kim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Seodaemun-gu, Seoul 03722, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Jin EJ, Ko HR, Hwang I, Kim BS, Choi JY, Park KW, Cho SW, Ahn JY. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation. Sci Rep 2018; 8:2557. [PMID: 29416050 PMCID: PMC5803261 DOI: 10.1038/s41598-018-20755-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Neurite growth is controlled by a complex molecular signaling network that regulates filamentous actin (F-actin) dynamics at the growth cone. The evolutionarily conserved ezrin, radixin, and moesin family of proteins tether F-actin to the cell membrane when phosphorylated at a conserved threonine residue and modulate neurite outgrowth. Here we show that Akt binds to and phosphorylates a threonine 573 residue on radixin. Akt-mediated phosphorylation protects radixin from ubiquitin-dependent proteasomal degradation, thereby enhancing radixin protein stability, which permits proper neurite outgrowth and growth cone formation. Conversely, the inhibition of Akt kinase or disruption of Akt-dependent phosphorylation reduces the binding affinity of radixin to F-actin as well as lowers radixin protein levels, resulting in decreased neurite outgrowth and growth cone formation. Our findings suggest that Akt signaling regulates neurite outgrowth by stabilizing radixin interactions with F-actin, thus facilitating local F-actin dynamics.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Jeong-Yun Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Samsung Medical Center, Seoul, 06351, Korea.
| |
Collapse
|
8
|
Casadevall D, Kilian AY, Bellmunt J. The prognostic role of epigenetic dysregulation in bladder cancer: A systematic review. Cancer Treat Rev 2017; 61:82-93. [PMID: 29121502 DOI: 10.1016/j.ctrv.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite adequate treatment and follow-up, around one fifth of patients with localized bladder cancer will present with disease progression. Adequate prognostic biomarkers are lacking to define patients who are at risk. Mutations in chromatin remodeling genes are more frequently found in bladder cancer than in any other solid tumor. However, the prognostic relevance of epigenetic dysregulation has not been established and may offer an opportunity for biomarker discovery. METHODS Looking for prognostic epigenetic factors, we performed a comprehensive PubMed search using keywords such as "bladder cancer", "chromatin remodeling", "gene methylation" and "epigenetics". We only included studies reporting on the association of epigenetic markers with prognostic outcomes such as recurrence, progression or survival. RESULTS Of 1113 results, 87 studies met the inclusion criteria, which represented a total of 85 epigenetic markers with potential prognostic relevance. No prospective studies were identified. Seventy-three percent (64/87) of the studies involved mixed cohorts of muscle invasive and non-muscle invasive bladder cancer. Promoter methylation of genes with putative prognostic value affected cellular processes such as cell cycle, apoptosis, cell-adhesion or migration, as well as critical pathways such as MAP-kinase or Wnt. Alteration of chromatin regulatory elements suggest a prognostic relevance alterations leading to a predominantly silenced chromatin state. CONCLUSIONS The prognostic impact of epigenetic alterations in bladder cancer is still unclear. Prospective evaluation of methylation marks and chromatin remodeling gene alterations using consistent methods and criteria is warranted.
Collapse
Affiliation(s)
- David Casadevall
- Cancer Research Program, PSMAR-IMIM (Hospital del Mar Medical Research Institute), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain.
| | | | - Joaquim Bellmunt
- Cancer Research Program, PSMAR-IMIM (Hospital del Mar Medical Research Institute), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; Dana-Farber Cancer Institute, 450 Brookline Ave, DANA 1230, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Song JH, Kang KS, Choi YK. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg Med Chem Lett 2017; 27:5109-5113. [PMID: 29122481 DOI: 10.1016/j.bmcl.2017.10.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - You-Kyung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
10
|
Wang Y, Gu X, Deng H, Geng D, Sun H, Wang C. Anti-tumor activities of macromolecular fractions of fresh gecko in vivo and their induction of Bel-7402 cell differentiation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
11
|
Sun Z, Cao Y, Zhai LZ. Java brucea and Chinese herbal medicine for the treatment of cholesterol granuloma in the suprasellar and sellar regions: A case report and literature review. Medicine (Baltimore) 2017; 96:e5930. [PMID: 28151875 PMCID: PMC5293438 DOI: 10.1097/md.0000000000005930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 11/27/2022] Open
Abstract
RATIONALE A cholesterol granuloma (CG) is usually found in the middle ear, papilla, orbits, petrous apex, and choroid plexus, but is highly uncommon in the skull. In spite of benign clinicopathological lesions, bone erosion can be seen occasionally in the patient with CG. The optimal treatment strategy is radical surgery, but complete excision is usually impossible due to anatomical restrictions and a risk of injury to the key structures located nearby. Here, we report a patient with CGs in the suprasellar and sellar regions who was successfully treated with Java brucea and Chinese herbal medicine. PATIENT CONCERNS A 31-year-old man presenting with progressive decreased vision in both eyes was analyzed. DIAGNOSES A skull magnetic resonance imaging (MRI) scan showed a low-density tumor in the uprasellar and sellar regions and histopathological examination revealed a CG. INTERVENTIONS The patient was referred the surgery and radiotherapy. In the meantime, brucea soft capsules and herbal medicine combined were administered to him. OUTCOMES The related clinical symptoms and signs resolved significantly after several months, as his therapy progressed. The patient showed no sign of recurrence during the treatment period. Furthermore, he was still alive and disease-free at 37 months of follow-up visit. LESSONS Overall, brucea soft capsules and a Chinese herbal formula treatment combined could be beneficial in improving the patient's quality of life with CG in the skull.
Collapse
Affiliation(s)
- Zhe Sun
- First clinical medical college of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,China
| | - Yang Cao
- Department of Oncology Center, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin-zhu Zhai
- Department of Oncology Center, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Lee CS, Ghim J, Song P, Suh PG, Ryu SH. Loss of phospholipase D2 impairs VEGF-induced angiogenesis. BMB Rep 2017; 49:191-6. [PMID: 26818087 PMCID: PMC4915235 DOI: 10.5483/bmbrep.2016.49.3.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells. [BMB Reports 2016; 49(3): 191-196]
Collapse
Affiliation(s)
- Chang Sup Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673
| | - Jaewang Ghim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673
| | - Parkyong Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673
- E-mail:
| |
Collapse
|
13
|
Chung JW. Spot the difference: Solving the puzzle of hidden pictures in the lizard genome for identification of regeneration factors. BMB Rep 2017; 49:249-54. [PMID: 26949021 PMCID: PMC5070703 DOI: 10.5483/bmbrep.2016.49.5.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
All living things share some common life processes, such as growth and reproduction, and have the ability to respond to their environment. However, each type of organism has its own specialized way of managing biological events. Genetic sequences determine phenotypic and physiological traits. Based on genetic information, comparative genomics has been used to delineate the differences and similarities between various genomes, and significant progress has been made in understanding regenerative biology by comparing the genomes of a variety of lower animal models of regeneration, such as planaria, zebra fish, and newts. However, the genome of lizards has been relatively ignored until recently, even though lizards have been studied as an excellent amniote model of tissue regeneration. Very recently, whole genome sequences of lizards have been uncovered, and several attempts have been made to find regeneration factors based on genetic information. In this article, recent advances in comparative analysis of the lizard genome are introduced, and their biological implications and putative applications for regenerative medicine and stem cell biology are discussed. [BMB Reports 2016; 49(5): 249-254]
Collapse
Affiliation(s)
- Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| |
Collapse
|
14
|
Ko HR, Kwon IS, Hwang I, Jin EJ, Shin JH, Brennan-Minnella AM, Swanson R, Cho SW, Lee KH, Ahn JY. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. eLife 2016; 5. [PMID: 27938661 PMCID: PMC5153247 DOI: 10.7554/elife.20799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/28/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI:http://dx.doi.org/10.7554/eLife.20799.001
Collapse
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Il-Sun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joo-Ho Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Angela M Brennan-Minnella
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Raymond Swanson
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hoon Lee
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
15
|
La SH, Kim SJ, Kang HG, Lee HW, Chun KH. Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a galectin-3 dependent mechanism. Oncotarget 2016; 7:57117-57130. [PMID: 27494887 PMCID: PMC5302977 DOI: 10.18632/oncotarget.10986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
The human Telomerase Reverse Transcriptase (hTERT) gene encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. Suppression of hTERT expression could induce cellular senescence and is considered a potent approach for gastric cancer therapy. However, control of hTERT expression and function remains poorly understood in gastric cancer. In this study, we demonstrated that high expression levels of hTERT in malignant tissues are correlated with poor survival probability in gastric cancer patients. Knockdown of hTERT expression retarded cell proliferation and cellular senescence, which was confirmed by increased protein expression levels of p21cip1 and p27kip1, and decreased phosphorylation of Rb. In contrast, overexpression of hTERT increased cell proliferation and decreased cellular senescence. Remarkably, the down-regulation of hTERT expression was detected in lgals3-/- mouse embryo fibroblasts (MEFs). Knockdown of galectin-3 decreased the expression of hTERT in gastric cancer cells. Galectin-3 ablation-induced cellular senescence was rescued by concomitant overexpression of hTERT. hTERT ablation-induced cellular senescence and p21cip1 and p27kip1 expression was rescued by concomitant overexpression of galectin-3. The size of tumor burdens was increased in hTERT-overexpressed gastric cancer cells xenografted mice, whereas it was repressed by concomitant depletion of galectin-3. Additionally, we determined that the N-terminal domain of galectin-3 directly interacted with hTERT. The telomeric activity of hTERT was also decreased by galectin-3 ablation. Taken together, ablation of hTERT induces cellular senescence and inhibits the growth of gastric cancer cells, suggesting that it could be a potent target in gastric cancer therapy. We also propose that galectin-3 is an important regulator of hTERT expression and telomeric activity in gastric tumorigenesis.
Collapse
Affiliation(s)
- Sun-Hyuk La
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seok-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Lee D, Kook SH, Ji H, Lee SA, Choi KC, Lee KY, Lee JC. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway. BMB Rep 2016; 48:636-41. [PMID: 26303969 PMCID: PMC4911206 DOI: 10.5483/bmbrep.2015.48.11.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/16/2022] Open
Abstract
There are controversial findings regarding the roles of nuclear factor
(erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone
metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects
osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide
(H2O2), N-acetyl cysteine (NAC), or
both. Exposing the cells to H2O2 decreased the alkaline
phosphatase activity, calcium accumulation, and expression of osteoblast
markers, such as osteocalcin and runt-related transcription factor-2. In
contrast, H2O2 treatment increased the expression of Nrf2
and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked
the inhibitory effect of H2O2 on osteoblast
differentiation by increasing the HO-1 expression and decreasing the osteogenic
marker genes. Pretreatment with NAC restored all changes induced by
H2O2 to near normal levels in the cells. Collectively,
our findings suggest that H2O2-mediated activation of
Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is
inhibited by NAC. [BMB Reports 2015; 48(11): 636-641]
Collapse
Affiliation(s)
- Daewoo Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 54896, Korea
| | - Sung-Ho Kook
- Institute of Oral Biosciences and School of Dentistry; Department of Bioactive Material Sciences and Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Hyeok Ji
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 54896, Korea
| | - Seung-Ah Lee
- Department of Nursing, Chonnam Techno College, Chonnam 57500, Korea
| | - Ki-Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Cheonan 31002, Korea
| | - Kyung-Yeol Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 54896, Korea
| | - Jeong-Chae Lee
- Institute of Oral Biosciences and School of Dentistry; Department of Bioactive Material Sciences and Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
17
|
C-terminal domain of p42 Ebp1 is essential for down regulation of p85 subunit of PI3K, inhibiting tumor growth. Sci Rep 2016; 6:30626. [PMID: 27464702 PMCID: PMC4964336 DOI: 10.1038/srep30626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Potential tumor suppressor p42, ErbB3-binding protein 1 (EBP1) inhibits phosphoinositide 3-kinase (PI3K) activity reducing the p85 regulatory subunit. In this study, we demonstrated that overexpression of p42 promoted not only a reduction of wild type of p85 subunit but also oncogenic mutant forms of p85 which were identified in human cancers. Moreover, we identified the small fragment of C-terminal domain of p42 is sufficient to exhibit tumor suppressing activity of p42-WT, revealing that this small fragment (280-394) of p42 is required for the binding of both HSP70 and CHIP for a degradation of p85. Furthermore, we showed the small fragment of p42 markedly inhibited the tumor growth in mouse xenograft models of brain and breast cancer, resembling tumor suppressing activity of p42. Through identification of the smallest fragment of p42 that is responsible for its tumor suppressor activity, our findings represent a novel approach for targeted therapy of cancers that overexpress PI3K.
Collapse
|
18
|
FU PENG, HU QUAN. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage. Exp Ther Med 2016; 11:1999-2004. [PMID: 27168841 PMCID: PMC4840544 DOI: 10.3892/etm.2016.3101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- PENG FU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - QUAN HU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
19
|
Jung K, Lee D, Yu JS, Namgung H, Kang KS, Kim KH. Protective effect and mechanism of action of saponins isolated from the seeds of gac (Momordica cochinchinensis Spreng.) against cisplatin-induced damage in LLC-PK1 kidney cells. Bioorg Med Chem Lett 2016; 26:1466-70. [DOI: 10.1016/j.bmcl.2016.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
|
20
|
Park CS, Ahn Y, Lee D, Moon SW, Kim KH, Yamabe N, Hwang GS, Jang HJ, Lee H, Kang KS, Lee JW. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells. Bioorg Med Chem Lett 2015; 25:5705-7. [PMID: 26564263 DOI: 10.1016/j.bmcl.2015.10.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/25/2022]
Abstract
Eight chalcone analogues were prepared and evaluated for their cytotoxic effects in human hepatoma HepG2 cells. Compound 5 had a potent cytotoxic effect. The percentage of apoptotic cells was significantly higher in compound 5-treated cells than in control cells. Exposure to compound 5 for 24h induced cleavage of caspase-8 and -3, and poly (ADP-ribose) polymerase (PARP). Our findings suggest that compound 5 is the active chalcone analogue that contributes to cell death in HepG2 cells via the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Cheon-Soo Park
- Department of Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 210-711, Republic of Korea
| | - Yongchel Ahn
- Department of Hematology and Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 210-711, Republic of Korea
| | - Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Sung Won Moon
- Department of Chemistry, Gangneung Wonju National University, Gangneung 210-340, Republic of Korea; Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea
| | - Ki Hyun Kim
- Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Hyuk Jai Jang
- Department of Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 210-711, Republic of Korea
| | - Heesu Lee
- Department of Oral Anatomy, College of Dentistry, Gangneung Wonju National University, 201-340, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea.
| | - Jae Wook Lee
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 305-333, Republic of Korea.
| |
Collapse
|