1
|
You J, Ha S, Kim D, Kim HG, Kim SH, Jeong JH, Oh C, Baek NI, Jung JH, Kim JA, Lee YM. The inhibition of endothelial DLL4-NOTCH1 signaling by 2'-hydroxyflavanone enhances anti-PD-1 therapy in melanoma. Arch Pharm Res 2025; 48:351-364. [PMID: 40172769 DOI: 10.1007/s12272-025-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapeutics; however limited patient responses necessitate combination strategies to improve therapeutic efficacy. Among potential combination partners, drugs targeting DLL4-NOTCH1 signaling pathway-a critical regulator of vascular function-show promise as angiogenesis modulators, but their clinical development have been hindered by safety concerns. To address this challenge, we adopted a novel approach by screening natural compounds with a long history of human consumption. Building upon our earlier findings, we identified three inhibitors of DLL4-NOTCH1 signaling: steppogenin, sanggenon F, and dehydrovomifoliol. Steppogenin inhibited both DLL4 and NOTCH1 activities, while sanggenon F and dehydrovomifoliol selectively suppressed DLL4 and NOTCH1 activity, respectively. We assessed their impact on key angiogenic processes, including endothelial cell migration, sprouting, and proliferation, and elucidated the relative contributions of selective DLL4 or NOTCH1 inhibition to the anti-angiogenic effect. By comparing structurally similar compounds, we identified the 2'-hydroxyflavanone moiety as a key element for DLL4 inhibition. Notably, combining steppogenin with an ICI demonstrated that a nature-derived angiogenesis inhibitor can boost the anti-cancer effect of ICI in a mouse melanoma allograft model. This comprehensive analysis of structure-activity relationships and in vivo therapeutic evaluation provides valuable insights into the development of novel anti-angiogenic compounds for combination therapy with ICIs in cancer treatment.
Collapse
Affiliation(s)
- Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seunghwan Ha
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doyoung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Se Ha Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hak Jeong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Changmin Oh
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jong Hwa Jung
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Penna VR, Amrute JM, Engel M, Shiel EA, Farra W, Cannon EN, Leu-Turner C, Ma P, Villanueva A, Shin H, Parvathaneni A, Jager J, Bueno-Beti C, Asimaki A, Lavine KJ, Saffitz JE, Chelko SP. Interleukin-1β Drives Disease Progression in Arrhythmogenic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628020. [PMID: 39763850 PMCID: PMC11702578 DOI: 10.1101/2024.12.11.628020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including PKP2, DSP, and DSG2. Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors. We identified disease-associated spatial niches characterized by co-existence of fibrotic and inflammatory cell types and failing cardiac myocytes. The inflammatory-fibrotic niche co-localized to areas of cardiac myocyte loss and was comprised of FAP (fibroblast activation protein) and POSTN (periostin) expressing fibroblasts and macrophages expressing NLRP3 (NLR family pyrin domain containing 3) and NFκB activated genes. Using homozygous Desmoglein-2 mutant (Dsg2 mut/mut ) mice, we identified analogous populations of Postn expressing fibroblasts and inflammatory macrophage populations that co-localized within diseased areas. Detailed single cell RNA sequencing analysis of inflammatory macrophage subsets that were increased in ACM samples revealed high levels of interleukin-1β (Il1b) expression. To delineate the possible benefit of targeting IL-1β in ACM, we treated Dsg2 mut/mut mice with an anti-IL-1β neutralizing antibody and observed attenuated fibrosis, reduced levels of inflammatory cytokines and chemokines, preserved cardiac function, and diminished conduction slowing and automaticity, key mechanisms of arrhythmogenesis. These results suggest that currently approved therapeutics that target IL-1β or IL-1 signaling may improve outcomes for patients with ACM.
Collapse
Affiliation(s)
- Vinay R. Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Morgan Engel
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Emily A. Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Waleed Farra
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Elisa N. Cannon
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Colleen Leu-Turner
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
- Creighton University, School of Medicine, Emergency Medicine, Phoenix, AZ, USA
| | - Pan Ma
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Ana Villanueva
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Haewon Shin
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Joanna Jager
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Carlos Bueno-Beti
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Angeliki Asimaki
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, USA
| | - Stephen P. Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| |
Collapse
|
3
|
Andersson A, Escriva Conde M, Surova O, Vermeulen P, Wählby C, Nilsson M, Nyström H. Spatial Transcriptome Mapping of the Desmoplastic Growth Pattern of Colorectal Liver Metastases by In Situ Sequencing Reveals a Biologically Relevant Zonation of the Desmoplastic Rim. Clin Cancer Res 2024; 30:4517-4529. [PMID: 39052239 PMCID: PMC11443209 DOI: 10.1158/1078-0432.ccr-23-3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE We describe the fibrotic rim formed in the desmoplastic histopathologic growth pattern (DHGP) of colorectal cancer liver metastasis (CLM) using in situ sequencing (ISS). The origin of the desmoplastic rim is still a matter of debate, and the detailed cellular organization has not yet been fully elucidated. Understanding the biology of the DHGP in CLM can lead to targeted treatment and improve survival. EXPERIMENTAL DESIGN We used ISS, targeting 150 genes, to characterize the desmoplastic rim by unsupervised clustering of gene coexpression patterns. The cohort comprised 10 chemo-naïve liver metastasis resection samples with a DHGP. RESULTS Unsupervised clustering of spatially mapped genes revealed molecular and cellular diversity within the desmoplastic rim. We confirmed the presence of the ductular reaction and cancer-associated fibroblasts. Importantly, we discovered angiogenesis and outer and inner zonation in the rim, characterized by nerve growth factor receptor and periostin expression. CONCLUSIONS ISS enabled the analysis of the cellular organization of the fibrous rim surrounding CLM with a DHGP and suggests a transition from the outer part of the rim, with nonspecific liver injury response, into the inner part, with gene expression indicating collagen synthesis and extracellular matrix remodeling influenced by the interaction with cancer cells, creating a cancer cell-supportive environment. Moreover, we found angiogenic processes in the rim. Our results provide a potential explanation of the origin of the rim in DHGP and lead to exploring novel targeted treatments for patients with CLM to improve survival.
Collapse
Affiliation(s)
- Axel Andersson
- Science for Life Laboratory, Department of Information Technology, Uppsala University, Uppsala, Sweden.
| | - Maria Escriva Conde
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Olga Surova
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Peter Vermeulen
- Translational Cancer Research Unit - GZA Hospital Sint-Augustinus, Antwerp, Belgium.
| | - Carolina Wählby
- Science for Life Laboratory, Department of Information Technology, Uppsala University, Uppsala, Sweden.
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Hanna Nyström
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Delage P, Ségrestin B, Seyssel K, Chanon S, Vieille-Marchiset A, Durand A, Nemeth A, Métairon S, Charpagne A, Descombes P, Hager J, Laville M, Vidal H, Meugnier E. Adipose tissue angiogenesis genes are down-regulated by grape polyphenols supplementation during a human overfeeding trial. J Nutr Biochem 2023; 117:109334. [PMID: 36965784 DOI: 10.1016/j.jnutbio.2023.109334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
The adaptive response to overfeeding is associated with profound modifications of gene expression in adipose tissue to support lipid storage and weight gain. The objective of this study was to assess in healthy lean men whether a supplementation with polyphenols could interact with these molecular adaptations. Abdominal subcutaneous adipose tissue biopsies were sampled from 42 subjects participating to an overfeeding protocol providing an excess of 50% of their total energy expenditure for 31 days, and who were supplemented with 2 g/day of grape polyphenols or a placebo. Gene expression profiling was performed by RNA sequencing. Overfeeding led to a modification of the expression of 163 and 352 genes in the placebo and polyphenol groups, respectively. The GO functions of these genes were mostly involved in lipid metabolism, followed by genes involved in adipose tissue remodeling and expansion. In response to overfeeding, 812 genes were differentially regulated between groups. Among them, a set of 41 genes were related to angiogenesis and were downregulated in the polyphenol group. Immunohistochemistry targeting PECAM1, as endothelial cell marker, confirmed reduced angiogenesis in this group. Finally, quercetin and isorhamnetin, two polyphenol species enriched in the plasma of the volunteers submitted to the polyphenols, were found to inhibit human umbilical vein endothelial cells migration in vitro. Polyphenol supplementation do not prevent the regulation of genes related to lipid metabolism in human adipose tissue during overfeeding, but impact the angiogenesis pathways. This may potentially contribute to a protection against adipose tissue expansion during dynamic phase of weight gain.
Collapse
Affiliation(s)
- Pauline Delage
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Bérénice Ségrestin
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Kévin Seyssel
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | | | - Annie Durand
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France.
| | | | - Aline Charpagne
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | | | - Jörg Hager
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | - Martine Laville
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Emmanuelle Meugnier
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| |
Collapse
|
5
|
Bakr S, Brennan K, Mukherjee P, Argemi J, Hernaez M, Gevaert O. Identifying key multifunctional components shared by critical cancer and normal liver pathways via SparseGMM. CELL REPORTS METHODS 2023; 3:100392. [PMID: 36814838 PMCID: PMC9939431 DOI: 10.1016/j.crmeth.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a Bayesian framework, SparseGMM quantitatively measures confidence in regulators and uncertainty in target gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq) dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regulators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key multifunctional components shared by critical pathways, including p53 and estrogen signaling.
Collapse
Affiliation(s)
- Shaimaa Bakr
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Josepmaria Argemi
- Liver Unit, Clinica Universidad de Navarra, Hepatology Program, Center for Applied Medical Research, 31008 Pamplona, Navarra, Spain
| | - Mikel Hernaez
- Center for Applied Medical Research, University of Navarra, 31009 Pamplona, Navarra, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Chu F, Xu X, Zhang Y, Cai H, Peng J, Li Y, Zhang H, Liu H, Chen X. LIM-domain binding protein 2 was down-regulated by miRNA-96-5p inhibited the proliferation, invasion and metastasis of lung cancer H1299 cells. Clinics (Sao Paulo) 2023; 78:100145. [PMID: 36473369 PMCID: PMC9727592 DOI: 10.1016/j.clinsp.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVES Lung cancer was one of the most common malignancies around the world. It has great significance in to search for the mechanism of occurrence and development of lung cancer. LIM Domain Binding protein 2 (LDB2) belongs to the LIM-domain binding family, it can be used as a binding protein that combined with other transcription factors to form the transcription complex for regulating the expression of target genes. The expression of microRNA-96-5p (miR-96-5p) has been investigated in various tumors. The aim of this study is to investigate the potential role of LDB2 and miR-96-5p in lung cancer. METHODS Real-time quantitative PCR was applied to detect the expression of LDB2 and miR-96-5p. The proliferation, invasion, and metastasis of H1299 cells were analyzed by CCK8, transwell, and wound healing assay after LDB2 or miR-96-5p transfection. Luciferase activities assay and western blot were used to reveal the targeted regulation between LDB2 and miR-96-5p. RESULTS Here the authors found LDB2 was down-regulated in lung cancer tissues and negatively correlated with miR-96-5p expression, it could promote or inhibit the proliferation, invasion and metastasis of H1299 cells after LDB2 knockdown or overexpression and regulate the expression of cyclinD1, MMP9, Bcl-2, and Bax via ERK1/2 signaling pathway. Furthermore, miR-96-5p exerted its function by directly binding to 3'-UTR of LDB2 and regulating expression of LDB2. miR-96-5p could promote the proliferation, invasion, and metastasis of H1299 cells. CONCLUSION These findings demonstrate that LDB2 can act as a new regulator to inhibit cell proliferation, invasion, and metastasis via the ERK1/2 signaling pathway, and miR-96-5p may be a potential promising molecular by targeting LDB2 in lung cancer.
Collapse
Affiliation(s)
- Fuying Chu
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Xinxin Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Yan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Hua Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Jingjing Peng
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Yanan Li
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Han Zhang
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Hongli Liu
- Department of Laboratory Medicine, Nantong Tumor Hospital, China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital, China.
| |
Collapse
|
7
|
Identification of Key Genes and Pathways in Genotoxic Stress Induced Endothelial Dysfunction: Results of Whole Transcriptome Sequencing. Biomedicines 2022; 10:biomedicines10092067. [PMID: 36140167 PMCID: PMC9495888 DOI: 10.3390/biomedicines10092067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs (“signal transduction”, “response to stimulus”, “biological regulation”, and “regulation of biological process”) were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.
Collapse
|
8
|
The transcription factor complex LMO2/TAL1 regulates branching and endothelial cell migration in sprouting angiogenesis. Sci Rep 2022; 12:7226. [PMID: 35508511 PMCID: PMC9068620 DOI: 10.1038/s41598-022-11297-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The transcription factor complex, consisting of LMO2, TAL1 or LYL1, and GATA2, plays an important role in capillary sprouting by regulating VEGFR2, DLL4, and angiopoietin 2 in tip cells. Overexpression of the basic helix-loop-helix transcription factor LYL1 in transgenic mice results in shortened tails. This phenotype is associated with vessel hyperbranching and a relative paucity of straight vessels due to DLL4 downregulation in tip cells by forming aberrant complex consisting of LMO2 and LYL1. Knockdown of LMO2 or TAL1 inhibits capillary sprouting in spheroid-based angiogenesis assays, which is associated with decreased angiopoietin 2 secretion. In the same assay using mixed TAL1- and LYL1-expressing endothelial cells, TAL1 was found to be primarily located in tip cells, while LYL1-expressing cells tended to occupy the stalk position in sprouts by upregulating VEGFR1 than TAL1. Thus, the interaction between LMO2 and TAL1 in tip cells plays a key role in angiogenic switch of sprouting angiogenesis.
Collapse
|
9
|
Wu L, Li YF, Shen JW, Zhu Q, Jiang J, Ma SH, He K, Ning ZP, Li J, Li XM. Single-cell RNA sequencing of mouse left ventricle reveals cellular diversity and intercommunication. Physiol Genomics 2022; 54:11-21. [PMID: 34859688 DOI: 10.1152/physiolgenomics.00016.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have revealed the diversity of the whole cardiac cellulome but not refined the left ventricle, which was essential for finding therapeutic targets. Here, we characterized single-cell transcriptional profiles of the mouse left ventricular cellular landscape using single-cell RNA sequencing (10× Genomics). Detailed t-distributed stochastic neighbor embedding (tSNE) analysis revealed the cell types of left ventricle with gene markers. Left ventricular cellulome contained cardiomyocytes highly expressed Trdn, endothelial cells highly expressed Pcdh17, fibroblast highly expressed Lama2, and macrophages highly expressed Hpgds, also proved by in situ hybridization. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis (ListHits > 2, P < 0.05) were employed with the DAVID database to investigate subtypes of each cell type with the underlying functions of differentially expressed genes (DEGs). Endothelial cells included 5 subtypes, fibroblasts comprising 7 subtypes, and macrophages contained 11 subtypes. The key representative DEGs (P < 0.001) were Gja4 and Gja5 in cluster 3 of endothelial cells, Aqp2 and Thbs4 in cluster 2 of fibroblasts, and Clec4e and Trem-1 in cluster 3 of macrophages perhaps involved in the occurrence of atherosclerosis, heart failure, and acute myocardial infarction proved by literature review. We also revealed extensive networks of intercellular communication in left ventricle. We suggested possible therapeutic targets for cardiovascular disease and autocrine and paracrine signaling underpins left ventricular homeostasis. This study provided new insights into the structure and function of the mammalian left ventricular cellulome and offers an important resource that will stimulate studies in cardiovascular research.
Collapse
Affiliation(s)
- Lan Wu
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Yan-Fei Li
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Jun-Wei Shen
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qian Zhu
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Jing Jiang
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Shi-Hua Ma
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Kai He
- Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhong-Ping Ning
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Jue Li
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xin-Ming Li
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Circ-DONSON Knockdown Inhibits Cell Proliferation and Radioresistance of Breast Cancer Cells via Regulating SOX4. JOURNAL OF ONCOLOGY 2021; 2021:8461740. [PMID: 34853591 PMCID: PMC8629618 DOI: 10.1155/2021/8461740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
Background Circular RNAs have been validated as critical regulators in the development of breast cancer (BC). Circ-DONSON is involved in the progression of glioma and gastric cancer. However, the biological role of circ-DONSON in BC remains unclear, and the aim of this study was to explore the biological role of circ-DONSON in BC. Methods Human tissue samples and BC cell lines were collected in this study. siRNAs against circ-DONSON were transfected into BC cell lines for silencing of circ-DONSON. Quantitative real-time PCR was used to test the circ-DONSON expression. Cell counting kit-8 (CCK-8), 5-bromo-2' deoxyuridine enzyme-linked immunosorbent assay (BrdU-ELISA), colony formation, and caspase-3 activity assays were used to assess cell proliferation, cell survival, and cell viability. Western blotting analysis was used to detect the protein expression levels. Results Our findings showed that circ-DONSON showed high expression in BC tissues and cell lines. CCK-8 and BrdU-ELISA assays showed that circ-DONSON knockdown inhibited BC cell proliferation. Moreover, cell survival, cell viability, and caspase-3 activity assays showed that circ-DONSON knockdown reduced the radioresistance of BC cells. Mechanistically, circ-DONSON regulated BC cell proliferation and radioresistance via SRY-box transcription factor 4 (SOX4). SOX4 overexpression significantly rescued the effect of circ-DONSON knockdown on BC cell proliferation and radioresistance. Moreover, circ-DONSON activated the Wnt/β-catenin pathway in BC cells via SOX4. Conclusion Our study concluded that circ-DONSON knockdown hindered cell proliferation and radioresistance through the SOX4/Wnt/β-catenin pathway in BC.
Collapse
|
11
|
Zhai D, Wang G, Li L, Jia X, Zheng G, Yin J. [LIM-domain binding protein 2 regulated by m 6A modification inhibits lung adenocarcinoma cell proliferation in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:329-335. [PMID: 33849822 DOI: 10.12122/j.issn.1673-4254.2021.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role and expression pattern of LIM-domain binding protein 2 (LDB2) in lung adenocarcinoma. OBJECTIVE We studied the expression pattern of LDB2 in lung adenocarcinoma based on data from the online databases TCGA, GEO and CPTAC, and the results were verified in lung adenocarcinoma tissues and cells using immunohistochemistry, qRT-PCR and Western blotting. The relationship between LDB2 and the prognosis of patients with lung adenocarcinoma was analyzed using GEPIA and GEO databases. We further analyzed the role of LDB2 in regulating cell behaviors in a H1299 cell model over-expressing LDB2 using cell counting, soft agar colony forming assay and flow cytometry. The m6A binding sites on LDB2 were confirmed by bioinformatics analysis and MeRIP-qPCR assays. The effect of YTHDC2 on LDB2 was examined using qRT-PCR and Western blotting, and the binding of YTHDC2 to the transcript of LDB2 was verified with RIP-qPCR assays. Dual luciferase reporter assay was performed to verify YTHDC2 functioning via m6A sites. OBJECTIVE LDB2 expression was significantly decreased in lung adenocarcinoma in comparison with normal tissues based on data from TCGA, GEPIA and CPTAC, and the same results were obtained from 80 lung adenocarcinoma tissues and 17 adjacent normal tissues. Similarly, LDB2 expression was decreased in lung adenocarcinoma cells as compared with 16HBE cells. The data from Prognoscan and GEPIA suggested that a high LDB2 expression was positively correlated with a more favorable outcome of lung adenocarcinoma patients. LDB2-overexpressing H1299 cells showed a significant inhibition of proliferative activity with cell cycle arrest in S phage. Bioinformatics analysis and MeRIP-qPCR assay confirmed the presence of m6A sites on LDB2. The m6A reader YTHDC2 was positively related with LDB2 in lung adenocarcinoma based on data from GEPIA (r=0.22). Overexpression YTHDC2 significantly enhanced LDB2 expression in H1299 cells by about 19.35 folds. Dual luciferase reporter assay showed that YTHDC2 enhanced the promoter activity in the wild-type group but not in deletion group. OBJECTIVE LDB2 expression can be up-regulated by m6A reader YTHDC2 in lung adenocarcinoma to inhibit the proliferation of the tumor cells in vitro.
Collapse
Affiliation(s)
- D Zhai
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| | - G Wang
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| | - L Li
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| | - X Jia
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| | - G Zheng
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| | - J Yin
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University//Guangzhou Key Laboratory of Translational Medicine on Cancer Treatment, Guangzhou 510095, China
| |
Collapse
|
12
|
Rajabi A, Saber A, Pourmahdi M, Emami A, Ravanbakhsh R, Khodavirdipour A, Khodaei M, Akbarzadeh M, Abdolahi S, Hosseinpourfeizi MA, Safaralizadeh R. Anti-Cancer Effect of Melatonin via Downregulation of Delta-like Ligand 4 in Estrogen-Responsive Breast Cancer Cells. Recent Pat Anticancer Drug Discov 2020; 15:329-340. [PMID: 32990541 DOI: 10.2174/1574892815666200929145236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Notch signaling pathway has a key role in angiogenesis and Delta - Like Ligand 4 (DLL4) is one of the main ligands of Notch involved in cell proliferation in sprouting vessels. OBJECTIVE In this study, we aimed to evaluate the expression of DLL4 in primary breast tumors and to examine the effect of melatonin on DLL4 expression in vitro. METHODS Eighty-five breast tumor and paired adjacent non-tumor tissue samples were collected. Apoptosis assay was performed on breast cancer cells to evaluate melatonin effects. Western blot and quantitative RT-PCR were used to measure DLL4 expression. Then, we investigated the effect of melatonin on the expression of DLL4 in four breast cancer cell lines at RNA and protein levels. We also performed a probabilistic neural network analysis to study genes closely associated with DLL4 expression. RESULTS Our results showed a significantly higher expression of DLL4 in tumor tissues compared to non-tumor tissues (P = 0.027). Melatonin treatment substantially attenuated DLL4 expression in BT474 and MCF-7 cells, but not in SK-BR-3 and MDA-MB-231 cells. Also, melatonin induced apoptosis in all four cell lines. Network analysis revealed a set of 15 genes that had close association and interaction with DLL4. DLL4 was overexpressed in breast cancer tissues as compared to the non-tumor tissues. CONCLUSION It can be concluded that melatonin treatment attenuated DLL4 expression only in estrogen- responsive breast cancer cells and is able to induce apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Saber
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mahsa Pourmahdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Emami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Amir Khodavirdipour
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehran Khodaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Molood Akbarzadeh
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University, Tabriz, Iran
| | - Sepehr Abdolahi
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Di X, He G, Chen H, Zhu C, Qin Q, Yan J, Zhang X, Sun X. High-mobility group box 1 protein modulated proliferation and radioresistance in esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2019; 34:728-735. [PMID: 29968320 DOI: 10.1111/jgh.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM The high-mobility group box 1 (HMGB1) protein plays an important role in a lot of biological behaviors, including DNA damage repair, gene transcription, cell replication, and cell death, and its expression is higher in many solid tumors tissues than in their adjacent normal tissues, and it is always involved in tumor proliferation, metastasis, therapeutic tolerance, and poor prognosis. However, HMGB1 in proliferation and radioresistance of esophageal squamous cell carcinoma (ESCC) remains poorly understood. In this study, the effect of HMGB1 on proliferation, cell death, DNA damage repair and radioresistance, and its underlying mechanism was investigated in human ESCC. METHODS The immunohistochemistry scores of tumor and adjacent normal tissues in ESCC tissue microarray were analyzed. Stable HMGB1 knockdown cell lines were constructed using Kyse150 and Kyse450 cells. Cell viability, radioresistance, apoptosis, autophagy, and DNA damage were determined using CCK-8, 5-ethynyl-2'-deoxyuridine, clonogenic survival assay, immunofluorescence, flow cytometry, and western blot assays. RESULTS Differential analyses showed that the expression of HMGB1 in esophageal cancer tissue was significantly higher than that in adjacent normal tissues. The downregulation of HMGB1 could effectively inhibit proliferation, increase radiosensitivity, impair DNA damage repair abilities, reduce autophagy, and increase apoptosis rates in ESCC cells after irradiation. CONCLUSIONS HMGB1 is expected to be a potential target for ESCC therapy and radiosensitization.
Collapse
Affiliation(s)
- Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guofeng He
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiqiang Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, Martinian L, Trabzuni D, Smith C, Walker R, Ryten M, Reimers M, Weale ME, Hardy J, Matarin M. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain 2019; 142:1616-1630. [DOI: 10.1093/brain/awz074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sebastian Guelfi
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Maria Thom
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Argentina
| | - Lee Stanyer
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Lillian Martinian
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Walker
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mark Reimers
- Neuroscience Program and Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael E. Weale
- Department Medical and Molecular Genetics, King’s College London, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mar Matarin
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, WC1N 3, UK
| |
Collapse
|