1
|
Tan L, Yang Y, Huang X, Yuan Y, Wang K, Peng X, He Y, Wang Y, Lei L, Chen Y, Duan D, Wang N, Yang Y, Dai F, Huang C, Wang A. Haspin kinase inhibition dampens pseudorabies virus infection in vitro. Front Vet Sci 2025; 12:1572729. [PMID: 40336815 PMCID: PMC12055825 DOI: 10.3389/fvets.2025.1572729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Pseudorabies virus (PRV) represents a considerable infectious threat to the swine industry in China and poses potential health risks to humans. However, there is a notable lack of specific antiviral agents aimed at combating PRV. Haspin is involved in histone phosphorylation during mitosis, while the role of swine Haspin in PRV infection has not been previously investigated. In the present study, we demonstrated that Haspin expression was significantly enhanced in response to PRV infection. Overexpression of the haspin gene notably enhanced PRV infection, while genetic inhibition of haspin gene resulted in a substantial reduction in viral infection. Further investigations indicated that the Haspin kinase inhibitor CHR-6494 effectively suppressed PRV infection in a concentration-dependent manner, primarily by inhibiting viral virus replication rather than interfering with the processes of binding, entry, or release. Additionally, treatment with CHR-6494 effectively restricted Herpes simplex virus type 1 infection in Vero cells. Collectively, these findings indicate that Haspin may serve as a novel therapeutic target for the management of infections caused by Alphaherpesvirinae.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
- Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yong Yang
- Yunnan Sino-Science Gene Technology Co., Ltd., Kunming, China
| | - Xiaojiu Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Youqing Yuan
- Department of Chemistry, University College London, London, United Kingdom
| | - Kaixin Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaoye Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yiyan He
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Yijin Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Lei Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yingyi Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Deyong Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Naidong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yi Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cuiqing Huang
- Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Aibing Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Singh RK, Torne AS, Robertson ES. Hypoxic reactivation of Kaposi's sarcoma associated herpesvirus. CELL INSIGHT 2024; 3:100200. [PMID: 39391006 PMCID: PMC11466537 DOI: 10.1016/j.cellin.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Hypoxic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) refers to the phenomenon under low oxygen where the virus goes from latent to lytic replication. Typically, healthy cells generally cease cell division and DNA replication under hypoxic conditions due to limited resources, and the presence of physiological inhibitors. This restricted replication under hypoxic conditions is considered an employed strategy of the cell to minimize energy consumption. However, cancerous cells continuously replicate and divide in hypoxic conditions by reprogramming several aspects of their cell physiology, including but not limited to metabolism, cell cycle, DNA replication, transcription, translation, and the epigenome. KSHV infection, similar to cancerous cells, is known to bypass hypoxia-induced restrictions and undergo reactivation to produce progeny viruses. In previous studies we have mapped several aspects of cell physiology that are manipulated by KSHV through its latent antigens during hypoxic conditions, which allows for a permissive environment for its replication. We discuss the major strategies utilized by KSHV to bypass hypoxia-induced repression. We also describe the KSHV-encoded antigens responsible for modulating these cellular processes important for successful viral replication and persistence in hypoxia.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Atharva S Torne
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
3
|
Choi UY, Lee SH. Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus. J Microbiol Biotechnol 2024; 34:2143-2152. [PMID: 39403716 PMCID: PMC11637867 DOI: 10.4014/jmb.2407.07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024]
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| |
Collapse
|
4
|
Goraltchouk A, Lourie J, Hollander JM, Grace Rosen H, Fujishiro AA, Luppino F, Zou K, Seregin A. Development and characterization of a first-in-class adjustable-dose gene therapy system. Gene 2024; 919:148500. [PMID: 38663689 DOI: 10.1016/j.gene.2024.148500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Despite significant potential, gene therapy has been relegated to the treatment of rare diseases, due in part to an inability to adjust dosage following initial administration. Other significant constraints include cost, specificity, antigenicity, and systemic toxicity of current generation technologies. To overcome these challenges, we developed a first-in-class adjustable-dose gene therapy system, with optimized biocompatibility, localization, durability, and cost. METHODS A lipid nanoparticle (LNP) delivery system was developed and characterized by dynamic light scattering for size, zeta potential, and polydispersity. Cytocompatibility and transfection efficiency were optimized in vitro using primary human adipocytes and preadipocytes. Durability, immunogenicity, and adjustment of expression were evaluated in C57BL/6 and B6 albino mice using in vivo bioluminescence imaging. Biodistribution was assessed by qPCR and immunohistochemistry; therapeutic protein expression was quantified by ELISA. RESULTS Following LNP optimization, in vitro transfection efficiency of primary human adipocytes reached 81.3 % ± 8.3 % without compromising cytocompatibility. Critical physico-chemical properties of the system (size, zeta potential, polydispersity) remained stable over a broad range of genetic cassette sizes (1,871-6,203 bp). Durable expression was observed in vivo over 6 months, localizing to subcutaneous adipose tissues at the injection site with no detectable transgene in the liver, heart, spleen, or kidney. Gene expression was adjustable using several physical and pharmacological approaches, including cryolipolysis, focused ultrasound, and pharmacologically inducible apoptosis. The ability of transfected adipocytes to express therapeutic transgenes ranging from peptides to antibodies, at potentially clinically relevant levels, was confirmed in vitro and in vivo. CONCLUSION We report the development of a novel, low-cost therapeutic platform, designed to enable the replacement of subcutaneously administered protein treatments with a single-injection, adjustable-dose gene therapy.
Collapse
Affiliation(s)
- Alex Goraltchouk
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - Jared Lourie
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Judith M Hollander
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - H Grace Rosen
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Atsutaro A Fujishiro
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Francesco Luppino
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Alexey Seregin
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America.
| |
Collapse
|
5
|
Maliano MR, Yetming KD, Kalejta RF. Triple lysine and nucleosome-binding motifs of the viral IE19 protein are required for human cytomegalovirus S-phase infections. mBio 2024; 15:e0016224. [PMID: 38695580 PMCID: PMC11237493 DOI: 10.1128/mbio.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 06/13/2024] Open
Abstract
Herpesvirus genomes are maintained as extrachromosomal plasmids within the nuclei of infected cells. Some herpesviruses persist within dividing cells, putting the viral genome at risk of being lost to the cytoplasm during mitosis because karyokinesis (nuclear division) requires nuclear envelope breakdown. Oncogenic herpesviruses (and papillomaviruses) avoid genome loss during mitosis by tethering their genomes to cellular chromosomes, thereby ensuring viral genome uptake into newly formed nuclei. These viruses use viral proteins with DNA- and chromatin-binding capabilities to physically link viral and cellular genomes together in a process called tethering. The known viral tethering proteins of human papillomavirus (E2), Epstein-Barr virus (EBNA1), and Kaposi's sarcoma-associated herpesvirus (LANA) each contain two independent domains required for genome tethering, one that binds sequence specifically to the viral genome and another that binds to cellular chromatin. This latter domain is called a chromatin tethering domain (CTD). The human cytomegalovirus UL123 gene encodes a CTD that is required for the virus to productively infect dividing fibroblast cells within the S phase of the cell cycle, presumably by tethering the viral genome to cellular chromosomes during mitosis. The CTD-containing UL123 gene product that supports S-phase infections is the IE19 protein. Here, we define two motifs in IE19 required for S-phase infections: an N-terminal triple lysine motif and a C-terminal nucleosome-binding motif within the CTD.IMPORTANCEThe IE19 protein encoded by human cytomegalovirus (HCMV) is required for S-phase infection of dividing cells, likely because it tethers the viral genome to cellular chromosomes, thereby allowing them to survive mitosis. The mechanism through which IE19 tethers viral genomes to cellular chromosomes is not understood. For human papillomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, viral genome tethering is required for persistence (latency) and pathogenesis (oncogenesis). Like these viruses, HCMV also achieves latency, and it modulates the properties of glioblastoma multiforme tumors. Therefore, defining the mechanism through which IE19 tethers viral genomes to cellular chromosomes may help us understand, and ultimately combat or control, HCMV latency and oncomodulation.
Collapse
Affiliation(s)
- Minor R. Maliano
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kristen D. Yetming
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Molecular Biology, Charles River Laboratories, Wayne, Pennsylvania, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|