1
|
Luna N, Páez-Triana L, Ramírez AL, Muñoz M, Goméz M, Medina JE, Urbano P, Barragán K, Ariza C, Martínez D, Hernández C, Patiño LH, Ramirez JD. Microbial community dynamics in blood, faeces and oral secretions of neotropical bats in Casanare, Colombia. Sci Rep 2024; 14:25808. [PMID: 39468253 PMCID: PMC11519573 DOI: 10.1038/s41598-024-77090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Bats are known reservoirs for a wide range of pathogenic microorganisms, including viruses, bacteria, fungi, helminths, and protozoa, which can be transmitted and infect other zoonotic organisms. Various studies have utilised next-generation sequencing (NGS) to describe the pathogens associated with bats. Although most have characterised microbial communities in specific body fluids, few have analysed the composition and diversity of these microbial communities across different body fluids at the individual level. In this study, we employed two next-generation sequencing techniques: amplicon-based sequencing of the V4 hypervariable region of the 16S- and 18S-rRNA genes and viral metagenomics, to describe the prokaryotic, eukaryotic, and viral communities present in blood, faeces, and oral swab samples collected from two genera of bats (Carollia and Phyllostomus) in the department of Casanare, eastern Colombia. A total of 60 samples corresponding to the three bodily fluids were processed and analysed. The results indicated that the microbial communities across the body fluids were mainly composed of bacteria, fungi, protozoa, and various DNA and RNA viruses, showing a variability of microbial genera and species. The abundances, diversity metrics, and correlations of these microorganisms displayed patterns associated with bat genus and body fluids, suggesting that the ecological characteristics of these microbial communities may be influenced by the ecological and physiological traits of the bats. Additionally, we found similar community compositions of bacteria, some fungal genera, and viruses in the three body fluids, indicating a possible circulation of these microbes within the same bat. This could be due to microbial movement from the gut microbiota to other physiological systems or transmission via blood-feeding vectors. Furthermore, our results revealed the presence of various microbes of public health concern, including Bartonella spp., Mannheimia haemolytica, Rhodotorula spp., Piroplasmida spp., Toxoplasma gondii, Alphacoronavirus spp., and Bat circovirus. The abundance of these pathogenic microbial species across the three bodily fluids suggests potential transmission routes from bats to other organisms, which may contribute to the emergence of zoonotic disease outbreaks. These findings highlight the variability of microorganisms present within the same bat and the different pathogen-host interactions that may regulate the presence and transmission of these zoonotic microbes. Further research is required to elucidate the genomic features, ecological interactions, and biological activities of these microbial communities in bats.
Collapse
Affiliation(s)
- Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie L Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marcela Goméz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Julián E Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Karen Barragán
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Catalina Ariza
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Davinzon Martínez
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Carbonero-Pacheco J, Rey MD, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Microbial diversity in sherry wine biofilms and surrounding mites. Food Microbiol 2023; 116:104366. [PMID: 37689427 DOI: 10.1016/j.fm.2023.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
Sherry wines are film wines produced in the Jerez-Xérès-Sherry and Montilla-Moriles regions in southern Spain which require an aging process under flor biofilms, known as "biological aging". The presence of mites in Sherry wine wineries has been reported and associated with improved wine volatile properties. This work analyzes the microbial diversity in flor biofilms and mites in Sherry wine wineries using Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) and ITS/gene amplification. Two mite species, Carpoglyphus lactis and Tyrophagus putrescentiae, were spotted in the sampled winery and 32 microorganism species were identified in their exoskeleton or surrounding biofilms. To our knowledge, 26 of these species were never described before in sherry wine environments. We hypothesized that mites feed on the flor biofilms as well as another type of biofilm located in barrel cracks, known by winemakers as "natas" (cream in English). These non-studied biofilms showed the highest microbiome diversity among all samples (followed by C. lactis spotted nearby) thus, representing a niche of microorganisms with potential biotechnological interest. Besides mites, Drosophila flies were spotted in the sampling areas. The role of flies and mites as vectors that transport microorganisms among different niches (i.e., flor biofilms and natas) is discussed.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
3
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
4
|
Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv 2023; 63:108095. [PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Huong-Yong Ting
- Drone Research and Application Centre, University of Technology Sarawak, No.1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
5
|
Procházková L, Matsuzaki R, Řezanka T, Nedbalová L, Remias D. The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance. JOURNAL OF PHYCOLOGY 2023; 59:236-248. [PMID: 36461636 PMCID: PMC10946730 DOI: 10.1111/jpy.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Ryo Matsuzaki
- University of Tsukuba, Faculty of Life and Environmental Sciences1–1–1 TennodaiTsukubaIbaraki305–8572Japan
- National Institute for Environmental Studies, Biodiversity Division16‐2 OnogawaTsukubaIbaraki305‐8506Japan
| | - Tomáš Řezanka
- The Czech Academy of SciencesInstitute of MicrobiologyVídeňská 1083Prague142 20Czech Republic
| | - Linda Nedbalová
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, School of EngineeringStelzhamerstr. 23Wels4600Austria
| |
Collapse
|
6
|
Trivedi CB, Keuschnig C, Larose C, Rissi DV, Mourot R, Bradley JA, Winkel M, Benning LG. DNA/RNA Preservation in Glacial Snow and Ice Samples. Front Microbiol 2022; 13:894893. [PMID: 35677909 PMCID: PMC9168539 DOI: 10.3389/fmicb.2022.894893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The preservation of nucleic acids for high-throughput sequencing is an ongoing challenge for field scientists. In particular, samples that are low biomass, or that have to be collected and preserved in logistically challenging environments (such as remote sites or during long sampling campaigns) can pose exceptional difficulties. With this work, we compare and assess the effectiveness of three preservation methods for DNA and RNA extracted from microbial communities of glacial snow and ice samples. Snow and ice samples were melted and filtered upon collection in Iceland, and filters were preserved using: (i) liquid nitrogen flash freezing, (ii) storage in RNAlater, or (iii) storage in Zymo DNA/RNA Shield. Comparative statistics covering nucleic acid recovery, sequencing library preparation, genome assembly, and taxonomic diversity were used to determine best practices for the preservation of DNA and RNA samples from these environments. Our results reveal that microbial community composition based on DNA was comparable at the class level across preservation types. Based on extracted RNA, the taxonomic composition of the active community was primarily driven by the filtered sample volume (i.e., biomass content). In low biomass samples (where <200 ml of sample volume was filtered) the taxonomic and functional signatures trend toward the composition of the control samples, while in samples where a larger volume (more biomass) was filtered our data showed comparable results independent of preservation type. Based on all comparisons our data suggests that flash freezing of filters containing low biomass is the preferred method for preserving DNA and RNA (notwithstanding the difficulties of accessing liquid nitrogen in remote glacial field sites). Generally, RNAlater and Zymo DNA/RNA Shield solutions work comparably well, especially for DNA from high biomass samples, but Zymo DNA/RNA Shield is favored due to its higher yield of preserved RNA. Biomass quantity from snow and ice samples appears to be the most important factor in regards to the collection and preservation of samples from glacial environments.
Collapse
Affiliation(s)
- Christopher B Trivedi
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | | | - Catherine Larose
- Environmental Microbial Genomics, Université de Lyon, Ecully Cedex, France
| | | | - Rey Mourot
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - James A Bradley
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany.,School of Geography, Queen Mary University of London, London, United Kingdom
| | - Matthias Winkel
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Liane G Benning
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Gálvez FE, Saldarriaga-Córdoba M, Huovinen P, Silva AX, Gómez I. Revealing the Characteristics of the Antarctic Snow Alga Chlorominima collina gen. et sp. nov. Through Taxonomy, Physiology, and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2021; 12:662298. [PMID: 34163502 PMCID: PMC8215615 DOI: 10.3389/fpls.2021.662298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
Collapse
Affiliation(s)
- Francisca E. Gálvez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- *Correspondence: Francisca E. Gálvez,
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
8
|
Matsuzaki R, Takashima Y, Suzuki I, Kawachi M, Nozaki H, Nohara S, Degawa Y. The Enigmatic Snow Microorganism, Chionaster nivalis, Is Closely Related to Bartheletia paradoxa (Agaricomycotina, Basidiomycota). Microbes Environ 2021; 36. [PMID: 34135204 PMCID: PMC8209449 DOI: 10.1264/jsme2.me21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Biodiversity Division, National Institute for Environmental Studies
| | - Yusuke Takashima
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo
| | - Seiichi Nohara
- Biodiversity Division, National Institute for Environmental Studies
| | - Yousuke Degawa
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| |
Collapse
|
9
|
Procházková L, Remias D, Bilger W, Křížková H, Řezanka T, Nedbalová L. Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light. FRONTIERS IN PLANT SCIENCE 2020; 11:617250. [PMID: 33391329 PMCID: PMC7773729 DOI: 10.3389/fpls.2020.617250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 05/25/2023]
Abstract
Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.
Collapse
Affiliation(s)
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Heda Křížková
- Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
10
|
Procházková L, Remias D, Holzinger A, Řezanka T, Nedbalová L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol 2020; 44:105-117. [PMID: 33519055 PMCID: PMC7819945 DOI: 10.1007/s00300-020-02778-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
11
|
Brown SP, Tucker AE. Distribution and biogeography of Sanguina snow algae: Fine-scale sequence analyses reveal previously unknown population structure. Ecol Evol 2020; 10:11352-11361. [PMID: 33144969 PMCID: PMC7593155 DOI: 10.1002/ece3.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
It has been previously suggested that snow algal species within the genus Sanguina (S. nivaloides and S. aurantia) show no population structure despite being found globally (S. nivaloides) or throughout the Northern Hemisphere (S. aurantia). However, systematic biogeographic research into global distributions is lacking due to few genetic and no genomic resources for these snow algae. Here, using all publicly available and previously unpublished Sanguina sequences of the Internal Transcribed Spacer 2 region, we investigated whether this purported lack of population structure within Sanguina species is supported by additional evidence. Using a minimum entropy decomposition (MED) approach to examine fine-scale genetic population structure, we find that these snow algae populations are largely distinct regionally and have some interesting biogeographic structuring. This is in opposition to the currently accepted idea that Sanguina species lack any observable population structure across their vast ranges and highlights the utility of fine-scale (sub-OTU) analytical tools to delineate geographic and genetic population structure. This work extends the known range of S. aurantia and emphasizes the need for development of genetic and genomic tools for additional studies on snow algae biogeography.
Collapse
Affiliation(s)
- Shawn P. Brown
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| | - Avery E. Tucker
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| |
Collapse
|
12
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|