1
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Capelli I, Lerario S, Ciurli F, Berti GM, Aiello V, Provenzano M, La Manna G. Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights. Expert Opin Investig Drugs 2024; 33:469-484. [PMID: 38618918 DOI: 10.1080/13543784.2024.2342327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney condition caused by a single-gene mutation. It leads patients to kidney failure in more than 50% of cases by the age of 60, and, given the dominant inheritance, this disease is present in the family history in more than 90% of cases. AREAS COVERED This review aims to analyze the set of preclinical and early-phase studies to provide a general view of the current progress on ADPKD therapeutic options. Articles from PubMed and the current status of the trials listed in clinicaltrials.gov were examined for the review. EXPERT OPINION Many potential therapeutic targets are currently under study for the treatment of ADPKD. A few drugs have reached the clinical phase, while many are currently still in the preclinical phase. Organoids could be a novel approach to the study of drugs in this phase. Other than pharmacological options, very important developing approaches are represented by gene therapy and the use of MiRNA inhibitors.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesca Ciurli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Marco Berti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
4
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
5
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
6
|
Qiu J, Germino GG, Menezes LF. Mechanisms of Cyst Development in Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:209-219. [PMID: 37088523 PMCID: PMC10289784 DOI: 10.1053/j.akdh.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common inherited cause of end-stage kidney disease worldwide. Most cases result from mutation of either of 2 genes, PKD1 and PKD2, which encode proteins that form a probable receptor/channel complex. Studies suggest that a loss of function of the complex below an indeterminate threshold triggers cyst initiation, which ultimately results in dysregulation of multiple metabolic processes and downstream pathways and subsequent cyst growth. Noncell autonomous factors may also promote cyst growth. In this report, we focus primarily on the process of early cyst formation and factors that contribute to its variability with brief consideration of how new studies suggest this process may be reversible.
Collapse
Affiliation(s)
- Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| |
Collapse
|
7
|
Zhou JX, Torres VE. Drug repurposing in autosomal dominant polycystic kidney disease. Kidney Int 2023; 103:859-871. [PMID: 36870435 DOI: 10.1016/j.kint.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Autosomal dominant polycystic kidney disease is characterized by progressive kidney cyst formation that leads to kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the only drug approved to treat patients with autosomal dominant polycystic kidney disease who have rapid disease progression. The use of tolvaptan is limited by reduced tolerability from aquaretic effects and potential hepatotoxicity. Thus, the search for more effective drugs to slow down the progression of autosomal dominant polycystic kidney disease is urgent and challenging. Drug repurposing is a strategy for identifying new clinical indications for approved or investigational medications. Drug repurposing is increasingly becoming an attractive proposition because of its cost-efficiency and time-efficiency and known pharmacokinetic and safety profiles. In this review, we focus on the repurposing approaches to identify suitable drug candidates to treat autosomal dominant polycystic kidney disease and prioritization and implementation of candidates with high probability of success. Identification of drug candidates through understanding of disease pathogenesis and signaling pathways is highlighted.
Collapse
Affiliation(s)
- Julie Xia Zhou
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Rochester, Minnesota, USA.
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Rochester, Minnesota, USA.
| |
Collapse
|
8
|
A Potential Therapy Using Antisense Oligonucleotides to Treat Autosomal Recessive Polycystic Kidney Disease. J Clin Med 2023; 12:jcm12041428. [PMID: 36835961 PMCID: PMC9966971 DOI: 10.3390/jcm12041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
(1) Background: Autosomal recessive polycystic kidney disease (ARPKD) is a rare ciliopathy characterized by progressively enlarged kidneys with fusiform dilatation of the collecting ducts. Loss-of-function mutations in the PKHD1 gene, which encodes fibrocystin/polyductin, cause ARPKD; however, an efficient treatment method and drug for ARPKD have yet to be found. Antisense oligonucleotides (ASOs) are short special oligonucleotides which function to regulate gene expression and alter mRNA splicing. Several ASOs have been approved by the FDA for the treatment of genetic disorders, and many are progressing at present. We designed ASOs to verify whether ASOs mediate the correction of splicing further to treat ARPKD arising from splicing defects and explored them as a potential treatment option. (2) Methods: We screened 38 children with polycystic kidney disease for gene detection using whole-exome sequencing (WES) and targeted next-generation sequencing. Their clinical information was investigated and followed up. The PKHD1 variants were summarized and analyzed, and association analysis was carried out to analyze the relationship between genotype and phenotype. Various bioinformatics tools were used to predict pathogenicity. Hybrid minigene analysis was performed as part of the functional splicing analysis. Moreover, the de novo protein synthesis inhibitor cycloheximide was selected to verify the degraded pathway of abnormal pre-mRNAs. ASOs were designed to rescue aberrant splicing, and this was verified. (3) Results: Of the 11 patients with PKHD1 variants, all of them exhibited variable levels of complications of the liver and kidneys. We found that patients with truncating variants and variants in certain regions had a more severe phenotype. Two splicing variants of the PKHD1 genotypes were studied via the hybrid minigene assay: variants c.2141-3T>C and c.11174+5G>A. These cause aberrant splicing, and their strong pathogenicity was confirmed. We demonstrated that the abnormal pre-mRNAs produced from the variants escaped from the NMD pathway with the use of the de novo protein synthesis inhibitor cycloheximide. Moreover, we found that the splicing defects were rescued by using ASOs, which efficiently induced the exclusion of pseudoexons. (4) Conclusion: Patients with truncating variants and variants in certain regions had a more severe phenotype. ASOs are a potential drug for treating ARPKD patients harboring splicing mutations of the PKHD1 gene by correcting the splicing defects and increasing the expression of the normal PKHD1 gene.
Collapse
|
9
|
Bais T, Gansevoort RT, Meijer E. Drugs in Clinical Development to Treat Autosomal Dominant Polycystic Kidney Disease. Drugs 2022; 82:1095-1115. [PMID: 35852784 PMCID: PMC9329410 DOI: 10.1007/s40265-022-01745-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation that ultimately leads to kidney failure in most patients. Approximately 10% of patients who receive kidney replacement therapy suffer from ADPKD. To date, a vasopressin V2 receptor antagonist (V2RA) is the only drug that has been proven to attenuate disease progression. However, aquaresis-related adverse events limit its widespread use. Data on the renoprotective effects of somatostatin analogues differ largely between studies and medications. This review discusses new drugs that are investigated in clinical trials to treat ADPKD, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and micro RNA inhibitors, and drugs already marketed for other indications that are being investigated for off-label use in ADPKD, such as metformin. In addition, potential methods to improve the tolerability of V2RAs are discussed, as well as methods to select patients with (likely) rapid disease progression and issues regarding the translation of preclinical data into clinical practice. Since ADPKD is a complex disease with a high degree of interindividual heterogeneity, and the mechanisms involved in cyst growth also have important functions in various physiological processes, it may prove difficult to develop drugs that target cyst growth without causing major adverse events. This is especially important since long-standing treatment is necessary in this chronic disease. This review therefore also discusses approaches to targeted therapy to minimize systemic side effects. Hopefully, these developments will advance the treatment of ADPKD.
Collapse
|
10
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Reiterová J, Tesař V. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment. Int J Mol Sci 2022; 23:ijms23063317. [PMID: 35328738 PMCID: PMC8949594 DOI: 10.3390/ijms23063317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, with an estimated prevalence between 1:1000 and 1:2500. It is mostly caused by mutations of the PKD1 and PKD2 genes encoding polycystin 1 (PC1) and polycystin 2 (PC2) that regulate cellular processes such as fluid transport, differentiation, proliferation, apoptosis and cell adhesion. Reduction of calcium ions and induction of cyclic adenosine monophosphate (sAMP) promote cyst enlargement by transepithelial fluid secretion and cell proliferation. Abnormal activation of MAPK/ERK pathway, dysregulated signaling of heterotrimeric G proteins, mTOR, phosphoinositide 3-kinase, AMPK, JAK/STAT activator of transcription and nuclear factor kB (NF-kB) are involved in cystogenesis. Another feature of cystic tissue is increased extracellular production and recruitment of inflammatory cells and abnormal connections among cells. Moreover, metabolic alterations in cystic cells including defective glucose metabolism, impaired beta-oxidation and abnormal mitochondrial activity were shown to be associated with cyst expansion. Although tolvaptan has been recently approved as a drug that slows ADPKD progression, some patients do not tolerate tolvaptan because of frequent aquaretic. The advances in the knowledge of multiple molecular pathways involved in cystogenesis led to the development of animal and cellular studies, followed by the development of several ongoing randomized controlled trials with promising drugs. Our review is aimed at pathophysiological mechanisms in cystogenesis in connection with the most promising drugs in animal and clinical studies.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Correspondence:
| |
Collapse
|
12
|
Jamadar A, Suma SM, Mathew S, Fields TA, Wallace DP, Calvet JP, Rao R. The tyrosine-kinase inhibitor Nintedanib ameliorates autosomal-dominant polycystic kidney disease. Cell Death Dis 2021; 12:947. [PMID: 34650051 PMCID: PMC8517027 DOI: 10.1038/s41419-021-04248-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and is characterized by progressive growth of fluid-filled cysts. Growth factors binding to receptor tyrosine kinases (RTKs) stimulate cell proliferation and cyst growth in PKD. Nintedanib, a triple RTK inhibitor, targets the vascular endothelial growth-factor receptor (VEGFR), platelet-derived growth-factor receptor (PDGFR), and fibroblast growth-factor receptor (FGFR), and is an approved drug for the treatment of non-small-cell lung carcinoma and idiopathic lung fibrosis. To determine if RTK inhibition using nintedanib can slow ADPKD progression, we tested its effect on human ADPKD renal cyst epithelial cells and myofibroblasts in vitro, and on Pkd1f/fPkhd1Cre and Pkd1RC/RC, orthologous mouse models of ADPKD. Nintedanib significantly inhibited cell proliferation and in vitro cyst growth of human ADPKD renal cyst epithelial cells, and cell viability and migration of human ADPKD renal myofibroblasts. Consistently, nintedanib treatment significantly reduced kidney-to-body-weight ratio, renal cystic index, cystic epithelial cell proliferation, and blood-urea nitrogen levels in both the Pkd1f/fPkhd1Cre and Pkd1RC/RC mice. There was a corresponding reduction in ERK, AKT, STAT3, and mTOR activity and expression of proproliferative factors, including Yes-associated protein (YAP), c-Myc, and Cyclin D1. Nintedanib treatment significantly reduced fibrosis in Pkd1RC/RC mice, but did not affect renal fibrosis in Pkd1f/fPkhd1Cre mice. Overall, these results suggest that nintedanib may be repurposed to effectively slow cyst growth in ADPKD.
Collapse
Affiliation(s)
- Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sreenath M Suma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Ghosh A, Serai SD, Venkatakrishna SSB, Dutt M, Hartung EA. Two-dimensional (2D) morphologic measurements can quantify the severity of liver disease in children with autosomal recessive polycystic kidney disease (ARPKD). Abdom Radiol (NY) 2021; 46:4709-4719. [PMID: 34173844 DOI: 10.1007/s00261-021-03189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the correlation of 2D shape-based features with magnetic resonance elastography (MRE)-derived liver stiffness and portal hypertension (pHTN) in children with ARPKD-associated congenital hepatic fibrosis. METHODS In a prospective IRB-approved study, 14 children with ARPKD (mean age ± SD = 13.8 ± 5.8 years) and 14 healthy controls (mean age ± SD = 13.7 ± 3.9 years) underwent liver MRE. A 2D region of interest (ROI) outlining the left liver lobe at the level of the abdominal aorta was drawn on sagittal T2-weighted images. Eight shape features (perimeter, major axis length, maximum diameter, perimeter to surface ratio (PSR), elongation, sphericity, minor axis length, and mesh surface) describing the 2D-ROI were calculated. Spearman's correlation was calculated between shape features and MRE-derived liver stiffness (kPa) (n = 28). Shape features were compared between participants with ARPKD with pHTN (splenomegaly and thrombocytopenia), (n = 4) and without pHTN (n = 8) using the Mann Whitney U test. Receiver operating characteristic (ROC) curves were generated to examine the diagnostic accuracy of shape features in identifying cases with liver stiffness > 2.9 kPa. RESULTS In ARPKD participants and healthy controls, all eight shape features, except elongation, showed moderate to strong correlation with liver stiffness (kPa); the perimeter surface ratio had the strongest correlation (rho = - 0.75, p < 0.001). In ROC analysis, a cut-off of PSR ≤ 0.057 mm-1 gave 100% (95% CI: 59.0-100.0) sensitivity and 100% (95% CI: 83.9-100.0) specificity in identifying ARPKD participants with liver stiffness > 2.9 kPa, with an area under the ROC curve (AUC) of 1.0 (95% CI: 0.88-1.00). Individuals with pHTN had a lower median PSR (mean ± SD = 0.05 ± 0.01) than those without (0.07 ± 0.01; p = 0.027) with an AUC of 0.91 (95% CI: 0.60-0.99) in differentiating the participants with and without pHTN. CONCLUSION Shape-based features of the left liver lobe show potential as non-invasive biomarkers of liver fibrosis and portal hypertension in children with ARPKD.
Collapse
|
14
|
Diamond T, Nema N, Wen J. Hepatic Ciliopathy Syndromes. Clin Liver Dis (Hoboken) 2021; 18:193-197. [PMID: 34745577 PMCID: PMC8549716 DOI: 10.1002/cld.1114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Interview and Audio Recording.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology, Hepatology and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Noor Nema
- Division of Gastroenterology, Hepatology and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Jessica Wen
- Division of Gastroenterology, Hepatology and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPA
- Department of PediatricsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
15
|
Vasileva VY, Sultanova RF, Sudarikova AV, Ilatovskaya DV. Insights Into the Molecular Mechanisms of Polycystic Kidney Diseases. Front Physiol 2021; 12:693130. [PMID: 34566674 PMCID: PMC8456103 DOI: 10.3389/fphys.2021.693130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant (AD) and autosomal recessive (AR) polycystic kidney diseases (PKD) are severe multisystem genetic disorders characterized with formation and uncontrolled growth of fluid-filled cysts in the kidney, the spread of which eventually leads to the loss of renal function. Currently, there are no treatments for ARPKD, and tolvaptan is the only FDA-approved drug that alleviates the symptoms of ADPKD. However, tolvaptan has only a modest effect on disease progression, and its long-term use is associated with many side effects. Therefore, there is still a pressing need to better understand the fundamental mechanisms behind PKD development. This review highlights current knowledge about the fundamental aspects of PKD development (with a focus on ADPKD) including the PC1/PC2 pathways and cilia-associated mechanisms, major molecular cascades related to metabolism, mitochondrial bioenergetics, and systemic responses (hormonal status, levels of growth factors, immune system, and microbiome) that affect its progression. In addition, we discuss new information regarding non-pharmacological therapies, such as dietary restrictions, which can potentially alleviate PKD.
Collapse
Affiliation(s)
| | - Regina F Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Department of Physiology, Augusta University, Augusta, GA, United States
| | | | | |
Collapse
|
16
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
17
|
Radadiya PS, Thornton MM, Daniel EA, Idowu JY, Wang W, Magenheimer B, Subramaniam D, Tran PV, Calvet JP, Wallace DP, Sharma M. Quinomycin A reduces cyst progression in polycystic kidney disease. FASEB J 2021; 35:e21533. [PMID: 33826787 PMCID: PMC8251518 DOI: 10.1096/fj.202002490r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.
Collapse
Affiliation(s)
- Priyanka S Radadiya
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mackenzie M Thornton
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily A Daniel
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jessica Y Idowu
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wei Wang
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brenda Magenheimer
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Pamela V Tran
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P Wallace
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Madhulika Sharma
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
19
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Capuano I, Buonanno P, Riccio E, Amicone M, Pisani A. Therapeutic advances in ADPKD: the future awaits. J Nephrol 2021; 35:397-415. [PMID: 34009558 DOI: 10.1007/s40620-021-01062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies.
Collapse
Affiliation(s)
- Ivana Capuano
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - Pasquale Buonanno
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Naples, Italy
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Maria Amicone
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Antonio Pisani
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
21
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
22
|
Wicher D, Obrycki Ł, Jankowska I. Autosomal Recessive Polycystic Kidney Disease-The Clinical Aspects and Diagnostic Challenges. J Pediatr Genet 2021; 10:1-8. [PMID: 33552631 DOI: 10.1055/s-0040-1714701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is one of the most common ciliopathies with kidney (nephromegaly, hypertension, renal dysfunction) and liver involvement (congenital hepatic fibrosis, dilated bile ducts). Clinical features also include growth failure and neurocognitive impairment. Plurality of clinical aspects requires multidisciplinary approach to treatment and care of patients. Until recently, diagnosis was based on clinical criteria. Results of genetic testing show the molecular basis of polycystic kidneys disease is heterogeneous, and differential diagnosis is essential. The aim of the article is to discuss the role of genetic testing and its difficulties in diagnostics of ARPKD in children.
Collapse
Affiliation(s)
- Dorota Wicher
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Łukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
23
|
Magnetic resonance elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. Abdom Radiol (NY) 2021; 46:570-580. [PMID: 32757071 DOI: 10.1007/s00261-020-02694-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/30/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate whether liver and spleen magnetic resonance elastography (MRE) can measure the severity of congenital hepatic fibrosis (CHF) and portal hypertension (pHTN) in individuals with autosomal recessive polycystic kidney disease (ARPKD), and to examine correlations between liver MRE and ultrasound (US) elastography. METHODS Cross-sectional study of nine individuals with ARPKD and 14 healthy controls. MRE was performed to measure mean liver and spleen stiffness (kPa); US elastography was performed to measure point shear wave speed (SWS) in both liver lobes. We compared: (1) MRE liver and spleen stiffness between controls vs. ARPKD; and (2) MRE liver stiffness between participants with ARPKD without vs. with pHTN, and examined correlations between MRE liver stiffness, spleen length, platelet counts, and US elastography SWS. Receiver operating characteristic (ROC) analysis was performed to examine diagnostic accuracy of liver MRE. RESULTS Participants with ARPKD (median age 16.8 [IQR 13.3, 18.9] years) had higher median MRE liver stiffness than controls (median age 14.7 [IQR 9.7, 16.7 years) (2.55 vs. 1.92 kPa, p = 0.008), but MRE spleen stiffness did not differ. ARPKD participants with pHTN had higher median MRE liver stiffness than those without (3.60 kPa vs 2.49 kPa, p = 0.05). Liver MRE and US elastography measurements were strongly correlated. To distinguish ARPKD vs. control groups, liver MRE had 78% sensitivity and 93% specificity at a proposed cut-off of 2.48 kPa [ROC area 0.83 (95% CI 0.63-1.00)]. CONCLUSION Liver MRE may be a useful quantitative method to measure the severity of CHF and pHTN in individuals with ARPKD.
Collapse
|
24
|
Dafinger C, Mandel AM, Braun A, Göbel H, Burgmaier K, Massella L, Mastrangelo A, Dötsch J, Benzing T, Weimbs T, Schermer B, Liebau MC. The carboxy-terminus of the human ARPKD protein fibrocystin can control STAT3 signalling by regulating SRC-activation. J Cell Mol Med 2020; 24:14633-14638. [PMID: 33112055 PMCID: PMC7754027 DOI: 10.1111/jcmm.16014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/04/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is mainly caused by variants in the PKHD1 gene, encoding fibrocystin (FC), a large transmembrane protein of incompletely understood cellular function. Here, we show that a C‐terminal fragment of human FC can suppress a signalling module of the kinase SRC and signal transducer and activator of transcription 3 (STAT3). Consistently, we identified truncating genetic variants specifically affecting the cytoplasmic tail in ARPKD patients, found SRC and the cytoplasmic tail of fibrocystin in a joint dynamic protein complex and observed increased activation of both SRC and STAT3 in cyst‐lining renal epithelial cells of ARPKD patients.
Collapse
Affiliation(s)
- Claudia Dafinger
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alina Braun
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, Faculty of Medicine, University Hospital Cologne and University of Cologne, Cologne, Germany
| | - Kathrin Burgmaier
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Laura Massella
- Nephrology and Dialysis Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jörg Dötsch
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
25
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
26
|
Cho Y, Tong A, Craig JC, Mustafa RA, Chapman A, Perrone RD, Ahn C, Fowler K, Torres V, Gansevoort RT, Ong ACM, Coolican H, Tze-Wah Kao J, Harris T, Gutman T, Shen JI, Viecelli AK, Johnson DW, Au E, El-Damanawi R, Logeman C, Ju A, Manera KE, Chonchol M, Odland D, Baron D, Pei Y, Sautenet B, Rastogi A, Sharma A, Rangan G. Establishing a Core Outcome Set for Autosomal Dominant Polycystic Kidney Disease: Report of the Standardized Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) Consensus Workshop. Am J Kidney Dis 2020; 77:255-263. [PMID: 32771648 DOI: 10.1053/j.ajkd.2020.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The omission of outcomes that are of relevance to patients, clinicians, and regulators across trials in autosomal dominant polycystic kidney disease (ADPKD) limits shared decision making. The Standardized Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) Initiative convened an international consensus workshop on October 25, 2018, to discuss the identification and implementation of a potential core outcome set for all ADPKD trials. This article summarizes the discussion from the workshops and the SONG-PKD core outcome set. Key stakeholders including 11 patients/caregivers and 47 health professionals (nephrologists, policy makers, industry, and researchers) attended the workshop. Four themes emerged: "Relevance of trajectory and impact of kidney function" included concerns about a patient's prognosis and uncertainty of when they may need to commence kidney replacement therapy and the lack of an early prognostic marker to inform long-term decisions; "Discerning and defining pain specific to ADPKD" highlighted the challenges in determining the origin of pain, adapting to the chronicity and repeated episodes of pain, the need to place emphasis on pain management, and to have a validated measure for pain; "Highlighting ADPKD consequences" encompassed cyst-related complications and reflected patient's knowledge because of family history and the hereditary nature of ADPKD; and "Risk for life-threatening but rare consequences" such as cerebral aneurysm meant considering both frequency and severity of the outcome. Kidney function, mortality, cardiovascular disease, and pain were established as the core outcomes for ADPKD.
Collapse
Affiliation(s)
- Yeoungjee Cho
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia; Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Australia.
| | - Allison Tong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Arlene Chapman
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Ronald D Perrone
- Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine Boston, MA
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | | | - Vicente Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Ron T Gansevoort
- Faculty of Medical Sciences, University Medical Center, Gronigen, the Netherlands
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Juliana Tze-Wah Kao
- School of Medicine, Fu Jen Catholic University and Fu Jen Catholic University Hospital, Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tess Harris
- Polycystic Kidney Disease International, Geneva, Switzerland
| | - Talia Gutman
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Jenny I Shen
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Andrea K Viecelli
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia; Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia; Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Australia
| | - Eric Au
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Ragada El-Damanawi
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridge Clinical Trials Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Charlotte Logeman
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Angela Ju
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Karine E Manera
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney
| | - Michel Chonchol
- School of Medicine, Renal Diseases and Hypertension, University of Colorado, Denver, CO
| | - Dwight Odland
- Polycystic Kidney Disease Foundation, Kansas City, MO
| | - David Baron
- Polycystic Kidney Disease Foundation, Kansas City, MO
| | - York Pei
- Division of Nephrology, University of Toronto, Toronto, Canada; Division of Genomic Medicine, University of Toronto, Toronto, Canada
| | - Benedicte Sautenet
- Department of Nephrology, Hypertension, Dialysis, Kidney Transplantation, Tours Hospital, SPHERE-INSERM 1246, University of Tours and Nantes, Tours, France
| | - Anjay Rastogi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Ankit Sharma
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Gopala Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| | | |
Collapse
|
27
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
28
|
Müller RU, Schermer B. Hippo signaling-a central player in cystic kidney disease? Pediatr Nephrol 2020; 35:1143-1152. [PMID: 31297585 DOI: 10.1007/s00467-019-04299-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cystic transformation of kidney tissue is a key feature of various disorders including autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and disorders of the nephronophthisis spectrum (NPH). While ARPKD and NPH typically affect children and adolescents, pediatric onset of ADPKD is less frequently found. While both ADPKD and ARPKD are characterized by formation of hundreds of cysts accompanied by hyperproliferation of tubular epithelia with massive renal enlargement, NPH patients usually show kidneys of normal or reduced size with cysts limited to the corticomedullary border. Recent results suggest the hippo pathway to be a central regulator at the crossroads of the renal phenotype in both diseases. Hippo signaling regulates organ size and proliferation by keeping the oncogenic transcriptional co-activators Yes associated protein 1 (YAP) and WW domain containing transcription regulator 1 (TAZ) in check. Once this inhibition is released, nuclear YAP/TAZ interacts with TEAD family transcription factors and the consecutive transcriptional activation of TEA domain family members (TEAD) target genes mediates an increase in proliferation. Here, we review the current knowledge on the impact of NPHP and ADPKD mutations on Hippo signaling networks. Furthermore, we provide an outlook towards potential future therapeutic strategies targeting Hippo signaling to alleviate cystic kidney disease.
Collapse
Affiliation(s)
- Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin Ther Targets 2020; 24:589-599. [PMID: 32250187 DOI: 10.1080/14728222.2020.1751818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Polycystic liver disease (PLD) is a rare disease defined by the growth of hepatic cysts and occurs either isolated or as an extrarenal manifestation of polycystic kidney disease. While surgery has been the mainstay in treatment of symptomatic PLD, recently discovered regulatory mechanisms affecting hepatic cystogenesis provide potential new therapies to reduce hepatic cyst burden.Areas covered: This review summarizes intracellular pathways and therapeutic targets involved in hepatic cystogenesis. While drugs that target cAMP, mTOR and bile acids were evaluated in clinical trials, investigation in autophagy, Wnt and miRNA signaling pathways are still in the pre-clinical phase. Recent epidemiological data present female hormones as a promising therapeutic target. Additionally, therapeutic advances in renal cystogenesis are reviewed for their potential application in treatment of hepatic cysts.Expert opinion: Further elucidation of the pathophysiology of hepatic cystogenesis is needed to provide additional targets and improve the efficacy of current treatments. The most promising therapeutic target in PLD is the female hormone pathway, given the increased severity in women and the harmful effects of exogenous estrogens. In addition, combining current pharmaceutical and surgical therapies can lead to improved outcomes. Lastly, the rarity of PLD creates the need to share expertise internationally.
Collapse
Affiliation(s)
- Thijs R M Barten
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Lucas H P Bernts
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
30
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2020; 67:109497. [PMID: 31830556 PMCID: PMC6957738 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
31
|
Testa F, Magistroni R. ADPKD current management and ongoing trials. J Nephrol 2019; 33:223-237. [PMID: 31853789 DOI: 10.1007/s40620-019-00679-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
Among the diseases that require renal replacement therapy (RRT), ADPKD is the fourth for incidence and prevalence. In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 million euros per year. Even a modest slowdown in the evolution of the disease would obtain an important result in terms of reduction of health expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have grouped these studies according to the molecular pathway addressed by the experimental drug or the therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first drug active in slowing disease progression is finally available. It cannot be considered a goal but only the beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant basic research activity in the field, together with the large number of ongoing protocols, keep the nephrologists and their patients positive with regard to the discovery of new and better therapies in a not-too-distant future.
Collapse
Affiliation(s)
- Francesca Testa
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy
| | - Riccardo Magistroni
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy. .,Dipartimento Chirurgico Medico Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
32
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
33
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
34
|
Kim YJ, Kim J. Therapeutic perspectives for structural and functional abnormalities of cilia. Cell Mol Life Sci 2019; 76:3695-3709. [PMID: 31147753 PMCID: PMC11105626 DOI: 10.1007/s00018-019-03158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Ciliopathies are a group of hereditary disorders that result from structural or functional abnormalities of cilia. Recent intense research efforts have uncovered the genetic bases of ciliopathies, and our understanding of the assembly and functions of cilia has been improved significantly. Although mechanism-specific therapies for ciliopathies have not yet received regulatory approval, the use of innovative therapeutic modalities such as oligonucleotide therapy, gene replacement therapy, and gene editing in addition to symptomatic treatments are expected to provide valid treatment options in the near future. Moreover, candidate chemical compounds for developing small molecule drugs to treat ciliopathies have been identified. This review introduces the key features of cilia and ciliopathies, and summarizes the advances as well as the challenges that remain with the development of therapies for treating ciliopathies.
Collapse
Affiliation(s)
- Yong Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
35
|
Ultrasound Elastography to Quantify Liver Disease Severity in Autosomal Recessive Polycystic Kidney Disease. J Pediatr 2019; 209:107-115.e5. [PMID: 30902421 PMCID: PMC6535353 DOI: 10.1016/j.jpeds.2019.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of ultrasound elastography with acoustic radiation force impulse (ARFI) to detect congenital hepatic fibrosis and portal hypertension in children with autosomal recessive polycystic kidney disease (ARPKD). STUDY DESIGN Cross-sectional study of 25 children with ARPKD and 24 healthy controls. Ultrasound ARFI elastography (Acuson S3000, Siemens Medical Solutions USA, Inc, Malvern, Pennsylvania) was performed to measure shear wave speed (SWS) in the right and left liver lobes and the spleen. Liver and spleen SWS were compared in controls vs ARPKD, and ARPKD without vs with portal hypertension. Linear correlations between liver and spleen SWS, spleen length, and platelet counts were analyzed. Receiver operating characteristic analysis was used to evaluate diagnostic accuracy of ultrasound ARFI elastography. RESULTS Participants with ARPKD had significantly higher median liver and spleen SWS than controls. At a proposed SWS cut-off value of 1.56 m/s, the left liver lobe had the highest sensitivity (92%) and specificity (96%) for distinguishing participants with ARPKD from controls (receiver operating characteristic area 0.92; 95% CI 0.82-1.00). Participants with ARPKD with portal hypertension (splenomegaly and low platelet counts) had significantly higher median liver and spleen stiffness than those without portal hypertension. The left liver lobe also had the highest sensitivity and specificity for distinguishing subjects with ARPKD with portal hypertension. CONCLUSIONS Ultrasound ARFI elastography of the liver and spleen, particularly of the left liver lobe, is a useful noninvasive biomarker to detect and quantify liver fibrosis and portal hypertension in children with ARPKD.
Collapse
|
36
|
Serai SD, Otero HJ, Calle-Toro JS, Berman JI, Darge K, Hartung EA. Diffusion tensor imaging of the kidney in healthy controls and in children and young adults with autosomal recessive polycystic kidney disease. Abdom Radiol (NY) 2019; 44:1867-1872. [PMID: 30783727 DOI: 10.1007/s00261-019-01933-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To compare diffusion tensor imaging (DTI) of the kidneys and its derived parameters in children with autosomal recessive polycystic kidney disease (ARPKD) versus healthy controls. METHODS In a prospective IRB-approved study, we evaluated the use of DTI to compare kidney parenchyma FA values in healthy controls (age-matched children with no history of renal disease) versus patients with ARPKD. A 20-direction DTI with b-values of b = 0 s/mm2 and b = 400 s/mm2 was used to acquire data in coronal direction using a fat-suppressed spin-echo echo-planar sequence. Diffusion Toolkit and TrackVis were used for analysis and segmentation. TrackVis was used to draw regions of interest (ROIs) covering the entire volume of the renal parenchyma, excluding the collecting system. Fibers were reconstructed using a deterministic fiber tracking algorithm. The FA values based on the ROI data, mean length, and volume of the tracks based on the fiber tracking data were recorded. RESULTS Eight healthy controls (mean age = 12.9 years ± 4.0; 1/8 males) and six ARPKD participants (mean age = 13.8 years ± 8.5; 5/6 males) were included in the study. Compared to healthy controls, patients with ARPKD had significantly lower FA values (0.33 ± 0.03 vs. 0.25 ± 0.02, p = 0.002) and mean track length (16.73 ± 3.43 vs. 11.61 ± 1.29 mm, p = 0.005). CONCLUSION DTI of the kidneys shows significantly lower FA values and mean track length in children and young adults with ARPKD compared to normal subjects. DTI of the kidney offers a novel approach for characterizing renal disease based on changes in diffusion anisotropy and kidney structure.
Collapse
Affiliation(s)
- Suraj D Serai
- Division of Body Imaging, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hansel J Otero
- Division of Body Imaging, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan S Calle-Toro
- Division of Body Imaging, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Division of Body Imaging, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kassa Darge
- Division of Body Imaging, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol 2019; 234:12451-12470. [PMID: 30644092 DOI: 10.1002/jcp.28094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Talieh Malekshahabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
38
|
Estrada CC, Maldonado A, Mallipattu SK. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. J Am Soc Nephrol 2019; 30:187-200. [PMID: 30642877 DOI: 10.1681/asn.2018080853] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibition of vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling is a common therapeutic strategy in oncology, with new drugs continuously in development. In this review, we consider the experimental and clinical evidence behind the diverse nephrotoxicities associated with the inhibition of this pathway. We also review the renal effects of VEGF inhibition's mediation of key downstream signaling pathways, specifically MAPK/ERK1/2, endothelial nitric oxide synthase, and mammalian target of rapamycin (mTOR). Direct VEGFA inhibition via antibody binding or VEGF trap (a soluble decoy receptor) is associated with renal-specific thrombotic microangiopathy (TMA). Reports also indicate that tyrosine kinase inhibition of the VEGF receptors is preferentially associated with glomerulopathies such as minimal change disease and FSGS. Inhibition of the downstream pathway RAF/MAPK/ERK has largely been associated with tubulointerstitial injury. Inhibition of mTOR is most commonly associated with albuminuria and podocyte injury, but has also been linked to renal-specific TMA. In all, we review the experimentally validated mechanisms by which VEGFA-VEGFR2 inhibitors contribute to nephrotoxicity, as well as the wide range of clinical manifestations that have been reported with their use. We also highlight potential avenues for future research to elucidate mechanisms for minimizing nephrotoxicity while maintaining therapeutic efficacy.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Alejandro Maldonado
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and .,Renal Section, Northport Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
39
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Yang X, Papoian T. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity. J Appl Toxicol 2018; 38:1166-1176. [PMID: 29484688 DOI: 10.1002/jat.3611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/19/2023]
Abstract
Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public.
Collapse
Affiliation(s)
- Xi Yang
- Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Thomas Papoian
- Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| |
Collapse
|
41
|
Isfort S, Crysandt M, Gezer D, Koschmieder S, Brümmendorf TH, Wolf D. Bosutinib: A Potent Second-Generation Tyrosine Kinase Inhibitor. Recent Results Cancer Res 2018; 212:87-108. [PMID: 30069626 DOI: 10.1007/978-3-319-91439-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bosutinib is one of the five tyrosine kinase inhibitors which are currently approved for the treatment of chronic myeloid leukemia. By its dual inhibition of Src and ABL kinase and also targeting further kinases, it creates a unique target portfolio which also explains its unique side effect profile. The approval of bosutinib in 2013 made the drug available for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. As initially the first-line clinical trial comparing bosutinib with imatinib in CML patients in chronic phase did not reach its primary endpoint and therefore the product was not licensed for first-line therapy, a second first-line trial, the so-called BFORE study, was performed and just recently the promising results have been published predicting a quick expansion of the existing label. In comparison with the other approved TKIs, bosutinib harbors a distinct side effect profile with only very few cardiovascular and thromboembolic events and minimal long-term safety issues with most adverse events happening during the first months of treatment. On the other hand, gastrointestinal side effects are very common (e.g., diarrhea rates in more than 80% of the patients) with bosutinib surprising some of the investigators during the early clinical trials evaluating bosutinib. Until then, several approaches have been used to face this problem resulting in extensive supportive efforts (such as early loperamid treatment) as well as new trials testing alternative dosing strategies with early dose adjustment schedules. This article reports preclinical and clinical data available for bosutinib both in hematologic diseases such as CML or ALL and solid tumours as well as other diseases and envisions future perspectives including additional patient groups in which bosutinib might be of clinical benefit.
Collapse
Affiliation(s)
- Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Dominik Wolf
- Department of Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| |
Collapse
|
42
|
Cordido A, Besada-Cerecedo L, García-González MA. The Genetic and Cellular Basis of Autosomal Dominant Polycystic Kidney Disease-A Primer for Clinicians. Front Pediatr 2017; 5:279. [PMID: 29326913 PMCID: PMC5741702 DOI: 10.3389/fped.2017.00279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders worldwide. In recent decades, the field has undergone a revolution, starting with the identification of causal ADPKD genes, including PKD1, PKD2, and the recently identified GANAB. In addition, advances defining the genetic mechanisms, protein localization and function, and the identification of numerous pathways involved in the disease process, have contributed to a better understanding of this illness. Together, this has led to a better prognosis, diagnosis, and treatment in clinical practice. In this mini review, we summarize and discuss new insights about the molecular mechanisms underlying ADPKD, including its genetics, protein function, and cellular pathways.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Lara Besada-Cerecedo
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|