1
|
Wang JM, Zhang FH, Xie HY, Liu ZX, Tang YJ, Shu X, Wu YQ, Lu DH, Sun JZ, Ying YF, Ma XY, Zheng XY, Wang X, Liu B, Li JF, Xie LP, Luo JD. KIF26B promotes bladder cancer progression via activating Wnt/β-catenin signaling in a TRAF2-dependent pathway. Cell Rep 2025; 44:115595. [PMID: 40253697 DOI: 10.1016/j.celrep.2025.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/30/2025] [Indexed: 04/22/2025] Open
Abstract
In this study, we report that KIF26B is upregulated in bladder cancer and acts as an independent prognostic factor. Knockdown of kif26b blocks the proliferation, metastasis, and cisplatin resistance of bladder cancer cells. Mechanistically, TCF4 potently stimulates kif26b transcription by directly binding to its promoter. KIF26B activates the Wnt/β-catenin signaling pathway through association with TRAF2 and thus promotes the formation of the TCF4/β-catenin complex. KIF26B promotes the protein stability of TRAF2 by facilitating the OTUB2-mediated de-ubiquitination of TRAF2. Importantly, KIF26B promotes the nuclear translocation of TRAF2 through enhancing its association with IPO11, a process that is dependent on the C-terminal domain of β-catenin. Additionally, phosphorylation of tyrosine 78 in TRAF2 is essential for its binding to KIF26B in response to Wnt3a signaling. Furthermore, a KIF26B/TRAF2/PD-L1 axis is identified in bladder cancer, and combined therapy of anti-B7-H3 antibody with kif26b knockdown yields superior anti-tumor effects.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hai-Yun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, P.R. China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xuan Shu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu-Qing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ding-Heng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jia-Zhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu-Fan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue-You Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiang-Yi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| | - Jin-Dan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
2
|
Su P, Yang Y, Zheng H. Review of recent molecular pathology of bladder urothelial carcinoma. Discov Oncol 2025; 16:424. [PMID: 40156709 PMCID: PMC11954783 DOI: 10.1007/s12672-025-02128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Bladder urothelial carcinoma (BUC) is a common malignant tumour with a high recurrence rate and mortality. Research on the molecular pathological basis of BUC is extensive. However, the specific pathogenesis and effective treatment of BUC remain to be further studied. Studies on mutation spectrum, DNA methylation, non-coding RNA, proliferation and apoptosis signalling pathways, cell cycle control, transcription factors, DNA damage repair, immune checkpoint and tumour microenvironment have provided therapeutic strategies for the diagnosis, treatment and prognosis evaluation of BUC. This study provided new insights into the molecular pathology of BUC, helped to improve the diagnosis, treatment and prognostic evaluation of patients and drove the use of precision medicine in the treatment of BUC.
Collapse
Affiliation(s)
- Peng Su
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ying Yang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China
| | - Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, No. 149 of Dalian Road, Huichuan District, Zunyi, 563000, China.
| |
Collapse
|
3
|
Seok J, Kwak HJ, Kang CK, Kim AR, Choi WS, Park HK, Paick SH, Kim HG, Kwak Y, Jeon TI, Lim KM, Lee B, Kim A, Cho SG. Development of a Technique for Diagnosis and Screening of Superficial Bladder Cancer by Cell-Pellet DNA From Urine Sample. J Transl Med 2025; 105:104124. [PMID: 40043910 DOI: 10.1016/j.labinv.2025.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/15/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system with high incidence and recurrence rates. There are several ways to detect BCa. However, different approaches have different accuracy, which essentially depends on the sensitivity and specificity of the technique. Alternative noninvasive diagnostic tools for BCa are needed. We isolated and compared urinary cell-pellet DNA (cpDNA), cell-free DNA, and exosomal DNA from patients with localized BCa. Consequently, we analyzed 12 tissues and cpDNA samples by next-generation sequencing and then used bioinformatic tools to analyze genomic and transcriptomic alterations in coding and noncoding sequences. Then, cpDNA and tissue DNA from 12 patients were analyzed using next-generation sequencing to verify that the genomic characteristics of cpDNA are concordant with those of tissue. We also detected somatic mutation patterns between tissues and their corresponding cpDNA samples. An overlapping variant analysis was performed based on somatic mutation data and a high similarity was observed. Moreover, we identified frequently mutated signaling pathways. In these results, several point mutations were analyzed in FGFR3, TTN, and LEPROTL1 from the cpDNA of patients with BCa. Tumor mutational burden analysis showed that cpDNA had no significant difference in tumor mutational burden compared with tumor tissue. These results provide that cpDNA is a potential diagnostic source for detecting and managing BCa using alternative noninvasive methods from patient urine. Our findings may serve as a clinical tool for early detection or recurrence screening of nonmuscle invasive BCa using urinary cpDNA.
Collapse
Affiliation(s)
- Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Hee Jeong Kwak
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Chan-Koo Kang
- School of Life Science, Handong Global University, Pohang, South Korea; Department of Advanced Convergence, Handong Global University, Pohang, South Korea
| | - Ah Ram Kim
- School of Life Science, Handong Global University, Pohang, South Korea; Department of Advanced Convergence, Handong Global University, Pohang, South Korea
| | - Woo Suk Choi
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyoung Keun Park
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Sung Hyun Paick
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyeong Gon Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Tak-Il Jeon
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea; R&D Team, StemExOne Co., Ltd., Seoul, South Korea
| | | | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea; R&D Team, StemExOne Co., Ltd., Seoul, South Korea.
| |
Collapse
|
4
|
Franković L, Degoricija M, Gabela I, Vilović K, Korac-Prlic J. Pro-Tumorigenic Effect of Continuous Cromolyn Treatment in Bladder Cancer. Int J Mol Sci 2025; 26:1619. [PMID: 40004083 PMCID: PMC11855506 DOI: 10.3390/ijms26041619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Globally, bladder cancer is the sixth most frequently diagnosed cancer among men. Despite the increasing availability of immunomodulatory treatments for bladder cancer, the survival rates are still low, which calls for potential new drug-repurposing targets. This study aimed to investigate the effects of cromolyn, a mast cell (MC) stabilizer in allergic reactions, on a subcutaneous tumor model with a syngeneic mouse MB49 bladder cancer cell line. A concentration of 50 mg/kg of cromolyn was daily administered intraperitoneally in a 4-day therapeutic protocol to mice with established tumors and in a continuous 11-day protocol which started one day prior to the subcutaneous injection of tumor cells. Therapeutic treatment demonstrated a marked downregulation of genes related to angiogenesis and upregulation of genes related to cytotoxic T-cell and NK cell activity. Conversely, continuous cromolyn treatment suppressed genes involved in immune cell recruitment and activation, as well as apoptotic and necroptotic pathways, leading to a greater tumor burden (+142.4 mg [95CI + 28.42, +256.4], p = 0.0158). The same pro-tumorigenic effect was found in mast cell-deficient mice (KitW-sh/W-sh + 301.7 mg [95CI + 87.99, 515.4], p = 0.0079; Cpa3Cre/+ +107.2 mg [95CI - 39.37, +253.57], p = 0.1423), indicating that continuous cromolyn treatment mostly acts through the inhibition of mast cell degranulation. In summary, our results demonstrate the distinct effects of cromolyn on tumor progression, which depend on the protocol of cromolyn administration.
Collapse
Affiliation(s)
- Lucija Franković
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| | - Marina Degoricija
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Gabela
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| |
Collapse
|
5
|
Xu J, Koch J, Schmidt C, Nientiedt M, Neuberger M, Erben P, Michel MS, Rodríguez-Paredes M, Lyko F. Loss of YTHDC1 m 6A reading function promotes invasiveness in urothelial carcinoma of the bladder. Exp Mol Med 2025; 57:118-130. [PMID: 39741187 PMCID: PMC11799412 DOI: 10.1038/s12276-024-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 01/02/2025] Open
Abstract
Bladder cancer poses significant clinical challenges due to its high metastatic potential and poor prognosis, especially when it progresses to muscle-invasive stages. Here, we show that the m6A reader YTHDC1 is downregulated in muscle-invasive bladder cancer and is negatively correlated with the expression of epithelial‒mesenchymal transition genes. The functional inhibition or depletion of YTHDC1 increased the migration and invasion of urothelial cells. Integrative analysis of multimodal sequencing datasets provided detailed insights into the molecular mechanisms mediating YTHDC1-dependent phenotypes and identified SMAD6 as a key transcript involved in the invasiveness of urothelial carcinoma of the bladder. Notably, SMAD6 mRNA colocalized less with YTHDC1 in tumoral tissues than in paratumoral tissues, indicating disrupted binding during cancer progression. Our findings establish YTHDC1-dependent m6A reading as a critical epitranscriptomic mechanism regulating bladder cancer invasiveness and provide a paradigm for the epitranscriptomic deregulation of cancer-associated networks.
Collapse
Affiliation(s)
- Jinyun Xu
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Jonas Koch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Malin Nientiedt
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Manuel Neuberger
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Maurice Stephan Michel
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Huang Z, Zhang T, Pan J, Zhang G, Jiang L, Jiang H, Wan P, Peng Y, Zou W, Liu Q, Chen N. Transcriptomic Profiles for Elucidating Response of Bladder Intracavitary Hyperthermic Perfusion Chemotherapy in High-Risk Nonmuscular Invasive Bladder Cancer. Cancer Med 2025; 14:e70672. [PMID: 39980308 PMCID: PMC11842869 DOI: 10.1002/cam4.70672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Bladder intracavitary hyperthermic perfusion chemotherapy (HIPEC) is a promising treatment for non-muscular invasive bladder cancer (NMIBC). However, the molecular mechanisms underlying the response to HIPEC remain poorly understood. This study aimed to elucidate the transcriptomic profiles associated with the response to HIPEC in NMIBC patients. METHODS RNA sequencing was performed on bladder tumor samples from NMIBC patients who underwent HIPEC treatment. Differentially expressed genes (DEGs) between responders and non-responders to HIPEC were identified. Gene ontology and pathway analysis were conducted to explore the biological functions and pathways enriched in the DEGs. Additionally, the expression of specific immune-related genes was evaluated for their association with HIPEC response. The diagnostic efficiency of selected genes in predicting relapse before and after HIPEC treatment was assessed in a validation cohort. RESULTS We assessed the expression status of differentially expressed genes (DEGs) between responders and non-responders to HIPEC. Gene ontology and pathway analysis revealed that DEGs were enriched in immune-related pathways, including cytokine-cytokine receptor interaction, chemokine signaling pathway, and antigen processing and presentation. Furthermore, the expression of several immune-related genes, including ZMAP4, UPP2, and GALR1, was significantly associated with the response to HIPEC. Therefore, the immune system's reaction plays a crucial role in the response to HIPEC in patients with NMIBC. At last, a considerable diagnostic efficiency that tissue TMEFF2, KRT222, and GTSF1 in predicting relapse in NMIBC patients after HIPEC treatment, and ZMAP4, UPP2, and GALR1 in predicting relapse in NMIBC patients before HIPEC treatment in the validation cohort. CONCLUSION Transcriptomic profiling revealed that immune-related pathways and genes play a crucial role in the response to HIPEC in NMIBC patients. These findings suggest that transcriptomic profiling could provide a valuable tool for predicting treatment outcomes and identifying therapeutic targets for NMIBC.
Collapse
Affiliation(s)
- Zhicheng Huang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Tianhui Zhang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of Magnetic Resonance ImagingMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Jinghua Pan
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Guihao Zhang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Linjun Jiang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Huiming Jiang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Pei Wan
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Ying Peng
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Wenchao Zou
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Qinghua Liu
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of PathologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Nanhui Chen
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| |
Collapse
|
7
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
8
|
Mokkapati S, Manyam G, Steinmetz AR, Tholomier C, Martini A, Choi W, Czerniak B, Lee BH, Dinney CP, McConkey DJ. Molecular profiling of bladder cancer xenografts defines relevant molecular subtypes and provides a resource for biomarker discovery. Transl Oncol 2025; 52:102269. [PMID: 39808845 PMCID: PMC11782912 DOI: 10.1016/j.tranon.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models. Patient-derived, luciferase-tagged BLCA cell lines were cultured in vitro and engrafted into bladders of NSG mice. Tumor growth was monitored using bioluminescence imaging and mRNA-based molecular classification was used to characterize xenografts into molecular subtypes. RNAseq analysis and basal, luminal, and epithelial-mesenchymal transition (EMT) marker expression revealed distinct patterns; certain cell lines expressed predominantly basal or luminal markers while others demonstrated mixed expression. SCaBER expressed high basal and EMT markers and low luminal markers, consistent with a true basal cell. RT4V6 was a true luminal cell line, displaying only high luminal makers. UC13, T24 and UC3 only showed increased expression of EMT markers. RT112, UC6, UC9 and UC14 expressed basal, luminal, and EMT markers. Immunohistochemical analysis validated our findings. Ki67 was assessed as a continuous percentage of positively stained cells. Morphological assessment of xenografts included H&E and α-SMA staining. These findings will allow for the rational use of appropriate models to develop targeted therapies to overcome or manipulate mechanisms of treatment resistance in BLCA.
Collapse
Affiliation(s)
- Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ganiraju Manyam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexis R Steinmetz
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Côme Tholomier
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Martini
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bogdon Czerniak
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Byron H Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Strope AM, Phillips C, Khadgi S, Jenkinson SA, Coschigano KT, Malgor R. Differential expression of WNT5A long and short isoforms in non-muscle-invasive bladder urothelial carcinoma. Histol Histopathol 2024; 39:715-727. [PMID: 38445662 DOI: 10.14670/hh-18-723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Wnt ligands belong to a family of secreted glycoproteins in which binding to a range of receptors/co-receptors activates several intracellular pathways. WNT5A, a member of the Wnt family, is classified as a non-canonical Wnt whose activation triggers planar cell polarity (PCP) and Ca+2 downstream pathways. Aberrant expression of WNT5A has been shown to play both protective and harmful roles in an array of conditions, such as inflammatory disease and cancer. In the present study, using histological, immunohistochemical, and molecular methods, we investigated the expression of two isoforms of WNT5A, WNT5A-Short (WNT5A-S) and WNT5A-Long (WNT5A-L) in bladder urothelial carcinoma (UC). Three UC cell lines (RT4, J82, and T24), as well as a normal urothelial cell line, and formalin-fixed, paraffin-embedded (FFPE) transurethral resection (TUR) tissue samples from 17 patients diagnosed with UC were included in the study. WNT5A-L was the predominantly expressed isoform in urothelial cells, although WNT5A-S was also detectable. Further, although no statistically significant difference was found between the percentage of WNT5A-S transcripts in low-grade versus high-grade tumors, we did find a difference between the percentage of WNT5A-S transcripts found in non-invasion versus invasion of the lamina propria, subgroups of non-muscle-invasive tumors. In conclusion, both WNT5A-S and WNT5A-L isoforms are expressed in UC, and the percentage of their expression levels suggests that a higher proportion of WNT5A-S transcription may be associated with lamina propria invasion, a process preceding muscle invasion.
Collapse
Affiliation(s)
- Amy M Strope
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Cody Phillips
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Sabin Khadgi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Scott A Jenkinson
- OhioHealth O'Bleness Laboratory Services, O'Bleness Hospital, Athens, Ohio, USA
| | - Karen T Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
10
|
Xie L, Liang S, Jiwa H, Zhang L, Lu Q, Wang X, Luo L, Xia H, Li Z, Wang J, Luo X, Luo J. Securinine inhibits the tumor growth of human bladder cancer cells by suppressing Wnt/β-catenin signaling pathway and activating p38 and JNK signaling pathways. Biochem Pharmacol 2024; 223:116125. [PMID: 38484850 DOI: 10.1016/j.bcp.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Bladder cancer (BC) is the most common malignant tumor in urinary system. Although chemotherapy is one of the most important adjuvant treatments for BC, drug resistance, non-specific toxicity and severe side effects are the major obstacles to BC chemotherapy. Natural products have always been a leading resource of antitumor drug discovery, with the advantages of excellent effectiveness, low toxicity, multi-targeting potency and easy availability. In this study, we evaluated the potential anti-tumor effect of securinine (SEC), a natural alkaloid from Securinega suffruticosa, on BC cells in vitro and in vivo, and delineated the underlying mechanism. We found that SEC inhibited the proliferation, migration and invasion, induced the apoptosis of BC cells in vitro, and retarded the xenograft tumor growth of BC cell in vivo. Notably, SEC had a promising safety profile because it presented no or low toxicity on normal cells and mice. Mechanistically, SEC inactivated Wnt/β-catenin signaling pathway while activated p38 and JNK signaling pathway. Moreover, β-catenin overexpression, the p38 inhibitor SB203580 and the JNK inhibitor SP600125 both mitigated the inhibitory effect of SEC on BC cells. Furthermore, we demonstrated a synergistic inhibitory effect of SEC and gemcitabine (GEM) on BC cells in vitro and in vivo. Taken together, our findings suggest that SEC may exert anti-BC cell effect at least through the activation of p38 and JNK signaling pathways, and the inhibition of Wnt/β-catenin signaling pathway. More meaningfully, the findings indicate that GEM-induced BC cell killing can be enhanced by combining with SEC.
Collapse
Affiliation(s)
- Liping Xie
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shiqiong Liang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuping Lu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoxuan Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haichao Xia
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziyun Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Wang X, Luo L, Xu J, Lu Q, Xia H, Huang Y, Zhang L, Xie L, Jiwa H, Liang S, Luo X, Luo J. Echinatin inhibits tumor growth and synergizes with chemotherapeutic agents against human bladder cancer cells by activating p38 and suppressing Wnt/β-catenin pathways. Genes Dis 2024; 11:1050-1065. [PMID: 37692489 PMCID: PMC10491917 DOI: 10.1016/j.gendis.2023.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. Due to the poor prognosis and high mortality rate of the disease, it is urgent to develop new drugs with high efficacy and low toxicity to treat BC. Echinatin (Ecn) is a bioactive natural flavonoid oflicorice that has attracted special attention for its promising anti-tumor potential. Herein, we explored the inhibitory effects of Echinatin on BC cells and probed the possible molecular mechanism. We found that Ecnin vitro inhibited the proliferation, migration, and invasion, arrested the cell cycle at the G2/M phase, and promoted apoptosis in BC cells. Besides, Ecn had no notable cytotoxicity towards human normal cells. We subsequently confirmed that Ecn restrained xenograft tumor growth and metastasis of BC cells in vivo. Mechanistically, Ecn activated the p38 signaling pathway but inactivated the Wnt/β-catenin signaling pathway, while over-expression of β-catenin and the p38 inhibitor both attenuated the inhibitory effects of Ecn on BC cells. Remarkably, Ecn combined with cisplatin (DDP) or gemcitabine (Gem) had synergistic inhibitory effects on BC cells. In summary, our results validate that Ecn inhibits the tumor growth of human BC cells via p38 and Wnt/β-catenin signaling pathways. More meaningfully, our results suggest a potential strategy to enhance DDP- or Gem-induced inhibitory effects on BC cells by combining with Ecn.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Luo
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiuping Lu
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haichao Xia
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Xie
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shiqiong Liang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Uzelac M, Xin R, Chen T, John D, Li WT, Rajasekaran M, Ongkeko WM. Urinary Microbiome Dysbiosis and Immune Dysregulations as Potential Diagnostic Indicators of Bladder Cancer. Cancers (Basel) 2024; 16:394. [PMID: 38254883 PMCID: PMC10814989 DOI: 10.3390/cancers16020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
There are a total of 82,290 new cases and 16,710 deaths estimated for bladder cancer in the United States in 2023. Currently, urine cytology tests are widely used for bladder cancer diagnosis, though they suffer from variable sensitivity, ranging from 45 to 97%. More recently, the microbiome has become increasingly recognized for its role in human diseases, including cancers. This study attempts to characterize urinary microbiome bladder cancer-specific dysbiosis to explore its diagnostic potential. RNA-sequencing data of urine samples from patients with bladder cancer (n = 18) and matched controls (n = 12) were mapped to bacterial sequences to yield species-level abundance approximations. Urine samples were analyzed at both the population and species level to reveal dysbiosis associated with bladder cancer. A panel of 35 differentially abundant species was discovered, which may be useful as urinary biomarkers for this disease. We further assessed whether these species were of similar significance in a validation dataset (n = 81), revealing that the genera Escherichia, Acinetobacter, and Enterobacter were consistently differentially abundant. We discovered distinct patterns of microbial-associated immune modulation in these samples. Several immune pathways were found to be significantly enriched with respect to the abundance of these species, including antigen processing and presentation, cytosolic DNA sensing, and leukocyte transendothelial migration. Differential cytokine activity was similarly observed, suggesting the urinary microbiome's correlation to immune modulation. The adherens junction and WNT signaling pathways, both implicated in the development and progression of bladder cancer, were also enriched with these species. Our findings indicate that the urinary microbiome may reflect both microbial and immune dysregulations of the tumor microenvironment in bladder cancer. Given the potential biomarker species identified, the urinary microbiome may provide a non-invasive, more sensitive, and more specific diagnostic tool, allowing for the earlier diagnosis of patients with bladder cancer.
Collapse
Affiliation(s)
- Matthew Uzelac
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Ruomin Xin
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Tianyi Chen
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Daniel John
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mahadevan Rajasekaran
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Urology, San Diego VA Healthcare System, University of California, San Diego, CA 92161, USA
| | - Weg M. Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA; (M.U.); (R.X.); (T.C.); (D.J.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
13
|
Miao H, Wang YN, Su W, Zou L, Zhuang SG, Yu XY, Liu F, Zhao YY. Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway. Acta Pharmacol Sin 2024; 45:137-149. [PMID: 37640899 PMCID: PMC10770168 DOI: 10.1038/s41401-023-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and β-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and β-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of β-catenin and its downstream gene products, including Snail1 and Twist; treatment with a β-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream β-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/β-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, 721008, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Shou-Gang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, 710003, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
15
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
16
|
Chen W, Tan M, Yu C, Liao G, Kong D, Bai J, Yang B, Gong H. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity. Hum Cell 2023; 36:786-797. [PMID: 36715867 DOI: 10.1007/s13577-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
The Rho/ROCK pathway regulates diverse cellular processes and contributes to the development and advancement of several types of human cancers. This study investigated the role of specific Rho GTPase-activating proteins (RhoGAP), ARHGAP6, in bladder cancer (BC). In this study, ARHGAP6 expression in BC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism ARHGAP6 of in BC. The mRNA and protein levels of ARHGAP6 significantly reduced in human BC tissues and cell lines compared with corresponding adjacent non-cancerous tissues and normal urothelial cells. In vitro, ARHGAP6 overexpression markedly decreased the viability, migration, and invasion of BC cells. Interestingly, low ARHGAP6 expression in BC strongly correlated with poor patient survival and was highly associated with metastasis and β-catenin signaling. Furthermore, ARHGAP6 expression strongly influenced the sensitivity of BC cells to mitomycin C treatment. Together, our results demonstrate that ARHGAP6 plays critical roles in regulating the proliferation, migration, invasion, and metastasis of BC cells possibly via the modulation of β-catenin and strongly influences the chemosensitivity of BC cells.
Collapse
Affiliation(s)
- Weihua Chen
- Department of Urology, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, Shanghai, China
| | - Chao Yu
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guoqiang Liao
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China
| | - Dehui Kong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Bai
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| | - Hua Gong
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| |
Collapse
|
17
|
Gitto L, Vandermeer T, Lubin DJ, Zaccarini DJ. Mesenteric desmoid fibromatosis entrapping metastatic urothelial carcinoma: a unique collision tumor or fibromatosis-like variant? SURGICAL AND EXPERIMENTAL PATHOLOGY 2022. [DOI: 10.1186/s42047-022-00114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA collision tumor is a neoplastic lesion comprised of two or more distinct cell populations with distinct borders. Desmoid fibromatosis (DF) is a rare musculoaponeurotic tissue tumor that grows deep in the connective tissue and shows locally aggressive behavior. Only two cases of collision tumors with desmoid fibromatosis are reported in the English literature, albeit papillary thyroid carcinoma with desmoid fibromatosis-like stroma is regarded as a variant rather than a collision tumor. We present a unique case of collision tumor with desmoid fibromatosis surrounding intra-abdominal metastasis from urothelial carcinoma. A 65-year-old white male with history of bladder and left renal pelvis high-grade papillary urothelial carcinoma status post-nephrectomy was found to have a small bowel obstruction due to a soft tissue mass. Histology of the mass showed multiple matted lymph nodes with metastatic urothelial carcinoma admixed with a proliferation of spindle cells positive for nuclear beta-catenin, consistent with desmoid fibromatosis. While the prior surgical site likely acted as a nidus for development of desmoid fibromatosis, we also hypothesize that a dysregulation of beta-catenin signaling pathways within the cancer cells might have attributed to the spindle cell proliferation in the stroma surrounding the tumor. Our case emphasized the importance of clinical suspicion of desmoid fibromatosis in patients with metastatic cancer, requiring a prompt diagnosis and treatment to decrease the risk of complications and local recurrence.
Collapse
|
18
|
Wang YN, Liu HJ, Ren LL, Suo P, Zou L, Zhang YM, Yu XY, Zhao YY. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/β-catenin signalling pathway. Front Pharmacol 2022; 13:964370. [PMID: 36059935 PMCID: PMC9432462 DOI: 10.3389/fphar.2022.964370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide public health problem. The increase in the number of patients with CKD and end-stage kidney disease requesting renal dialysis or transplantation will progress to epidemic proportions in the next several decades. Although blocking the renin-angiotensin system (RAS) has been used as a first-line standard therapy in patients with hypertension and CKD, patients still progress towards end-stage kidney disease, which might be closely associated with compensatory renin expression subsequent to RAS blockade through a homeostatic mechanism. The Wnt/β-catenin signalling pathway is the master upstream regulator that controls multiple intrarenal RAS genes. As Wnt/β-catenin regulates multiple RAS genes, we inferred that this pathway might also be implicated in blood pressure control. Therefore, discovering new medications to synchronously target multiple RAS genes is necessary and essential for the effective treatment of patients with CKD. We hypothesized that Shenkang injection (SKI), which is widely used to treat CKD patients, might ameliorate CKD by inhibiting the activation of multiple RAS genes via the Wnt/β-catenin signalling pathway. To test this hypothesis, we used adenine-induced CKD rats and angiotensin II (AngII)-induced HK-2 and NRK-49F cells. Treatment with SKI inhibited renal function decline, hypertension and renal fibrosis. Mechanistically, SKI abrogated the increased protein expression of multiple RAS elements, including angiotensin-converting enzyme and angiotensin II type 1 receptor, as well as Wnt1, β-catenin and downstream target genes, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in adenine-induced rats, which was verified in AngII-induced HK-2 and NRK-49F cells. Similarly, our results further indicated that treatment with rhein isolated from SKI attenuated renal function decline and epithelial-to-mesenchymal transition and repressed RAS activation and the hyperactive Wnt/β-catenin signalling pathway in both adenine-induced rats and AngII-induced HK-2 and NRK-49F cells. This study first revealed that SKI repressed epithelial-to-mesenchymal transition by synchronously targeting multiple RAS elements by blocking the hyperactive Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- Key Disciplines Team of Clinical Pharmacy, School of Food and Bioengineering, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
20
|
Cheng Q, Zhang S, Zhong B, Chen Z, Peng F. Asiatic acid re-sensitizes multidrug-resistant A549/DDP cells to cisplatin by down regulating long non-coding RNA metastasis associated lung adenocarcinoma transcript 1/β-catenin signaling. Bioengineered 2022; 13:12972-12984. [PMID: 35609308 PMCID: PMC9275950 DOI: 10.1080/21655979.2022.2079302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug resistance becomes a challenge in the therapeutic management of non-small cell lung cancer (NSCLC). According to our former research, asiatic acid (AA) re-sensitized A549/DDP cells to cisplatin (DDP) through decreasing multidrug resistance protein 1 (MDR1) expression level. However, the relevant underlying mechanisms are still unclear. Long non-coding RNA (lncRNA) MALAT1 shows close association with chemo-resistance. As reported in this research, AA increased apoptosis rate, down regulated the expression of MALAT1, p300, β-catenin, and MDR1, up regulated the expression of miR-1297, and decreased β-catenin nuclear translocation in A549/DDP cells. MALAT1 knockdown expression abolished the drug resistance of A549/DDP cells and increased cell apoptosis. MALAT1 could potentially produce interactions with miR-1297, which targeted to degradation of p300. In addition, p300 overexpression effectively rescued the effects of MALAT1 knockdown expression on A549/DDP cells and activate the expression of β-catenin/MDR1 signaling, and these could be effectively blocked by AA treatment. Conclusively, AA could re-sensitize A549/DDP cells to DDP through down-regulating MALAT1/miR-1297/p300/β-catenin signaling.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bing Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fang Peng
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
21
|
Wnt/β-Catenin Signalling and Its Cofactor BCL9L Have an Oncogenic Effect in Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms23105319. [PMID: 35628130 PMCID: PMC9141496 DOI: 10.3390/ijms23105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is characterised by a high recurrence and progression rate. However, the molecular mechanisms of BC progression remain poorly understood. BCL9L, a coactivator of β-catenin was mutated in the 5′ and 3′ untranslated regions (UTRs). We assessed the influence of UTRs mutations on BCL9L, and the role of BCL9L and Wnt/β-catenin signalling in BC cells. UTR mutations were analysed by a luciferase reporter. BCL9L protein was assessed by immunohistochemistry in BC tissues. Cell proliferation was examined by crystal violet staining and by the spheroid model. Moreover, migration and invasion were analysed in real-time using the xCelligence RTCA system. The A > T mutation at 3′ UTR of BCL9L reduces the luciferase reporter mRNA expression and activity. BCL9L is predominantly increased in dysplastic urothelial cells and muscle-invasive BC. Knockdown of BCL9L and inhibition of Wnt/β-catenin signalling significantly repress the proliferation, migration and invasion of Cal29 and T24. In addition, BCL9L knockdown reduces mRNA level of Wnt/β-catenin target genes in Cal29 but not in T24 cells. BCL9L and Wnt/β-catenin signalling play an oncogenic role in bladder cancer cells and seems to be associated with BC progression. Nevertheless, the involvement of BCL9L in Wnt/β-catenin signalling is cell-line specific.
Collapse
|
22
|
Huang Z, Gao H, Qing L, Wang B, He C, Luo N, Lu C, Fan S, Gu P, Zhao H. A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway. PeerJ 2022; 10:e13220. [PMID: 35433119 PMCID: PMC9009331 DOI: 10.7717/peerj.13220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background There is growing evidence that long non-coding RNAs (LncRNAs) are key in the development of a variety of human tumors. However, the role of lncRNA GTF2IRD2P1 has not been well studied in cancer. The impact of GTF2IRD2P1 on the biological function and clinical relevance in bladder cancer is largely unknown. This study aimed to investigate the biological role of GTF2IRD2P1 in bladder evolution and carcinogenesis. Methods We used bioinformatics to obtain the lncRNA GTF2IRD2P1 from bladder urothelial carcinoma (BLCA) in The Cancer Genome Atlas (TCGA) database. The expression of lncRNA GTF2IRD2P1 was detected by qRT-PCR. The CCK8 assay and flow cytometry were used to detect the lncRNA GTF2IRD2P1 function on the proliferation of bladder cancer cells. A western blot was used to calculate the protein level of cell cycle proteins and Wnt signaling pathway proteins. The effect of lncRNA GTF2IRD2P1 on tumorigenesis of bladder cancer was confirmed by a xenograft nude mouse model. Results GTF2IRD2P1 expression was found to be lower in both human bladder cancer tissues and cell lines (UM-UC-3, RT4, and 5637), and elevated in T24 compared to the corresponding normal controls. GTF2IRD2P1 expression was also enhanced after transfection of UM-UC-3 cells with the overexpression vector. Meanwhile, overexpression of GTF2IRD2P1 inhibited the proliferation of UM-UC-3 and prolonged the cell cycle. The silencing of GTF2IRD2P1 significantly increased the proliferation and shortened the cell cycle of T24 cells and induced Wnt signaling activity to promote the progression of bladder cancer. Similarly, the transplanted tumor nude mouse model demonstrated that silencing GTF2IRD2P1 strengthens the progression of bladder cancer by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Hongbin Gao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Liangliang Qing
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Biao Wang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Chaoyong He
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Ning Luo
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Chuncheng Lu
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Shipeng Fan
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Peng Gu
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Hui Zhao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
23
|
Jiang Y, Zhang Z, Wang X, Feng Z, Hong B, Yu D, Wang Y. A Novel Prognostic Factor TIPE2 in Bladder Cancer. Pathol Oncol Res 2022; 28:1610282. [PMID: 35388275 PMCID: PMC8978781 DOI: 10.3389/pore.2022.1610282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
Abstract
Objective: We sought to identify tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2/TNFAIP8L2) expression in bladder cancer and its relationship to clinicopathological findings and prognosis. Methods: Immunohistochemical (IHC) staining for TIPE2 was performed on 110 archived radical cystectomy specimens. Ten high-power fields were randomly selected from each specimen to observe and record the percentage of immunoreactive cells of TIPE2 in tumor cells (grade 0–4) and the corresponding immunostaining intensity (grade 0–3). The expression score of TIPE2 was obtained by multiplying the results of the above two scores, which ranged from 0 to 12 points. The cut-off point of the sum of the scores were defined as follows: 0–3 scores were defined as negative expression (-); >3 scores were classified as positive expression, < 7, low expression, ≥7, high expression. Results: In 110 cases, TIPE2 was stained in various degrees in bladder cancer tissues, and expressed in both nucleus and cytoplasm. 4.5% (5/110) showed negative expression, 40.9% (45/110) showed low expression, and 54.5% (60/110) showed high expression. TIPE2 expression was negatively correlated with lymph node metastasis (p = 0.004) and disease progression (p = 0.021). Survival curves were plotted to show that patients with high TIPE2 expression had a progression-free survival curve above those with negative/low TIPE2 expression (p = 0.027). In multivariate Cox proportional hazard regression analysis, TIPE2 was a protective factor for progression-free survival in bladder urothelial carcinoma (p = 0.031), pT stage (p = 0.016) was a risk factor for progression-free survival, and age was a risk factor for overall survival (p = 0.020). Conclusion: TIPE2 may be a new biomarker to predict the disease progression and prognosis of patients with urothelial carcinoma of the bladder.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Pathology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhong Feng
- Department of Pathology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dexin Yu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
24
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
25
|
Lai HY, Chiu CC, Kuo YH, Tsai HH, Wu LC, Tseng WH, Liu CL, Hsing CH, Huang SK, Li CF. High Stromal SFRP2 Expression in Urothelial Carcinoma Confers an Unfavorable Prognosis. Front Oncol 2022; 12:834249. [PMID: 35372028 PMCID: PMC8965759 DOI: 10.3389/fonc.2022.834249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) patients often bear clinical and genetic heterogeneity, which may differ in management and prognosis. Especially, patients with advanced/metastatic UC generally have a poor prognosis and survive for only few months. The Wnt/β-catenin signaling is found to be highly activated in several cancers, including UC. However, accumulated evidence has shown discordance between the Wnt/β-catenin signaling and UC carcinogenesis. Accordingly, we aim to get a better understanding of the molecular characterization of UC, focusing on the Wnt signaling, which may add value to guiding management more precisely. PATIENTS AND METHODS Clinical data and pathological features were retrospectively surveyed. The correlations of secreted Frizzled-related protein 2 (SFRP2) immunoexpression with clinicopathological features were analyzed by Pearson's chi-square test. The Kaplan-Meier method with a log-rank test was employed to plot survival curves. All significant features from the univariate analysis were incorporated into the Cox regression model for multivariate analysis. RESULTS Following data mining on a transcriptome dataset (GSE31684), we identified that 8 transcripts in relation to the Wnt signaling pathway (GO: 0016055) were significantly upregulated in advanced/metastatic bladder tumors. Among these transcripts, the SFRP2 level showed the most significant upregulation. Additionally, as SFRP2 is a putative Wnt inhibitor and may be expressed by stroma, we were interested in examining the immunoexpression and clinical relevance of stromal and tumoral SFRP2 in our urothelial carcinoma cohorts containing 295 urinary bladder UC (UBUC) and 340 upper urinary tract UC (UTUC) patients. We observed that high SFRP2 expression in stroma but not in tumors is significantly linked to aggressive UC features, including high tumor stage and histological grade, positive nodal metastasis, the presence of vascular and perineural invasion, and high mitotic activity in UBUC and UTUC. Moreover, high stromal SFRP2 expression significantly and independently predicted worse clinical outcomes in UBUC and UTUC. Utilizing bioinformatic analysis, we further noticed that stromal SFRP2 may link epithelial-mesenchymal transition (EMT) to UC progression. CONCLUSION Collectively, these results imply that stromal SFRP2 may exert oncogenic function beyond its Wnt antagonistic ability, and stromal SFRP2 expression can provide prognostic and therapeutic implications for UC patients.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | | | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Wu
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Hsin Tseng
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Division of Uro-Oncology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Steven K. Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chien-Feng Li
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Zhu B, Kang Z, Zhu S, Zhang Y, Lai X, Zhou L, Huang H, Gao X, Jiang C, Zeng J. Multi-Omics Characterization of Circular RNA-Encoded Novel Proteins Associated With Bladder Outlet Obstruction. Front Cell Dev Biol 2022; 9:772534. [PMID: 35071227 PMCID: PMC8777291 DOI: 10.3389/fcell.2021.772534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder outlet obstruction (BOO) is a common urologic disease associated with poorly understood molecular mechanisms. This study aimed to investigate the possible involvements of circRNAs (circular RNAs) and circRNA-encoded proteins in BOO development. The rat BOO model was established by the partial bladder outlet obstruction surgery. Differential expression of circRNA and protein profiles were characterized by deep RNA sequencing and iTRAQ quantitative proteomics respectively. Novel proteins encoded by circRNAs were predicted through ORF (open reading frame) selection using the GETORF software and verified by the mass spectrometry in proteomics, combined with the validation of their expressional alterations by quantitative RT-PCR. Totally 3,051 circRNAs were differentially expressed in bladder tissues of rat BOO model with widespread genomic distributions, including 1,414 up-regulated, and 1,637 down-regulated circRNAs. Our following quantitative proteomics revealed significant changes of 85 proteins in rat BOO model, which were enriched in multiple biological processes and signaling pathways such as the PPAR and Wnt pathways. Among them, 21 differentially expressed proteins were predicted to be encoded by circRNAs and showed consistent circRNA and protein levels in rat BOO model. The expression levels of five protein-encoding circRNAs were further validated by quantitative RT-PCR and mass spectrometry. The circRNA and protein profiles were substantially altered in rat BOO model, with great expressional changes of circRNA-encoded novel proteins.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Sihua Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiangmao Lai
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Lilin Zhou
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
27
|
Zhang Y, Lin Y, Lv D, Wu X, Li W, Wang X, Jiang D. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer. PeerJ 2022; 10:e12843. [PMID: 35127296 PMCID: PMC8796709 DOI: 10.7717/peerj.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common urinary tract system tumor with high recurrence rate and different populations show distinct response to immunotherapy. Novel biomarkers that can accurately predict prognosis and therapeutic responses are urgently needed. Here, we aim to identify a novel prognostic and therapeutic responses immune-related gene signature of BC through a comprehensive bioinformatics analysis. METHODS The robust rank aggregation was conducted to integrate differently expressed genes (DEGs) in datasets of the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO). Lasso and Cox regression analyses were performed to formulate a novel mRNA signature that could predict prognosis of BC patients. Subsequently, the prognostic value and predictive value of the signature was validated with two independent cohorts GSE13507 and IMvigor210. Finally, quantitative Real-time PCR (qRT-PCR) analysis was conducted to determine the expression of mRNAs in BC cell lines (UM-UC-3, EJ-1, SW780 and T24). RESULTS We built a signature comprised the eight mRNAs: CNKSR1, COPZ2, CXorf57, FASN, PCOLCE2, RGS1, SPINT1 and TPST1. Our prognostic signature could be used to stratify BC population into two risk groups with distinct immune profile and responsiveness to immunotherapy. The results of qRT-PCR demonstrated that the eight mRNAs exhibited different expression levels in BC cell lines. CONCLUSION Our study constructed a convenient and reliable 8-mRNA gene signature, which might provide prognostic prediction and aid treatment decision making of BC patients in clinical practice.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifeng Lin
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Urology, Meizhou Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Daojun Lv
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Wang
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Dongmei Jiang
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangzhou, China
| |
Collapse
|
28
|
Jiménez-Guerrero R, Belmonte-Fernández A, Flores ML, González-Moreno M, Pérez-Valderrama B, Romero F, Japón MÁ, Sáez C. Wnt/β-Catenin Signaling Contributes to Paclitaxel Resistance in Bladder Cancer Cells with Cancer Stem Cell-Like Properties. Int J Mol Sci 2021; 23:ijms23010450. [PMID: 35008872 PMCID: PMC8745426 DOI: 10.3390/ijms23010450] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The Wnt/β-catenin pathway plays an important role in tumor progression and chemotherapy resistance and seems to be essential for the maintenance of cancer stem cells (CSC) in several tumor types. However, the interplay of these factors has not been fully addressed in bladder cancer. Here, our goal was to analyze the role of the Wnt/β-catenin pathway in paclitaxel resistance and to study the therapeutic efficacy of its inhibition in bladder cancer cells, as well as to determine its influence in the maintenance of the CSC-like phenotype in bladder cancer. Our results show that paclitaxel-resistant HT1197 cells have hyperactivation of the Wnt/β-catenin pathway and increased CSC-like properties compared with paclitaxel-sensitive 5637 cells. Paclitaxel sensitivity diminishes in 5637 cells after β-catenin overexpression or when they are grown as tumorspheres, enriched for the CSC-like phenotype. Additionally, downregulation of β-catenin or inhibition with XAV939 sensitizes HT1197 cells to paclitaxel. Moreover, a subset of muscle-invasive bladder carcinomas shows aberrant expression of β-catenin that associates with positive expression of the CSC marker ALDH1A1. In conclusion, we demonstrate that Wnt/β-catenin signaling contributes to paclitaxel resistance in bladder cancer cells with CSC-like properties.
Collapse
Affiliation(s)
- Rocío Jiménez-Guerrero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (R.J.-G.); (M.G.-M.)
| | | | - M. Luz Flores
- Department of Pathology, Hospital Universitario de Badajoz, 06080 Badajoz, Spain;
| | - Mónica González-Moreno
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (R.J.-G.); (M.G.-M.)
| | | | - Francisco Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain; (A.B.-F.); (F.R.)
| | - Miguel Á. Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (R.J.-G.); (M.G.-M.)
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Correspondence: (M.Á.J.); (C.S.); Tel.: +34-955013027 (M.Á.J.); +34-955923091 (C.S.); Fax: +34-955923101 (C.S.)
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (R.J.-G.); (M.G.-M.)
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Correspondence: (M.Á.J.); (C.S.); Tel.: +34-955013027 (M.Á.J.); +34-955923091 (C.S.); Fax: +34-955923101 (C.S.)
| |
Collapse
|
29
|
Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front Pharmacol 2021; 12:800522. [PMID: 35002735 PMCID: PMC8729217 DOI: 10.3389/fphar.2021.800522] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and inflammation are important and critical mediators in the development and progression of chronic kidney disease (CKD) and its complications. Shenkang injection (SKI) has been widely used to treat patients with CKD. Although the anti-oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive components and underlying mechanism remain enigmatic. A rat model of adenine-induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory components of SKI and further revealed their underlying mechanism in the adenine-induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly increased in the adenine-induced CRF rats. However, treatment with SKI and its three anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant changes. They could significantly inhibit pro-fibrotic protein expressions including collagen I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats. Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein expressions than chrysophanol and emodin. Furthermore, they could improve dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI and rhein showed the stronger inhibitory effect on the significantly downregulated anti-inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling pathway than chrysophanol and emodin. This study first demonstrated that SKI and its major components protected against renal fibrosis by inhibiting oxidative stress and inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-inflammatory effects of SKI.
Collapse
Affiliation(s)
- Liang-Pu Luo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
30
|
Larrinaga G, Calvete-Candenas J, Solano-Iturri JD, Martín AM, Pueyo A, Nunes-Xavier CE, Pulido R, Dorado JF, López JI, Angulo JC. (Pro)renin Receptor Is a Novel Independent Prognostic Marker in Invasive Urothelial Carcinoma of the Bladder. Cancers (Basel) 2021; 13:cancers13225642. [PMID: 34830803 PMCID: PMC8616163 DOI: 10.3390/cancers13225642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary This is a novel description of (Pro)renin receptor (PRR) protein and its prognostic role in invasive urothelial cancer of the bladder. Using a tissue microarray, we investigated PRR expression and other immunohistochemical markers including p53, immune-checkpoint inhibition, and basal and luminal phenotypes in a series of patients with invasive urothelial carcinoma of the bladder treated with radical cystectomy. PRR expression is an independent prognostic marker and could be a potential target in urothelial carcinoma that should be further investigated. Abstract (Pro)renin receptor (PRR) is being investigated in several malignancies as it activates pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments, and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of patients with invasive UC treated with radical cystectomy and other clinical and histopathological parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal phenotypes evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the primary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006) and was associated with lower preoperatively hemoglobin levels. No other statistical association was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22–2.8), pT (HR 7.02, 95% CI 2.68–18.39), pN (HR 2.3, 95% CI 1.27–4.19), and p53 expression (HR 1.95, 95% CI 1.1–3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK activation, Wnt/β-catenin signaling, and v-ATPAse function.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Correspondence:
| | | | - Jon Danel Solano-Iturri
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Service of Pathology, Donostia University Hospital, 20014 San Sebastian, Spain
| | - Ana M. Martín
- Service of Pathology, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Angel Pueyo
- Foundation for Biomedical Research and Innovation of University Hospitals Infanta Leonor and South-East, 28003 Madrid, Spain;
- Heath Science PhD Program, UCAM Universidad Católica San Antonio de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Ikerbasque, The Basque Foundation for Science, 48011 Bilbao, Spain
| | | | - José I. López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005 Madrid, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| |
Collapse
|
31
|
Yuan Y, Guo M, Gu C, Yang Y. The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). Am J Transl Res 2021; 13:9932-9949. [PMID: 34650674 PMCID: PMC8507016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a refractory hematological malignancy characterized by aberrant accumulation of plasma cells. Patients with MM are susceptible to becoming resistant to chemotherapy, eventually leading to relapse. Progression of MM is largely dependent on the bone marrow microenvironment. Stromal cells in the bone marrow microenvironment secrete Wnt ligands to activate Wnt signaling in MM, which is mediated through the transcription regulator β-catenin. In addition, Wnt/β-catenin pathway encourages osteoblast differentiation and bone formation, dysregulation of which is responsible for proliferation and drug resistance of MM cells. As a result, direct inhibition or silencing of β-catenin or associated genes in the Wnt/β-catenin pathway has been proposed to be an effective therapeutic anti-MM strategy. However, the underlying regulatory mechanism of the Wnt/β-catenin pathway in MM remains to be fully elucidated. Herein, we summarized research advances on the specific genes and molecular biology process of Wnt/β-catenin pathway involved in tumorigenesis of MM, as well as the interaction with bone marrow microenvironment. Additionally, comprehensive summaries of drugs or small molecule inhibitors acting on Wnt/β-catenin pathway and targeting MM were introduced. This review intends to provide an overview of theoretical supports for novel Wnt/β-catenin pathway based treatment strategies in MM.
Collapse
Affiliation(s)
- Yuxia Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
32
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
33
|
Gupta P, Kumar N, Garg M. Emerging roles of autophagy in the development and treatment of urothelial carcinoma of the bladder. Expert Opin Ther Targets 2021; 25:787-797. [PMID: 34636265 DOI: 10.1080/14728222.2021.1992384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION High recurrence rates, frequent surveillance strategies, and current multidisciplinary treatment approaches make urothelial carcinoma of bladder (UCB) one of the most expensive cancers to clinically manage. Recent studies have demonstrated a role for autophagy in bladder tumorigenesis. It serves as a tumor suppressor by maintaining genomic integrity and preventing tumor proliferation during initial stages of tumor development. Nevertheless, once established, cancer cells may utilize protective autophagy to endure cellular stress and survive in the adverse environment. Its excessive stimulation supports cancer cells' resistance to therapeutic modalities. AREAS COVERED PubMed and Google Scholar electronic databases were searched for recently published studies. This review summarizes emerging roles of autophagy in development/progression of UCB and treatment resistance and explores novel therapeutic targets for prevention of cancer invasion, metastatic spread', and disease relapse. EXPERT OPINION The development of novel therapies via targeting of autophagy may augment current treatment regimens and improve clinical outcomes. Synthetic compounds or plant-based metabolites are reported to enhance cancer therapies by modulating autophagic flux. Successful autophagy-focused therapeutic intervention requires a mechanistic understanding of autophagic effects on tumor initiation and progression and the development of efficient biomarkers to monitor it in tumor tissues.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
34
|
Chen B, Xie X, Lan F, Liu W. Identification of prognostic markers by weighted gene co-expression network analysis in non-small cell lung cancer. Bioengineered 2021; 12:4924-4935. [PMID: 34369264 PMCID: PMC8806742 DOI: 10.1080/21655979.2021.1960764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the fatal tumors and is associated with a poor prognosis. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to quantify the proportions of 22 types of immune cells. Weighted gene co-expression network analysis (WGCNA) was established from the GSE37745 data, and key modules correlating most with CD8+ T cell infiltration were determined. Genes that manifested a high module connectivity in the key module were identified as hub genes. Three bioinformatics online databases were used to evaluate hub gene expression levels in tumor and normal tissues. Finally, survival analysis was conducted for these hub genes. In this study, we chose four hub genes (AURKB, CDC20, TPX2 and KIF2C) based on the comprehensive bioinformatics analyses. All hub genes were overexpressed in tumor tissue, and high expression of AURKB, CDC20, TPX2, and KIF2C correlated with the poor prognosis of these patients. In vitro experiments confirmed that CDC20 knockdown inhibited cell proliferation and growth. The above results indicated that AURKB, CDC20, TPX2, and KIF2C are potential CD8+ T cell infiltration-related biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Binglin Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaowei Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feifeng Lan
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Circ_CLIP2 promotes glioma progression through targeting the miR-195-5p/HMGB3 axis. J Neurooncol 2021; 154:131-144. [PMID: 34357490 DOI: 10.1007/s11060-021-03814-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Circular RNA (circRNA) has been demonstrated to play key roles in regulating glioma progression. Understanding the regulatory mechanism of circRNA in glioma is vital to reveal the pathogenesis of glioma and develop novel therapeutic strategies. Therefore, our study focuses on the role and underlying mechanism of Circ_CLIP2 in glioma. METHODS The expression of Circ_CLIP2, miR-195-5p and HMGB3 in glioma cells and tissues were analyzed using qRT-PCR. Cell proliferation was determined with colony formation and MTT assays. Cell cycle and apoptosis were examined by flow cytometry. Western blot was conducted for analyzing HMGB3, PCNA, Bax, Bcl-2, cleaved-caspase 3, Wnt-1 and β-catenin. Dual-luciferase reporter assay was measured to investigate the interaction among Circ_CLIP2, miR-195-5p and HMGB3. RESULTS The expression of Circ_CLIP2 and HMGB3 were increased while miR-195-5p was down-regulated in glioma cells and patients. Silencing of Circ_CLIP2 inhibited cell proliferation, enhanced cell apoptosis and inhibited the Wnt/β-catenin signaling pathway. Circ_CLIP2 suppressed miR-195-5p expression by directly sponging miR-195-5p. MiR-195-5p inhibited HMGB3 expression via directly targeting HMGB3. Knockdown of miR-195-5p facilitated cell proliferation, inhibited cell apoptosis and activated Wnt/β-catenin signaling, which were reversed by silencing of HMGB3. CONCLUSION Knockdown of Circ_CLIP2 suppresses glioma progression by targeting miR-195-5p/HMGB3 thus inhibiting Wnt/β-catenin signaling. This study may provide potential therapeutic targets against glioma.
Collapse
|
36
|
Carbajo-García MC, Corachán A, Segura-Benitez M, Monleón J, Escrig J, Faus A, Pellicer A, Cervelló I, Ferrero H. 5-aza-2'-deoxycitidine inhibits cell proliferation, extracellular matrix formation and Wnt/β-catenin pathway in human uterine leiomyomas. Reprod Biol Endocrinol 2021; 19:106. [PMID: 34233687 PMCID: PMC8265104 DOI: 10.1186/s12958-021-00790-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Uterine leiomyoma is a benign tumor with unclear pathogenesis and inaccurate treatment. This tumor exhibits altered DNA methylation related to disease progression. DNMT inhibitors as 5-aza-2'-deoxycytidine (5-aza-CdR), have been suggested to treat tumors in which DNA methylation is altered. We aimed to evaluate whether DNA methylation reversion with 5-aza-CdR reduces cell proliferation and extracellular matrix (ECM) formation in uterine leiomyoma cells to provide a potential treatment option. METHODS Prospective study using uterine leiomyoma and adjacent myometrium tissues and human uterine leiomyoma primary (HULP) cells (n = 16). In tissues, gene expression was analyzed by qRT-PCR and DNMT activity by ELISA. Effects of 5-aza-CdR treatment on HULP cells were assessed by CellTiter, western blot, and qRT-PCR. RESULTS DNMT1 gene expression was higher in uterine leiomyoma vs myometrium. Similarly, DNMT activity was greater in uterine leiomyoma and HULP cells (6.5 vs 3.8 OD/h/mg; 211.3 vs 63.7 OD/h/mg, respectively). After 5-aza-CdR treatment on HULP cells, cell viability was reduced, significantly so at 10 μM (85.3%). Treatment with 10 μM 5-aza-CdR on HULP cells significantly decreased expression of proliferation marker PCNA (FC = 0.695) and of ECM proteins (COLLAGEN I FC = 0.654; PAI-1, FC = 0.654; FIBRONECTIN FC = 0.733). 5-aza-CdR treatment also decreased expression of Wnt/β-catenin pathway final targets, including WISP1 protein expression (10 μM, FC = 0.699), c-MYC gene expression (2 μM, FC = 0.745 and 10 μM, FC = 0.728), and MMP7 gene expression (5 μM, FC = 0.520 and 10 μM, FC = 0.577). CONCLUSIONS 5-aza-CdR treatment inhibits cell proliferation, ECM formation, and Wnt/β-catenin signaling pathway targets in HULP cells, suggesting that DNA methylation inhibition is a viable therapeutic target in uterine leiomyoma.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Marina Segura-Benitez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Escrig
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain.
| |
Collapse
|
37
|
Zhao X, Li G, Chong T, Xue L, Luo Q, Tang X, Zhai X, Chen J, Zhang X. TMEM88 exhibits an antiproliferative and anti-invasive effect in bladder cancer by downregulating Wnt/β-catenin signaling. J Biochem Mol Toxicol 2021; 35:e22835. [PMID: 34057764 DOI: 10.1002/jbt.22835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023]
Abstract
Transmembrane protein 88 (TMEM88) acts as a novel tumor-associated protein. The dysregulation of TMEM88 has been observed in several tumor types. However, the relevance of TMEM88 in tumorigenesis is still contradictory. This study assessed the relevance of TMEM88 in bladder cancer. TMEM88 levels were found to be significantly lower in bladder cancer tissue. Upregulation of TMEM88 resulted in a dramatic decrease in the cellular proliferative and invasive abilities of bladder cancer. Upregulation of TMEM88 decreased the level of active β-catenin and prohibited the activation of the Wnt/β-catenin pathway, an effect that was associated with downregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. Suppression of GSK-3β or overexpression of β-catenin reversed the TMEM88-induced tumor-inhibiting effects in bladder cancer. Overexpression of TMEM88 prohibited the tumor formation and growth of bladder cancer cells in nude mice. In conclusion, this study demonstrates that TMEM88 exerts an antitumor function in bladder cancer through downregulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qidong Luo
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoshuang Tang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Juan Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Zhang
- Medical Department, Xi'an Daxing Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
38
|
Yi Q, Liu Z, Zhang K, Liu X, Wang L, Geng B, Xia Y. The role of long non-coding RNA BCAR4 in human cancers. Hum Cell 2021; 34:1301-1309. [PMID: 34041673 DOI: 10.1007/s13577-021-00556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Long non-coding RNA (lncRNA) is a type of non-coding RNA with length of nucleotides > 200 bp. Increasing evidences show that lncRNA breast cancer antiestrogen resistance 4 (BCAR4) plays an important role in the occurrence and development of various human cancers. It is found that BCAR4 is highly expressed in diverse tumor tissues and cells, and the high expression of BCAR4 is usually associated with poor prognosis. BCAR4 is considered as an oncogene in human cancers. By competing endogenous RNA (ceRNA) mechanism and regulating different signaling pathways, BCAR4 participates in the proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), metastasis and tumorigenesis of different cancers. In addition, overexpression of BCAR4 promotes drug resistance of tumor cells. Therefore, BCAR4 is a promising biomarker for cancer diagnosis and prognosis, and it is a potential target for cancer therapy. This paper reviews studies focusing on the relationship between BCAR4 and cancers in recent years and aims to summarize the effect and mechanism of BCAR4 in human cancers.
Collapse
Affiliation(s)
- Qiong Yi
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Zhongcheng Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Kun Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xuening Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Lifu Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China. .,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China. .,Orthopaedic Clinical Medical Research Center of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
39
|
Zheng J, Li X, Cai C, Hong C, Zhang B. MicroRNA-32 and MicroRNA-548a Promote the Drug Sensitivity of Non-Small Cell Lung Cancer Cells to Cisplatin by Targeting ROBO1 and Inhibiting the Activation of Wnt/β-Catenin Axis. Cancer Manag Res 2021; 13:3005-3016. [PMID: 33854371 PMCID: PMC8039019 DOI: 10.2147/cmar.s295003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background The roles of microRNA (miR)-32 and miR-548a in non-small cell lung cancer (NSCLC) have been studied. But their influences on NSCLC cells to cisplatin (DDP) resistance remain elusive. This study estimated the mechanisms of miR-32 and miR-548a in NSCLC cells to DDP. Methods Differentially expressed miRs in DDP-sensitive and resistant tissues were screened out using a GSE56036 chip. Then the predictive efficacies of miR-32 and miR-548a on DDP resistance were analyzed in NSCLC patients. The target mRNAs of miR-548a and miR-32 were predicted. miR-548a and miR-32 were knocked down to assess the influences of miR-32 and miR-548a on NSCLC growth. DDP-resistant cells were constructed and miR-32 and miR-548a expression was detected in resistant cells. After miR-32 and miR-548a knockdown, the IC50 value of DDP was detected. Then, the activation level of Wnt/β-catenin pathway was detected. The roles of miR-32 and miR-548a in NSCLC growth in vivo were detected by tumorigenesis experiment. Results miR-32 and miR-548a were poorly expressed in DDP-resistant NSCLC. miR-32 and miR-548a mimic enhanced the DDP sensitivity of NSCLC cells. Both miR-32 and miR-548a targeted ROBO1, and overexpression of ROBO1 inhibited the promotion of miR-32 and miR-548a mimic on DDP sensitivity. ROBO1 activated the Wnt/β-catenin pathway, thus enhancing the DDP resistance. Conclusion miR-32 and miR-548a target ROBO1 and inhibit Wnt/β-catenin activation, thus promoting the drug sensitivity of NSCLC cells to DDP.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Cunwei Cai
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Chengyu Hong
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| |
Collapse
|
40
|
Du S, Sui Y, Ren W, Zhou J, Du C. PYCR1 promotes bladder cancer by affecting the Akt/Wnt/β-catenin signaling. J Bioenerg Biomembr 2021; 53:247-258. [PMID: 33689096 DOI: 10.1007/s10863-021-09887-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
Pyrroline-5-carboxylate reductase 1 (PYCR1) plays a significant role in the malignant progression of various cancers. However, the role of PYCR1 in bladder cancer has not been well studied. This study was performed to evaluate the potential relevance of PYCR1 in bladder cancer. Our data revealed that PYCR1 expression was increased in bladder cancer tissues, and increased expression of PYCR1 was predictive of decreased survival rates. In bladder cancer cell lines, knockdown of PYCR1 caused significantly retarded cell growth and invasion, while PYCR1 overexpression accelerated cellular proliferation and invasion. Moreover, PYCR1 knockdown decreased levels of phosphorylated Akt, and enhanced activation of Wnt/β-catenin signaling. Akt inhibition markedly abrogated of PYCR1 overexpression-mediated activation of Wnt/β-catenin signaling. In addition, overexpression of β-catenin partially reversed PYCR1 knockdown-mediated tumor suppression. Notably, PYCR1 knockdown significantly impeded tumor formation and growth in bladder cancer cells in vivo. In conclusion, these data demonstrate that PYCR1 is highly expressed in bladder cancer and knockdown of PYCR1 exerts a remarkable inhibitory effect on tumor formation via downregulation of Akt/Wnt/β-catenin signaling. Our study suggests a potential role for PYCR1 in promoting bladder cancer progression and indicates that PYCR1 may be utilized as an attractive and promising anticancer target for treatment of bladder cancer.
Collapse
Affiliation(s)
- Shuangkuan Du
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yongjie Sui
- Department of Physical Examination, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Xi'an, 710068, China.
| | - Wei Ren
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jiancheng Zhou
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Chun Du
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
41
|
Huang H, Fan X, Zhang X, Xie Y, Ji Z. LncRNA CARLo-7 facilitates proliferation, migration, invasion, and EMT of bladder cancer cells by regulating Wnt/β-catenin and JAK2/STAT3 signaling pathways. Transl Androl Urol 2020; 9:2251-2261. [PMID: 33209690 PMCID: PMC7658127 DOI: 10.21037/tau-20-1293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Aberrant expression of long noncoding RNAs (lncRNAs) has been found to enroll in the initiation and progression of bladder cancer (BC). Earlier results show cancer-associated region long noncoding RNA-7 (CARLo-7) can be a prognostic marker for BC, but its biological function and the underlying mechanism is still to be discovered. Our study aims to explore the effects of CARLo-7 on the initiation and progression of BC and the potential mechanisms. Methods The expression of CARLo-7 in BC tissues and cell lines was determined by quantitative real-time polymerase chain reaction (qRT-PCR). T24 and HT1197 cells were transfected with CARLo-7 expression vector or sh-CARLo-7, then cell viability assay, BrdU assay, flow cytometry, Transwell cell migration, and invasion assay, and western blot were conducted to evaluate cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Results CARLo-7 was dramatically upregulated in BC tissues and cell lines. Silencing CARLo-7 by sh-CARLo-7 significantly suppressed proliferation and induced apoptosis of BC cells, while enforced CARLo-7 expression promoted cell proliferation. Meanwhile, silencing CARLo-7 attenuated migration, invasion, and EMT of BC cells, while CARLo-7 overexpression had the contrary effects. The β-catenin, p-JAK2 and p-STAT3 levels were decreased by CARLo-7 knockdown, while activation of Wnt/β-catenin or JAK2/STAT3 pathways abolished the effects of CARLo-7 knockdown on cell proliferation and migration. Conclusions Collectively, CARLo-7 plays a critical role in regulating BC development by regulating cell proliferation, migration, invasion, and EMT through Wnt/β-catenin and JAK2/STAT3 signaling. Therefore, CARLo-7 might be a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Houfeng Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinrong Fan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuebin Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xie
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
43
|
Goto T, Kashiwagi E, Jiang G, Nagata Y, Teramoto Y, Baras AS, Yamashita S, Ito A, Arai Y, Miyamoto H. Estrogen receptor-β signaling induces cisplatin resistance in bladder cancer. Am J Cancer Res 2020; 10:2523-2534. [PMID: 32905529 PMCID: PMC7471368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023] Open
Abstract
The efficacy of cisplatin-based chemotherapy in patients with bladder cancer is often limited due to the development of therapeutic resistance. Our recent findings in bladder cancer suggested that activation of prostaglandin receptors (e.g. EP2, EP4) or cyclooxygenase (COX)-2 induced cisplatin resistance. Meanwhile, emerging evidence indicates the involvement of estrogen receptor-β (ERβ) signals in urothelial cancer progression. In this study, we aimed to investigate whether ERβ activity was associated with cisplatin sensitivity in bladder cancer. Immunohistochemistry in muscle-invasive bladder cancer specimens from 55 patients who had subsequently received at least 3 cycles of cisplatin + gemcitabine neoadjuvant chemotherapy showed that ERβ was positive in 38% of responders vs. 71% of non-responders (P = 0.016), including 42% of male responders vs. 65% of male non-responders (P = 0.142) and 20% of female responders vs. 100% of female non-responders (P = 0.048). Then, cisplatin cytotoxicity was compared in human bladder cancer cell lines. Control sublines endogenously expressing ERβ were significantly more resistant to cisplatin treatment at its pharmacological concentrations, compared with ERβ knockdown sublines via short hairpin RNA virus infection. An ER modulator tamoxifen increased sensitivity to cisplatin in ERα-negative/ERβ-positive cell lines, while, in an estrogen-depleted condition, 17β-estradiol reduced it. Additionally, western blot showed considerable elevation in ERβ expression in cisplatin-resistant bladder cancer sublines, compared with respective controls. Moreover, treatment with tamoxifen or a COX-2 inhibitor celecoxib increased cisplatin sensitivity even in resistant cells, while COX-2/EP2/EP4 inhibitor treatment resulted in reduced expression of ERβ. The expression and activity of β-catenin known to involve cisplatin resistance was also up-regulated in cisplatin-resistant cells, which was further induced by 17β-estradiol treatment. The present results suggest that estrogen-mediated ERβ signaling plays an important role in modulating cisplatin sensitivity in bladder cancer cells. Targeting ERβ during chemotherapy may thus be a useful strategy to overcome cisplatin resistance especially in female patients with ERβ-positive bladder cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, Tohoku University Graduate School of MedicineSendai, Japan
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Alexander S Baras
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Shinichi Yamashita
- Department of Urology, Tohoku University Graduate School of MedicineSendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of MedicineSendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of MedicineSendai, Japan
- Department of Urology, Miyagi Cancer CenterNatori, Japan
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
44
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
45
|
Loshchenov M, Seregin A, Kalyagina N, Dadashev E, Borodkin A, Babaev A, Loran O, Loschenov V. Fluorescence visualization of the borders of bladder tumors after TUR with quantitative determination of diagnostic contrast. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Maxim Loshchenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences Moscow Russia
| | - Alexander Seregin
- S.P. Botkin City Clinical Hospital of the Department of Health of Moscow Moscow Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation Moscow Russia
| | - Nina Kalyagina
- Prokhorov General Physics Institute of the Russian Academy of Sciences Moscow Russia
- National Research Nuclear University MEPhI Moscow Russia
| | - Elmar Dadashev
- S.P. Botkin City Clinical Hospital of the Department of Health of Moscow Moscow Russia
| | - Alexander Borodkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences Moscow Russia
| | - Akobirkhon Babaev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation Moscow Russia
| | - Oleg Loran
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation Moscow Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences Moscow Russia
- National Research Nuclear University MEPhI Moscow Russia
| |
Collapse
|
46
|
Silence of FAM83H-AS1 promotes chemosensitivity of gastric cancer through Wnt/β-catenin signaling pathway. Biomed Pharmacother 2020; 125:109961. [PMID: 32028241 DOI: 10.1016/j.biopha.2020.109961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor originated from the epithelium of gastric mucosa, its incidence is second only to lung cancer in China. Chemotherapy is one of the most effective methods to treat GC, but some patients are insensitive to chemotherapeutic drugs, leading to chemotherapy failure. In this study, the expression of FAM83H-AS1 was up-regulated in GC tissues and cell lines, and was related to differentiation, invasion depth and chemotherapy insensitivity of GC patients. FAM83H-AS1 was high-expressed in chemoresistant GC tissues and cell line (SGC7901/R), and silence of FAM83H-AS1 sensitized SGC7901/R cells to cisplatin (CDDP) and 5-fluorouracil (5-FU). In addition, silence of FAM83H-AS1 could inactivate Wnt/β-catenin signaling pathway in SGC7901/R cells. The activating of Wnt/β-catenin signaling pathway reversed the promoting effect of FAM83H-AS1 silence on chemotherapy sensitivity, which meant Wnt/β-catenin signaling pathway mediated the regulation of FAM83H-AS1 on chemotherapy sensitivity in SGC7901/R cells. In conclusion, FAM83H-AS1 is related with the CDDP and 5-FU insensitivity of GC patients, silence of FAM83H-AS1 promotes chemosensitivity of GC through Wnt/β-catenin signaling pathway.
Collapse
|
47
|
The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:312. [PMID: 31787849 PMCID: PMC6880345 DOI: 10.1186/s12935-019-1010-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.
Collapse
|