1
|
Chen L, Bello-Onaghise G, Chen M, Li S, Zhang Y, Wang H, Qu Q, Li Y. Efficacy of Chlorogenic Acid in Treating Tripterygium Glycoside-Induced Asthenozoospermia in Rats and Its Possible Mechanisms. Vet Sci 2025; 12:66. [PMID: 39852941 PMCID: PMC11768533 DOI: 10.3390/vetsci12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Tripterygium glycosides (TGs) are the most common form of traditional Chinese medicine, known as Tripterygium wilfordii Hook F (TWHF) [...].
Collapse
Affiliation(s)
- Long Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300103, Nigeria
| | - Mo Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China;
| | - Shunda Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Haoran Wang
- Department of Clinical Medicine, School of Clinical Medicine, Southern Medical University, 1023 Shatainan Road, Guangzhou 510515, China;
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| |
Collapse
|
2
|
Zhu R, Gao Z, Wu S, Ma S, Zhu Y, Zhang S, Zhang Y, Zeng H, Ma C, Zhao J, Ye J, Zhang W. Multi-omics and network pharmacology approaches reveal Gui-Ling-Ji alleviates oligoasthenoteratozoospermia by regulating arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156184. [PMID: 39488872 DOI: 10.1016/j.phymed.2024.156184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Gui-Ling-Ji (GLJ) described in the ancient medical book 'Yunji Qijian' is a traditional Chinese medicine formula used to improve male fertility. It is now available for the treatment of oligoasthenoteratozoospermia (OAT). However, the active ingredients and mechanism of GLJ are not clear. PURPOSE The aim of this study was to clarify the active ingredients and mechanism of GLJ in OAT. METHODS Firstly, the cyclophosphamide-induced OAT rat model was established to evaluate the efficacy of GLJ. Secondly, serum/urine-based metabolomics and lipidomics and tissue-based transcriptomics were performed to discover the differential metabolites and genes in rats. Furthermore, network pharmacology was constructed to explore the associated mechanisms based on the results of multi-omics analysis. Finally, cellular experiment on testicular mesenchymal stromal cells (TM3) was used to validate the active ingredients and the key metabolic pathway. RESULTS Rats were administered GLJ by gavage every day for 3 weeks. Testicular damage and weight loss caused by cyclophosphamide were restored in rats, the sperm count and motility were improved, and levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) secretion were also elevated. Compared to the metabolites of OAT rats, 51 and 37 differential metabolites regulated by GLJ were identified from serum and urine respectively, 54 lipid differential metabolites regulated by GLJ were identified by lipidomics. At the same time, 23 of the 258 differential genes were found to be regulated by OAT rats and then reverse-regulated by GLJ. Network pharmacology has identified 13 pathways (Steroid hormone biosynthesis, Taurine and hypotaurine metabolism, Primary bile acid biosynthesis, Linoleic acid metabolism, Retinol metabolism, Glycerophospholipid metabolism, Ether lipid metabolism, Sphingolipid metabolism, Arachidonic acid metabolism, Glutathione metabolism, Arginine biosynthesis, Arginine and proline metabolism, D-Arginine and D-ornithine metabolism), four metabolites (arachidonic acid, oestrone sulphate, phosphatidylglycerol choline and sphingomyelin) and 15 targets (ABCB11, ALDH18A1, CCL3, CD244, CIITA, CYP2C8, DLL1, ITGA4, ESR1, AR, ABCB1, ABCC1, ALB, PLA2G1B and NOS2). GLJ, psoralen, isopsoralen, liquiritin, isoliquiritin, liquiritigenin, and ginsenoside Ro could significantly promote T secretion from TM3 cells. Additionally, arachidonic acid metabolism particularly the cyclooxygenase pathway, is closely related to the promotion of testosterone secretion by GLJ in TM3. CONCLUSION GLJ has a therapeutic efficacy in cyclophosphamide-induced OAT rats, which can modulate the disorders of lipid metabolism and amino acid metabolism. Arachidonic acid metabolism may be a key pathway, and six prototype compounds are potential key active ingredients for GLJ.
Collapse
Affiliation(s)
- Renwen Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China..
| | - Ziqing Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyu Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Siyi Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiqing Zhu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shiyu Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huawu Zeng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China..
| | - Ji Ye
- School of Pharmacy, Naval Medical University, Shanghai 200433, China..
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.; School of Pharmacy, Naval Medical University, Shanghai 200433, China.; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.; School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China..
| |
Collapse
|
3
|
Liu Y, Feng Q, Zou L, Zhu C, Xia W. Oligoasthenozoospermia is alleviated in a mouse model by [Gly14]-humanin-mediated attenuation of oxidative stress and ferroptosis. Andrology 2024. [PMID: 39435863 DOI: 10.1111/andr.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Oligoasthenozoospermia is a common cause of male infertility, for which effective treatments are urgently needed. Humanin (HN) is a peptide associated with this condition. OBJECTIVES To investigate the ameliorative effect of [Gly14]-Humanin (HNG) on oligoasthenozoospermia and the mechanisms. MATERIALS AND METHODS Mice were treated with cyclophosphamide (CP) to construct a mice model of oligoasthenozoospermia. The resulting model mice were treated with saline or HNG. Subsequently, the testis weights, organ indices, testicular structure, sperm counts and motilities, litter sizes, and serum testosterone concentrations of the mice were determined. Differential gene expression in testicular tissues was determined by RNA sequencing. TM3, TM4, GC1, and GC2 cells were exposed to erastin to induce ferroptosis, followed by treatment with HNG or HNG + ML385 (a nuclear factor erythroid 2-related factor 2 inhibitor). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and ferrous ions (Fe2+) were determined and their expression of ferroptosis-related proteins was determined by immunofluorescence and western blot. RESULTS The HNG treatment improved testis and sperm parameters and increased litter size and serum testosterone concentrations in model mice. Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed significant differential expression of ferroptosis-related genes. The expression of ferroptosis-related proteins increased in testicular tissues after the HNG treatment. The concentrations of ROS, MDA, and Fe2+ decreased and the concentrations of GSH increased in testicular tissues and in TM3 and TM4 cells after HNG treatment. In vitro experiments confirmed that HNG activated the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway. However, these effects of HNG were blocked by ML385 treatment. DISCUSSION AND CONCLUSION HNG demonstrated a therapeutic effect on oligoasthenozoospermia in a mouse model by reducing oxidative stress and ferroptosis. In TM3 and TM4 cells, HNG attenuated cellular oxidative stress and inhibited ferroptosis via the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Cai B, Sun D, Deng W, Jin Y, Zhao H, Xing D, Liu Y, Jin B. Mendelian randomization analysis and validation supports MEGF9 and MLLT11 as potential targets for the treatment of varicocele and male infertility. Front Endocrinol (Lausanne) 2024; 15:1416384. [PMID: 39391881 PMCID: PMC11464449 DOI: 10.3389/fendo.2024.1416384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Objective A growing body of research suggests a link between varicocele and male infertility (MI). However, current evidence is mainly based on retrospective studies, which are prone to interference from confounding factors and cannot establish causal relationships. Mendelian randomization (MR) studies on the causal relationship between varicocele and MI are very limited. Therefore, this study conducted a two-sample MR study to elucidate the causal effect between the two. Methods Download the data set GSE216907 from the GEO database, and use R software to screen differential genes in normal and varicocele tissue samples. The drug targets of Bu Shen Huo Xue Prescription (BSHXP) were derived from the Herb database. All genetic datasets were obtained using publicly available summary statistics based on individuals of European ancestry from the IEU GWAS database. MR analysis was performed using MR Egger, weighted median (WM) and inverse variance weighted (IVW) methods to assess the causal relationship between exposure and outcome and to validate the findings by comprehensively evaluating the effects of pleiotropic effects and outliers. The renal vein constriction method was used to establish a pathological model of varicocele infertility. The drug was administered continuously for 60 days and the relevant indicators of the rats were observed. Results Obtain two therapeutic targets for varicocele through intersection analysis: MEGF9 and MLLT11, and were verified by molecular docking. MR analysis showed that MEGF9 was positively associated with MI (MR Egger, OR: 1.639, 95% CI: 1.124-2.391, P = 0.024; WM, OR: 1.235, 95% CI: 1.003-1.521, P = 0.047). MEGF9 is also positively associated with MI (IVW, OR: 1.35, 95% CI: 1.069-1.705, P = 0.012). Sensitivity analysis showed no heterogeneity and horizontal pleiotropy. The expression of MEGF9 and MLLT11 increased in the varicocele model group, while the expression decreased after treatment with low, medium, and high doses of BSHXP. In addition, the sperm number, motility, morphology, and fertility of rats in the model group were significantly lower than those in the control group (P<0.05). After BSHXP treatment, all indicators were significantly better than those of the model group (P<0.05). Conclusion In conclusion, this study indirectly supports that varicocele causes MI. BSHXP inhibiting MEGF9 and MLLT11 may become a potential therapeutic target for alleviating varicocele and MI.
Collapse
Affiliation(s)
- Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Weimin Deng
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hongle Zhao
- Department of Andrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Hao J, Ren J, Chang B, Xu H, Wang H, Ji L. Transcriptome and proteomic analysis reveal the protective mechanism of acupuncture on reproductive function in mice with asthenospermia. Heliyon 2024; 10:e36664. [PMID: 39286182 PMCID: PMC11403502 DOI: 10.1016/j.heliyon.2024.e36664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Acupuncture is an integral component of complementary and alternative medicine that has been reported to enhance sperm motility, improve semen quality, and consequently augment male fertility. However, the precise mechanisms of action and the underlying molecular pathways remain unclear. In the present study, we aimed to elucidate the potential mechanisms through which acupuncture improves reproductive function in a mouse model of cyclophosphamide-induced asthenozoospermia. We collected sperm from the epididymis for semen analysis, collected serum to determine gonadotropin and oxidative stress marker levels, conducted histological examination of testicular tissue using hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and observed mitochondrial morphology using transmission electron microscopy (TEM). We also assessed oxidative stress levels and total iron content in testicular tissue and validated the proteomic and transcriptomic analysis results of testicular tissue using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), protein imprinting analysis, and immunohistochemistry (IHC). Our results indicate that acupuncture enhances sperm quality in asthenozoospermic mice; increases serum testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; and attenuates oxidative damage, iron accumulation, and mitochondrial injury in mouse testicular tissues. Through protein and transcriptomic analyses, we identified 21 key genes, of which cytochrome b-245 heavy chain (CYBB), glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 1 (ACSL1), and ferritin mitochondria (FTMT) were closely associated with ferroptosis. RT-qPCR, protein imprinting, and immunofluorescence (IF) analyses collectively indicated that acupuncture reduced ACSL1 and CYBB expression, and increased GPX4 and FTMT expression. Overall, the ferroptosis pathway associated with ACSL1/CYBB/FTMT/GPX4 represents a potential strategy through which acupuncture can improve the reproductive function in asthenozoospermic mice.
Collapse
Affiliation(s)
- Jianheng Hao
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Jia Ren
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Boya Chang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Huichao Xu
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Haijun Wang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Laixi Ji
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
6
|
Liu X, Lou K, Zhang Y, Li C, Wei S, Feng S. Unlocking the Medicinal Potential of Plant-Derived Extracellular Vesicles: current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:4877-4892. [PMID: 38828203 PMCID: PMC11141722 DOI: 10.2147/ijn.s463145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Botanical preparations for herbal medicine have received more and more attention from drug researchers, and the extraction of active ingredients and their successful clinical application have become an important direction of drug research in major pharmaceutical companies, but the complexity of extracts, multiple side effects, and significant individual differences have brought many difficulties to the clinical application of herbal preparations. It is noteworthy that extracellular vesicles as active biomolecules extracted from medicinal plants are believed to be useful for the treatment of a variety of diseases, including cancer, inflammation, regenerative-restorative and degenerative diseases, which may provide a new direction for the clinical utilization of herbal preparations. In this review, we sort out recent advances in medicinal plant extracellular vesicles and discuss their potential as disease therapeutics. Finally, future challenges and research directions for the clinical translation of medicinal plant extracellular vesicles are also discussed, and we expect that continued development based on medicinal plant extracellular vesicles will facilitate the clinical application of herbal preparations.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Chuanxiao Li
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shenghong Wei
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| |
Collapse
|
7
|
Wan W, Zhang C, Zhang Q, Hua Z, Li N, Ma M, Shen H, Wang Z. Exploring the Mechanisms of Yishen Tongluo Decoction on Repairing DNA Damage in Mouse Spermatogonia Cells Based on Whole Transcriptome Sequencing. Am J Mens Health 2024; 18:15579883241246908. [PMID: 38725193 PMCID: PMC11084988 DOI: 10.1177/15579883241246908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
The aim of this study was to investigate the potential mechanism through which Yishen Tongluo decoction (YSTL) repairs DNA damage caused by benzo(a)pyrene diol epoxide (BPDE) in mouse spermatocytes (GC-2). The GC-2 cells were divided randomly into the control group, BPDE group, and low-, medium-, and high-dose YSTL groups of YSTL decoction. A comet assay was used to detect the DNA fragment index (DFI) of cells in each group. Based on the DFI results, whole transcriptome sequencing was conducted, followed by trend analysis, gene ontology (GO) enrichment analysis, kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and ceRNA network analysis. Compared with the control group, the BPDE group reported a significant increase in the DNA fragmentation index (DFI) (p < .05). Compared with the BPDE group, the low-, high- and medium-dose YSTL groups had a significantly reduced DFI (p < .05). Whole-transcriptome sequencing revealed seven differentially expressed circRNAs, 203 differentially expressed miRNAs, and 3,662 differentially expressed mRNAs between the control group and the BPDE group. There was a total of 12 differentially expressed circRNAs, 204 miRNAs, and 2150 mRNAs between the BPDE group and the traditional Chinese medicine group. The pathways involved include DNA repair pathway, nucleotide excision repair pathway, base excision repair pathway, etc. The ceRNA network reported that Hmga2 was the core protein involved, novel_cir_000117 and mmu-miR-466c-3p were located upstream of Hmga2, and they were regulatory factors associated with Hmga2. Finally, we conclude that YSTL decoction may repair sperm DNA damage caused by BPDE through the novel_cir_000117-mmu-miR-466c-3p-Hmga2 pathway.
Collapse
Affiliation(s)
- Wenxi Wan
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenming Zhang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ninghua Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Miaomiao Ma
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huiyuan Shen
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Szałabska-Rąpała K, Zych M, Borymska W, Londzin P, Dudek S, Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed Pharmacother 2024; 172:116265. [PMID: 38364735 DOI: 10.1016/j.biopha.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
In diabetes hyperglycemia, excessive production of free radicals and present oxidative stress lead to many complications in the body, including male reproductive system disorders. To prevent the development of diabetic complications in the testes resulting from them, it seems beneficial to include compounds considered as natural antioxidants. Honokiol and magnolol are neolignans obtained from magnolia bark, which possess proven antioxidant properties. The aim of this study was to evaluate the effect of honokiol and magnolol on the parameters of oxidative stress, polyol pathway and glycation products in the testes as well as on selected biochemical parameters in the blood serum of rats with type 2 diabetes. The study was conducted on mature male Wistar rats with high fat diet and streptozotocin-induced type 2 diabetes. Neolignans-treated rats received honokiol or magnolol orally at the doses of 5 or 25 mg/kg, respectively, for 4 weeks. Parameters related to glucose and lipid homeostasis, basic serological parameters and sex hormones level in the serum as well as polyol pathway parameters, antioxidant enzyme activity, endogenous antioxidants level, sumaric parameters for oxidative stress and oxidative damage in the testes were estimated. Oral administration of honokiol and magnolol turned out to be beneficial in combating the effects of oxidative stess in the testes, but showed no favorable effects on serum biochemical parameters. Additionally, magnolol compared to honokiol revealed more advantageous impact indicating the reversal of the effects of diabetic complications in the male reproductive system and counteracted oxidative stress damages and polyol pathway disorders in the testes.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| |
Collapse
|
9
|
Zhang J, Chen X, Han L, Ma B, Tian M, Bai C, Zhang Y. Research Progress in Traditional Applications, Phytochemistry, Pharmacology, and Safety Evaluation of Cynomorium songaricum. Molecules 2024; 29:941. [PMID: 38474452 DOI: 10.3390/molecules29050941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cynomorium songaricum Rupr. (CSR) belongs to the family Cynomoriaceae. It is a perennial succulent parasitic herb with a reddish-brown coloration, predominantly submerged in sand and lacking chlorophyll. Traditionally, it has been used in ethnic medicine to treat various diseases, such as gastric ulcers, indigestion, bowel movements, and improving sexual function. To comprehensively collect CSR data, extensive literature searches were conducted using medical, ecological, and scientific databases such as Google Scholar, PubMed, Science Direct, Web of Science, and China National Knowledge Infrastructure (CNKI). This article summarizes and categorizes research on the uses, phytochemical characteristics, pharmacological activities, and toxicity of ethnic medicine, with the aim of establishing a solid foundation and proposing new avenues for exploring and developing potential applications of CSR. So far, a total of 98 compounds have been isolated and identified from CSR, including flavonoids, terpenes, steroids, and other compounds. It is worth noting that flavonoids and polysaccharides have significant antioxidant and anti-inflammatory properties. In addition, these compounds also show good application prospects in anti-tumor, antioxidant, anti-aging, anti-fatigue, anti-diabetes, and other aspects. Although extensive progress has been made in the basic research of CSR, further research is still needed to enhance the understanding of its mechanism of action and explore more unknown compounds. Our review indicates that CSR has broad prospects and deserves further research.
Collapse
Affiliation(s)
- Jin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xingyi Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Han
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Biao Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mengting Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ye Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
10
|
Jiang X, Zhu W, Sun Y, Wang S, Sun M, Tang R, Tang Z, Ma T. Tandem mass tag-based quantitative proteomics analyses of the spermatogenesis-ameliorating effect of Youjing granule on rats. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9679. [PMID: 38211349 DOI: 10.1002/rcm.9679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
RATIONALE Male infertility is a common reproductive system disease manifested as aberrant spermatogenesis and identified as "kidney deficiency and dampness" in Chinese traditional medicine. Youjing granule (YG) is a Chinese material medica based on tonifying kidneys and removing dampness. It has proven to be able to regulate semen quality in clinical application, but the underlying mechanism has not been clarified. METHODS Using serum containing YG to treat primarily cultured spermatogonial stem cells (SSCs), the apoptotic rate and mitosis phase ratio of SSCs were measured. The liquid chromatography-tandem mass spectrometry with tandem mass tags method was applied for analyzing the serum of rats treated with YG/distilled water, and proteomic analyses were performed to clarify the mechanisms of YG. RESULTS Totally, 111 proteins in YG-treated serum samples were differentially expressed compared with control groups, and 43 of them were identified as potential target proteins, which were further annotated based on their enrichment in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Proteomic analyses showed that the mechanisms of YG may involve regulation of glycolysis, gluconeogenesis and nucleotide-binding and oligomerization domain-like receptor signaling pathway. In addition, RhoA and Lamp2 were found to be possible responders of YG through reviewing the literature. CONCLUSIONS The results demonstrate that our serum proteomics platform is clinically useful in understanding the mechanisms of YG.
Collapse
Affiliation(s)
- Xuping Jiang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Department of Urology, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Wenjiao Zhu
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yaoxiang Sun
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
- Department of Clinical Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Sijia Wang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Miaomiao Sun
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Ruijie Tang
- School of Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhian Tang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Tieliang Ma
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
11
|
Wang Z, Liu D, Nie Y, Zhang Q. Cai's prescription inhibits granulosa cell apoptosis through ARHGAP4 on poor ovarian responders. J Ovarian Res 2024; 17:40. [PMID: 38355537 PMCID: PMC10865665 DOI: 10.1186/s13048-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE Poor ovarian response (POR) is a big challenge for in vitro fertilization. The traditional Chinese medicine, Cai's Prescription of Tonifying Kidney and Strengthening Vitals (Cai's Prescription) has yielded satisfactory results for POR treatment clinically, but systematic scientific research of Cai's Prescription is not well reported. This study aimed to investigate the clinical effect of Cai's Prescription on poor ovarian responders and its biological mechanism. METHODS Serum was collected from poor ovarian responders, and IL-1β, INFγ, FSH, E2 and AMH levels were analyzed by ELISA. Ovarian antral follicles were identified and counted using transvaginal ultrasound. The embryo quality grading were done on day 3 after retrieval. We used high-throughput sequencing of granulosa cells to investigate the gene transcription patterns of ovarian granulosa cells in poor ovarian responders after Cai's Prescription pretreatment. The expression level of ARHGAP4 was analyzed by quantitative real-time PCR and western blot. The effects of ARHGAP4 for granulosa cells were analyzed by CCK-8 assay, annexin-V and PI staining, ELISA and western blot. The effects of Cai's Prescription on the expression of PI3K-Akt pathway and apoptosis were analyzed by western blot. RESULTS In this study, we found that Cai's Prescription pretreatment had the tendency to improve the ovarian reserve function and could increase the number of high quality embryos for poor ovarian responders. Through high-throughput sequencing of mRNA in granulosa cells, we discovered ARHGAP4, which is a member of GTPase-activating proteins (GAPs) may be a candidate target for POR treatment. ARHGAP4 was significantly increased in poor ovarian responders and can be recovered after Cai's Prescription pretreatment. Mechanically, combining the cell line model and clinical tissue samples, we found that ARHGAP4 can accelerate cell apoptosis and inflammation response in granulosa cells via PI3K-Akt signaling pathway. In addition, Cai's Prescription pretreatment for three months significantly reduced the high level of ARHGAP4 in poor ovarian responders. CONCLUSION This study shows that the traditional Chinese medicine, Cai's Prescription yielded satisfactory results for poor ovarian responders clinically and ARHGAP4 may be a candidate target for POR treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China.
| | - Denghao Liu
- Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China
| | - Yonghong Nie
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China
| | - Qinhua Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China.
| |
Collapse
|
12
|
Ding J, Lu B, Liu L, Zhong Z, Wang N, Li B, Sheng W, He Q. Guilu-Erxian-Glue alleviates Tripterygium wilfordii polyglycoside-induced oligoasthenospermia in rats by resisting ferroptosis via the Keap1/Nrf2/GPX4 signaling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:213-227. [PMID: 36688426 PMCID: PMC9873281 DOI: 10.1080/13880209.2023.2165114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Guilu-Erxian-Glue (GLEXG) is a traditional Chinese formula used to improve male reproductive dysfunction. OBJECTIVE To investigate the ferroptosis resistance of GLEXG in the improvement of semen quality in the oligoasthenospermia (OAS) rat model. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were administered Tripterygium wilfordii polyglycoside, a compound extracted from Tripterygium wilfordii Hook F. (Celastraceae), at a dose of 40 mg/kg/day, to establish an OAS model. Fifty-four SD rats were randomly divided into six groups: sham, model, low-dose GLEXG (GLEXGL, 0.25 g/kg/day), moderate-dose GLEXG (GLEXGM, 0.50 g/kg/day), high-dose GLEXG (GLEXGH, 1.00 g/kg/day) and vitamin E (0.01 g/kg/day) group. The semen quality, structure and function of sperm mitochondria, histopathology, levels of oxidative stress and iron, and mRNA levels and protein expression in the Keap1/Nrf2/GPX4 pathway, were analyzed. RESULTS Compared with the model group, GLEXGH significantly improved sperm concentration (35.73 ± 15.42 vs. 17.40 ± 4.12, p < 0.05) and motility (58.59 ± 11.06 vs. 28.59 ± 9.42, p < 0.001), and mitigated testicular histopathology. Moreover, GLEXGH markedly reduced the ROS level (5684.28 ± 1345.47 vs. 15500.44 ± 2307.39, p < 0.001) and increased the GPX4 level (48.53 ± 10.78 vs. 23.14 ± 11.04, p < 0.01), decreased the ferrous iron level (36.31 ± 3.66 vs. 48.64 ± 7.74, p < 0.05), and rescued sperm mitochondrial morphology and potential via activating the Keap1/Nrf2/GPX4 pathway. DISCUSSION AND CONCLUSIONS Ferroptosis resistance from GLEXG might be driven by activation of the Keap1/Nrf2/GPX4 pathway. Targeting ferroptosis is a novel approach for OAS therapy.
Collapse
Affiliation(s)
- Jin Ding
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology Clinic, Affiliated Bao’an Hospital of Traditional Chinese Medicine, The Seventh Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Baowei Lu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Bonan Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
13
|
Zhu W, Mao J, Qin J, Chen X. CFAP61 knockdown aggravates male infertility by inhibiting testosterone secretion by Leydig cells via the MAPK/COX-2 pathway. Funct Integr Genomics 2023; 23:340. [PMID: 37982895 DOI: 10.1007/s10142-023-01271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to elucidate the roles of cilia- and flagella-associated protein 61 (CFAP61) in male infertility and its underlying mechanisms. CFAP61 expression levels in the testicular tissues of male patients with infertility were determined using quantitative real-time polymerase chain reaction, immunohistochemical assay, and western blotting. Moreover, the specific roles of CFAP61 in male infertility were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays. Here, CFAP61 was expressed at low levels in the testicular tissues of male patients with infertility. Functionally, CFAP61 knockdown reduced the Leydig cell viability and testosterone secretion and enhanced apoptosis. A mechanistic study further revealed that silencing CFAP61 promoted the expression levels of mitogen-activated protein kinase (MAPK)/cyclooxygenase-2 (COX-2) signaling pathway-related proteins (p-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK), p-P38, and COX-2). In conclusion, CFAP61 knockdown facilitated male infertility by suppressing Leydig cell viability and testosterone secretion and enhanced cell apoptosis by activating the MAPK/COX-2 pathway. Our data suggest CFAP61 as a potential therapeutic target for male infertility.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
14
|
Pan X, Qing Q, Zhou J, Sun H, Li L, Cao W, Ye F, Zhu J, Sun Y, Wang L. Effect of Chinese patent medicine Kunling Pill on endometrial receptivity: A clinical trial, network pharmacology, and animal-based study. Drug Discov Ther 2023; 17:257-269. [PMID: 37599077 DOI: 10.5582/ddt.2023.01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Although pregnancy success rates are raised with assisted reproductive technology, it still cannot meet clinical demands. Kunling Pill (KLP), a traditional Chinese medicine, is widely used in various gynecological disorders, particularly in improving fertility and pregnancy rates. However, the underlying mechanism of how KLP affects pregnancy outcomes remains unclear. This study aimed to explore the effects and mechanisms of KLP on endometrial receptivity. Firstly, a retrospective trial was conducted to validate the efficacy of KLP on repeated implantation failure (RIF) patients. The result indicated a significant increase in the proportion of live birth in KLP group (30.56%) compared to the control group (16.89%). Secondly, network pharmacology methods predicted the active components and network targets of KLP. Endometrial receptivity is closely associated with the activation of inflammatory factors, predicting the function of KLP on the immune system. The estrogen and apoptotic signaling pathways were also highlighted in the gene ontology enrichment analysis. Thirdly, a decreased endometrial receptivity model was established by controlled ovarian hyperstimulation (COH) in female C57BL/6 mice, divided into the COH and KLP groups. Normal female mice are as control group. In vivo, KLP administration could increase endometrial thickness and the number of endometrial glands and pinopodes. In the endometrium, KLP supplementation upregulated the expressions of estrogen receptor α, progesterone receptor, endothelial nitric oxide synthase, and integrin αVβ3 in the murine uterus and reduced serum levels of estrogen and progesterone. KLP regulated the uterine immune cells and inhibited cell apoptosis in the ovary via Bcl-2/Bax/caspase-3 pathway. In conclusion, KLP administration raised the live birth rate in RIF patients to optimize medication regimens, mainly because KLP ameliorated impaired endometrial receptivity.
Collapse
Affiliation(s)
- Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qi Qing
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Jun Zhu
- Department of Obstetrics and Gynecology, Wenling People's Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yan Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
15
|
Wu YY, Xu YM, Lau ATY. Epigenetic effects of herbal medicine. Clin Epigenetics 2023; 15:85. [PMID: 37179342 PMCID: PMC10183144 DOI: 10.1186/s13148-023-01481-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Epigenetic memory is essential for life that governs the predefined functional features of cells. Recent evidence has indicated that the epigenetic modification provides a potential link to gene expression changes that may be involved in the development of various chronic diseases, and targeting the epigenome becomes a plausible method for treating diseases. Traditional herbal medicine has gradually entered the vision of researchers due to its low toxicity and its effectiveness in treating diseases. As a matter of fact, researchers found that the possessed epigenetic modification capacity of herbal medicine had the ability to combat the progression of the disease, such as various types of cancer, diabetes, inflammation, amnesia, liver fibrosis, asthma, and hypertension-induced renal injury. Studies on the epigenetic effects of herbal medicine will provide valuable insights into the molecular mechanisms of human diseases, which may lead to new therapeutic approaches and diagnoses. Thus, this review summarized the impact of herbal medicine and its bioactive components on disease epigenome as examples of how utilization of epigenetic plasticity could be useful as the basis for the future development of targeted therapies in chronic diseases.
Collapse
Affiliation(s)
- Yu-Yao Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Xu G, Peng Y, Chen C. Effectiveness of Peng's Shengjing recipe on male asthenospermia caused by kidney yang deficiency: A randomized pilot study. Saudi Med J 2023; 44:253-259. [PMID: 36940973 PMCID: PMC10043897 DOI: 10.15537/smj.2023.44.3.20220676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVES To examined the efficacy and safety of Peng's Shengjing recipe in treating asthenospermia with deficiency and failure of kidney yang. The traditional Chinese medicine (TCM) Peng's Shengjing recipe might have benefits in treating male asthenospermia. METHODS This randomized, positive drug-controlled, single-blind pilot study enrolled outpatients from the Third Department of Traditional Chinese Medicine Surgery, Shanghai University of Traditional Chinese Medicine, Shanghai, China, between April 2020 and September 2020. A total of 99 participants were randomized to Shengjing recipe (n=50) and Xuanju capsule (n=49). They were treated for 12 weeks. The primary endpoint was routine semen examinations, including the percentage of sperm motility rated grade A, A+B, and A+B+C, and the clinical effective rate. The secondary endpoints were the levels of gonadotropins. RESULTS The A grade sperms (18.9% versus [vs.] 13.9%, p=0.030) and A+B grade sperms (42.9% vs. 32.7%, p<0.001) were higher in the Shengjing recipe group than the Xuanju capsule group. The effective rates were 68% and 53.1% in the Shengjing recipe and Xuanju capsule groups (p=0.128). No safety signals were observed. CONCLUSION Peng's Shengjing recipe improves the quality of sperms and is effective in treating clinical asthenospermia of deficiency of kidney yang. The treatment was well tolerated, without obvious hepatorenal toxicity.Chinese Clinical Research Registry No.: ChiCTR2000030845.
Collapse
Affiliation(s)
- Guangyao Xu
- From the Eighth Department of Surgery (Xu), The Shanghai Municipal Hospital of Traditional Chinese Medicine; from Urology Surgery (Peng), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; and from the Shanghai Research Institute of Qigong (Chen), Taiji Health Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Peng
- From the Eighth Department of Surgery (Xu), The Shanghai Municipal Hospital of Traditional Chinese Medicine; from Urology Surgery (Peng), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; and from the Shanghai Research Institute of Qigong (Chen), Taiji Health Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chunyan Chen
- From the Eighth Department of Surgery (Xu), The Shanghai Municipal Hospital of Traditional Chinese Medicine; from Urology Surgery (Peng), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; and from the Shanghai Research Institute of Qigong (Chen), Taiji Health Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
17
|
Liu H, Luo Z, Chen J, Zheng H, Zeng Q. Treatment progress of cryptozoospermia with Western Medicine and traditional Chinese medicine: A literature review. Health Sci Rep 2023; 6:e1019. [PMID: 36582629 PMCID: PMC9793827 DOI: 10.1002/hsr2.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Aims Cryptozoospermia is an extreme oligozoospermia with an unsatisfactory treatment effect, with an incidence rate of approximately 8.73% in male infertility, whose effective solution has become the call of the times. Western Medicine has achieved certain effects through drugs, surgery, and assisted reproductive therapy, but this is still not ideal. Traditional Chinese medicine (TCM) has made many achievements in other disciplines; however, there is still a lack of evidence-based medical evidence to improve sperm production. Methods The relevant literatures from the China National Knowledge Internet (CNKI) and PubMed in the past 10 years were collected in this article, of which the mechanisms, advantages, or current controversies of various treatment methods of Western Medicine and TCM were analyzed, to find new treatment methods and research directions. Results With the development of modern science and technology, medical treatments for cryptozoospermia have become increasingly abundant; however, there is still no universally recognized unified and effective guiding plan. Although TCM has not been fully verified by evidence-based medicine, most TCM combined with Western Medicine can achieve unexpected results. Conclusion The combination of TCM and Western Medicine may become a bane for cryptozoospermia and bring good news to infertile men worldwide.
Collapse
Affiliation(s)
- Huang Liu
- The First School of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital)Human Sperm Bank of Guangdong ProvinceGuangzhouChina
| | - Zefang Luo
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital)Human Sperm Bank of Guangdong ProvinceGuangzhouChina
| | - Jinghua Chen
- Reproductive Medical Centre of Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Houbin Zheng
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital)Human Sperm Bank of Guangdong ProvinceGuangzhouChina
| | - Qingqi Zeng
- The First School of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Integrated Chinese and Western MedicineJiangsu Health Vocational CollegeNanjingChina
| |
Collapse
|
18
|
Zhang C, Wang S, Wang Z, Zhang Q, Chen R, Zhang H, Hua Z, Ma S. Repair mechanism of Wuwei Fuzheng Yijing formula in di-2-ethylhexyl phthalate-induced sperm DNA fragmentation in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1286-1302. [PMID: 35797467 PMCID: PMC9272935 DOI: 10.1080/13880209.2022.2089694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Di-2-ethylhexyl phthalate (DEHP), a known persistent organic pollutant, can increase the sperm DNA fragmentation index (DFI). OBJECTIVE To investigate the mechanism underlying the repair of DEHP-induced sperm DNA damage in mice by Wuwei Fuzheng Yijing (WFY) formula. MATERIALS AND METHODS The potential targets of WFY and sperm DNA fragment (SDF) were obtained from the TCMSP, BATMAN-TCM, OMIM and GeneCards. The protein-protein interaction (PPI) network, GO and KEGG pathway analyses of WFY-SDF were constructed. An animal model of DEHP-induced sperm DNA damage was replicated by gavage of SPF ICR (CD1) mice DEHP at 1 g/kg/d and treated with WFY at 8.92, 17.84 and 35.67 g/kg, respectively, for 60 d. Sperm DFI of each group was detected and compared. The target genes of WFY identified by transcriptomic and proteomic analyses were validated by qRT-PCR and Western blotting. RESULTS Network pharmacology pathway analysis indicated that PI3K/Akt was the potential target of WFY on SDF. The DFI of the DEHP group (25.48%) was significantly higher than that of the control group (4.02%). The high-dose WFY group (19.05%) exhibited the most significant repairing effect. The related pathways were PI3K/Akt and metabolic. Aass, Aldh1a7, GSTA3, betaine homocysteine S-methyltransferase (Bhmt), Mug2 and Svs1 were screened and Bhmt was validated. DISCUSSION AND CONCLUSIONS WFY can repair sperm DNA damage caused by DEHP, and the mechanism may be related to PI3K/Akt and metabolic pathways, and Bhmt. This provides a new direction for using traditional Chinese medicine to prevent and repair reproductive system injury caused by pollutants.
Collapse
Affiliation(s)
- Chenming Zhang
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rubing Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hao Zhang
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
19
|
Zhang C, Chen J, Wei X, Zhao L, Zhao P, Li X, Cui J, Ma S, Sun Z, Wang Z. Transcriptomics and proteomics analysis to explore the mechanism of Yishen Tongluo formula repairing sperm DNA damage in rats. Andrologia 2022; 54:e14582. [PMID: 36068021 DOI: 10.1111/and.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
The sperm DNA fragmentation index (DFI) is an objective indicator of male fertility. Currently, effective treatments for high sperm DFI are limited and traditional Chinese medicine (TCM) has certain advantages in this aspect. Yishen Tongluo formula (YSTL), a TCM formula, has been found to reduce DFI in patients. To better understand the mechanisms underlying its activity, we used transcriptomics and proteomics to analyse the potential target gene YSTL repairing tripterygium glycosides (TGs)-mediated sperm DNA damage in rats, followed by validation analyses using RT-qPCR and western blotting, which showed that relative to the control group, DFI was markedly elevated in the TGs group, but markedly lower in the YSTL group relative to the TGs group. KEGG pathway analysis of 119 differentially expressed genes and 158 DEPs identified using trend analysis revealed that they were enriched for apoptosis and base excision repair at the transcriptomic level and for microRNAs in cancer and complement and coagulation cascades at the proteomic level. Ttr and Pnpla2 were identified as potential target genes for YSTL. Our data show that YSTL can protect rat sperm DNA from TGs-induced damage, which may be related to apoptosis, DNA repair and other pathways, and the possible target genes are Ttr and Pnpla2.
Collapse
Affiliation(s)
- Chenming Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jianshe Chen
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Xiao Wei
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Lina Zhao
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Peipei Zhao
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xun Li
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Jiaxin Cui
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Zixue Sun
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| |
Collapse
|
20
|
Bai X, Liu Z, Tang T, Yu S, Liu D, Liu G, Fan X, Tang Y, Liu Z. An integrative approach to uncover the components, mechanisms, and functions of traditional Chinese medicine prescriptions on male infertility. Front Pharmacol 2022; 13:794448. [PMID: 36034828 PMCID: PMC9403420 DOI: 10.3389/fphar.2022.794448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is a major and growing health problem with an estimated global prevalence of 4.2%. The current therapy is limited by the unknown etiology of MI, emphasizing the critical requirement forward to a more efficient method or medication. Through thousands of years, Traditional Chinese Medicine (TCM) has been shown to be effective in treating MI effectively. However, the components, mechanisms and functions of TCM prescriptions on MI are still obscure, severely limiting its clinical application. In order to discover the molecular mechanism of TCM against MI, our study presents a comprehensive approach integrated data mining, network pharmacology, molecular docking, UHPLC-Q-Orbitrap HRMS, and experimental validation. Here, we begin to acquire 289 clinical TCM prescriptions for MI from a TCM hospital's outpatient department. Then, Core Chinese Materia Medica (CCMM) was then retrieved from the TCM Inheritance Support System (TCMISS), which was utilized to discover the underlying rules and connections in clinical prescriptions. After that, 98 CCMM components and 816 MI targets were obtained from ten distinct databases. Additionally, the network pharmacology methods, including network construction, GO and KEGG pathway enrichment, PPI analysis, were utilized to reveal that kaempferol, quercetin, isorhamnetin, and beta-sitosterol are the core components of CCMM in treating MI. The mechanisms and functions of CCMM against MI are hormone regulation, anti-apoptosis, anti-oxidant stress, and anti-inflammatory. Furthermore, the strong connections between four core components and six key targets were verified using a molecular docking method. Following that, the core components of the CCMM extract were identified using UHPLC-Q-Orbitrap HRMS analysis. Finally, in vivo experiments demonstrated that CCMM and four core components could improve the density, motility, viability of sperm, lecithin corpuscle density, decrease the rate of sperm malformation and testis tissue damage, and regulate the protein expressions of AKT1, MAPK3/1, EGFR, and TNF-α in a mouse model of MI. UHPLC-Q-Orbitrap HRMS analysis and in vivo experiments further validated the results of data mining, network pharmacology, and molecular docking. Our study could uncover the components, mechanisms, and functions of TCM prescriptions against MI and develop a new integrative approach to demonstrate TCM's multi-component, multi-target, and multi-pathway approach to disease treatment.
Collapse
Affiliation(s)
- Xue Bai
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Liu H, Huang Z, Zheng H, Zhu Z, Yang H, Liu X, Pang T, He L, Lin H, Hu L, Zeng Q, Han L. Jiawei Runjing Decoction Improves Spermatogenesis of Cryptozoospermia With Varicocele by Regulating the Testicular Microenvironment: Two-Center Prospective Cohort Study. Front Pharmacol 2022; 13:945949. [PMID: 36016555 PMCID: PMC9395676 DOI: 10.3389/fphar.2022.945949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the study was to explore the evidence of JWRJD in the treatment of cryptozoospermia. Methods: A total of 162 cryptozoospermia patients with varicocele who refused to undergo surgery were included from January 2021 to December 2021. They were divided into the Jiawei Runjing Decoction group (group A), tamoxifen group (group B), and no treatment group (group C), and after the follow-up for 3 months, therapeutic effectiveness was compared. Network pharmacology was used to analyze and validate the effects and mechanisms of JWRJD. Results: Fifty-eight patients were treated with JWRJD, 55 with tamoxifen, and 49 without any treatment. After treatment, five patients were lost: one in group A, one in group B, and three in group C. The sperm count and the decrease of FSH in group A were significantly higher, but the degree of decline in the testicular volume and the degree of vein expansion have decreased significantly, which were closely related to the testicular volume (TV) [especially changes in the left testicular volume (ΔL-TV)], citric acid (CC) and its changes (ΔCC), and the vein width (VW) [especially left spermatic vein width (L-VW) and mean vein width (M-VW) and their changes (ΔL-VW and ΔM-VW)], as well as the sperm count before the treatment (bSC), which were the significant indexes to predict the therapeutic effect, especially for patients >35 years old and with grade III varicoceles. Network pharmacological analysis verifies that it can be regulated by fluid shear stress and the atherosclerosis pathway to improve the testicular microenvironment for spermatogenesis. Conclusion: JWRJD may promote spermatogenesis in cryptozoospermia patients with varicocele, which may be closely related to improving the testicular microenvironment, especially for >35 year olds and grade III varicocele patients.
Collapse
Affiliation(s)
- Huang Liu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhongwang Huang
- Department of Andrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Houbin Zheng
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhiyong Zhu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hui Yang
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Ultrasonography, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xingzhang Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Tao Pang
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Liping He
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Clinical Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hai Lin
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Lei Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Qingqi Zeng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Integrated Chinese and Western Medicine, Jiangsu Health Vocational College, Nanjing, China
- *Correspondence: Qingqi Zeng, ; Lanying Han,
| | - Lanying Han
- NHC Key Laboratory of Male Reproduction and Genetics, Department of Traditional Chinese Medicine, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Qingqi Zeng, ; Lanying Han,
| |
Collapse
|
22
|
Youjing granules ameliorate spermatogenesis in rats through regulating the prolifereation of spermatogonial stem cells. Chin J Nat Med 2022; 20:580-588. [DOI: 10.1016/s1875-5364(22)60209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/20/2022]
|
23
|
Study on the Mechanism of Shenjing Guben Prescription Regulating PI3K and NRF2 Signaling Pathway in the Treatment of Immune Infertility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8754188. [PMID: 35600964 PMCID: PMC9122677 DOI: 10.1155/2022/8754188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022]
Abstract
Objective To explore the mechanism of Shenjing Guben prescription (SP) in the treatment of immune infertility by regulating PI3K-NRF2/p38 signal pathway. Methods 60 adult male SD rats were randomly divided into control group (NC group), ACN group, low concentration AP intervention group (low group), middle concentration SP intervention group (middle group), and high concentration SP intervention group (high group). 12 rats in each group were administered by gavage once a day, 6 days/w, and the rats were killed after 28 days. Bilateral testis and epididymis were removed and weighed and organ coefficients were calculated, and testicular histopathological sections were prepared to evaluate the changes of testicular tissue structure. The relative expression levels of PI3K, MKK7, JNK, p38 mRNA, and protein in testis were measured by QRT-PCR and western blot. Results (1) Compared with the control group, the proportion of grade A and B sperms in ACN group increased significantly, and the proportion of grade D sperm decreased significantly (P < 0.05). After SP intervention, compared with ACN group, there was no significant difference in the proportion of sperm at all levels in low, medium, and high SP intervention groups (P > 0.05). (2) Compared with the control group, the sperm VCL, VSL, VAP, and mad in ACN group increased significantly, and the BCF decreased significantly (P < 0.05). After SP intervention, compared with ACN group, there was no significant difference in sperm motility parameters among low, medium, and high SP intervention groups (P > 0.05). (3) Compared with the control group, the activities of AKP and SDH in testicular tissue of rats in ACN group decreased significantly (P < 0.05). After SP intervention, compared with ACN group, AKP activity increased significantly and LDH activity decreased significantly in low, medium, and high SP intervention groups (P < 0.05). (4) Compared with the control group, the expression levels of PI3K, p-PI3K, MKK7, p-MKK7, JNK, p-JNK, p38, and p-p38 proteins and the ratios of p-JNK/JNK and p-p38/p38 increased in the testis of ACN group (P < 0.05). After SP intervention, compared with ACN group, the protein expression levels of PI3K, p-PI3K, MKK7, p-MKK7, JNK, p-JNK, p38, and p-p38 in testicular tissue of SP intervention group decreased, and the ratio of p-JNK/JNK and p-p38/p38 decreased (P < 0.05). Conclusion SP can reduce the oxidative stress of testis induced by ACN and inhibit the activation of PI3K-NRF2/p38 signal pathway.
Collapse
|
24
|
Zhao H, Zhao T, Yang J, Huang Q, Wu H, Pan Y, Wang H, Qian Y. Epimedium protects against dyszoospermia in mice with Pex3 knockout by exerting antioxidant effects and regulating the expression level of P16. Cell Death Dis 2022; 13:69. [PMID: 35058429 PMCID: PMC8776794 DOI: 10.1038/s41419-021-04435-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the primary factors leading to male infertility. Oral administration of antioxidants has thus far been found to significantly improve the quality of human sperm. Therefore, antioxidant treatment has become the consensus among international experts on male infertility. In this study, peroxisomal biogenesis factor 3 (Pex3)-knockout (KO, -/-) mice were used as a model to compare the efficacy of three types of traditional Chinese medicine (TCM) granules (Epimedium [YYH], Cuscuta [TSZ], and Rhodiola [HJT]) for male reproductive function rescue. YYH was revealed to be the best and exerted a rescue effect on Pex3-/- mice with spermatogenesis defects. In addition, YYH prominently reduced ROS levels in the testes, inhibited DNA oxidative damage in spermatogenic cells, promoted the proliferation of spermatogenic cells, and inhibited apoptosis in Pex3-/- male mice. Furthermore, the mechanism by which YYH ameliorated dyszoospermia was confirmed via the establishment of cyclin-dependent kinase inhibitor 2 A (P16Ink4a)-KO mice. Specifically, Pex3-/- mice produced elevated amounts of ROS, which damaged germ cell DNA and further activated the signaling pathway of the cell senescence regulatory protein P16-CDK6, resulting in cell cycle arrest and eventually contributing to spermatogenesis dysfunction. YYH supplementation partially corrected the associated phenotype in gene KO mice by affecting P16 expression levels, thus improving the reproductive outcome to a certain extent.
Collapse
Affiliation(s)
- Haiyang Zhao
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tingting Zhao
- Experimental Teaching Center of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jihong Yang
- Reproductive Medicine Center of the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Huang
- Reproductive Medicine Center of the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wu
- Reproductive Medicine Center of the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yueyun Pan
- First School Of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| | - Yun Qian
- Reproductive Medicine Center of the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Yan G, Tian F, Liu P, Sun J, Mao J, Han W, Mo R, Guo S, Yu Q. Sheng Jing Decoction Can Promote Spermatogenesis and Increase Sperm Motility of the Oligozoospermia Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3686494. [PMID: 34899947 PMCID: PMC8654543 DOI: 10.1155/2021/3686494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023]
Abstract
Sheng Jing Decoction (SJD), as a traditional Chinese medicine prescription, is mainly be used to treat male infertility. However, the pharmacological functions and molecular mechanisms of SJD are poorly understood. In this study, we investigated the functions of SJD on spermatogenesis and sperm motility and explored the potential mechanisms involved. Here, we demonstrated that high, medium, and low doses of SJD are effective in restoring the impairments of the whole body and testicular tissue by cyclophosphamide inducing and to rescue the damage of testicular tissue cells including Sertoli cells and germ cells. SJD can partly restore the decrease in sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate in oligozoospermic mouse models. Ki67 staining analyses confirm SJD can promote testicular tissue cell proliferation. Real-time RT-PCR analyses also reveal that SJD can upregulate the expression of proliferation-associated gene Lin28a and differentiation-associated genes Kit, Sohlh2, and Stra8. SJD can also reduce the impairment of mitochondrial membrane potential (MMP) and sperm plasma membrane integrity by cyclophosphamide inducing. Our results reveal that SJD is effective in improving both sperm quantity and quality by increasing the sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate. SJD can promote spermatogenesis by upregulating the expression of the proliferation-associated gene Lin28a and the differentiation-associated genes (Kit, Sohlh2, and Stra8). SJD can sustain MMP and sperm plasma membrane integrity to increase sperm motility.
Collapse
Affiliation(s)
- Guang Yan
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Peng Liu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianming Sun
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianmin Mao
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Wenjun Han
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Ran Mo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Shishuai Guo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Quanyao Yu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| |
Collapse
|
26
|
Improvement of Astragalin on Spermatogenesis in Oligoasthenozoospermia Mouse Induced by Cyclophosphamide. Reprod Sci 2021; 29:1738-1748. [PMID: 34846706 DOI: 10.1007/s43032-021-00808-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023]
Abstract
More than 40% of infertile men are diagnosed with oligoasthenozoospermia and the incidence is still rising, but the effective treatments are not been found until now. Astragalin, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. This study investigated the pharmacological effects of astragalin for treatment of oligoasthenozoospermia in male mice, induced by cyclophosphamide (CTX). Male mice were intraperitoneally injected by CTX (50 mg/kg), and astragalin (30 mg/kg) was given via oral gavage once daily. RNA-seq analysis highlighted astragalin upregulated gene expression of anti-apoptosis (AKT1and BCL2-XL), cell proliferation (ETV1, MAPKAPK2, and RPS6KA5) and synthesis of testosterone (STAR, CYP11A1, and PRKACB), but downregulated gene expression of cell apoptosis (BAD, BCL-2, CASPASE9, and CASPASE3) in mouse testis. Astragalin also significantly reversed the reduction in body weight, reproductive organs index, and sperm parameters (sperm concentration, viability, and motility) induced by CTX, and restored testicular abnormal histopathologic morphology induced by CTX. Furthermore, astragalin dramatically rescued the gene expression related to spermatogenesis (AKT1, BCL-2, CASPASE9, CASPASE3, MAPKAPK2, RPS6KA5, STAR, and PRKACB), and increased the level of testosterone by improving related proteins (STAR, CYP11A1, PRKACB) for oligoasthenozoospermia induced by CTX. In conclusion, astragalin may be a potential beneficial agent for oligoasthenozoospermia by increasing the testosterone levels in testis.
Collapse
|
27
|
Chen WQ, Wang B, Ding CF, Wan LY, Hu HM, Lv BD, Ma JX. In vivo and in vitro protective effects of the Wuzi Yanzong pill against experimental spermatogenesis disorder by promoting germ cell proliferation and suppressing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114443. [PMID: 34302943 DOI: 10.1016/j.jep.2021.114443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuzi Yanzong pill (WZYZP) is a classical traditional Chinese medicine (TCM) formula originated from the Tang dynasty. WZYZP has a long history of use for reinforcing kidney and alleviating male infertility in China. AIM OF THE STUDY The effect of WZYZP on male infertility and the mechanism underlying this effect was not clarified clearly. Therefore, this study aimed to investigate the protective effect of WZYZP in experimental spermatogenesis disorder via in vivo and in vitro studies, to promote the use of this formula for the treatment of spermatogenesis disorder. MATERIAL AND METHODS Male SD rats were exposed to tripterygium glycosides to induce experimental spermatogenesis disorder, and WZYZP was subsequently administrated at different dosages for treatment. Sperm counts, sperm motility, and serum hormone levels were detected. HE staining and TUNEL staining were performed to evaluate the pathological lesions and apoptosis of testes, respectively. Next, germ cells were isolated from spermatogenesis disorder-model rats and treated with WZYZP- containing serum at different concentrations. CCK-8 assay and flow cytometry assay were performed to detect cell proliferation and apoptosis. Immunofluorescence assay, qRT-PCR and Western blotting analyses were performed to detect the expression of Beclin 1, LC3 and TGF-β-PI3k/AKT-mTOR pathway - related factors, including TGF-β, PI3K, AKT, mTOR, 4 EBP-1 and p70S6K. RESULTS In vivo experiments showed that WZYZP protected against spermatogenesis disorder in model rats by improving sperm count and motility, as well as restoring serum hormone levels. HE and TUNEL staining demonstrated that the pathological injuries and cell apoptosis in testes of the model rats were alleviated by WZYZP treatment. Moreover, in vitro experiments of germ cells isolated from spermatogenesis disorder-model rats showed that WZYZP treatment increased the cell proliferation, inhibited cell apoptosis and autophagy. qRT-PCR and Western blotting assay results showed that this protective effect was associated with the regulation of the TGF-β/PI3K/AKT/mTOR signaling pathway. The expression levels of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, 4 EBP-1 and p70S6K were increased, while TGF-β was inhibited in the WZYZP treated groups. CONCLUSION The results showed that WZYZP could protect against experimental spermatogenesis disorder by increasing the germ cell proliferation and inhibiting their apoptosis. Our support the clinical use of this formula for the management of spermatogenesis disorder.
Collapse
Affiliation(s)
- Wang-Qian Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, 310003, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Cai-Fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, 310003, China
| | - Ling-Yi Wan
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, 310003, China
| | - Hui-Min Hu
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, 310003, China
| | - Bo-Dong Lv
- Department of Urology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang 310009, China.
| | - Jian-Xiong Ma
- Integrated Traditional Chinese and Western Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
28
|
Shi J, Gao X, Zhang A, Qin X, Du G. Characterization of multiple chemical components of GuiLingJi by UHPLC-MS and 1H NMR analysis. J Pharm Anal 2021; 12:460-469. [PMID: 35811626 PMCID: PMC9257439 DOI: 10.1016/j.jpha.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
GuiLingJi (GLJ), a classic traditional Chinese medicine (TCM) formula, is composed of over 20 herbs, according to the Pharmacopeia of the People's Republic of China. Owing to its various activities, GLJ has been used in clinical settings for more than 400 years in China. However, the ambiguous chemical material basis limits the development of studies on the quality control and pharmacological mechanisms of GLJ. Therefore, comprehensive characterization of the multiple chemical components of GLJ is of great significance for the modernization of this formula. Given the great variety of herbs in GLJ, both UHPLC-MS and 1H NMR techniques were employed in this study. In addition, solvent extraction with different polarities was used to eliminate signal interference and the concentration of trace components. A variety of MS analytic methods were also used, including implementation of a self-built compound database, diagnostic ion filtering, mass defect filtering, and Compound Discoverer 3.0 analysis software. Based on the above strategies, a total of 150 compounds were identified, including 5 amino acids, 13 phenolic acids and glycosides, 11 coumarins, 72 flavones, 20 triterpenoid and triterpenoid saponins, 23 fatty acids, and 6 other compounds. Moreover, 13 compounds were identified by 1H NMR spectroscopy. The UHPLC-MS and 1H NMR results supported and complemented each other. This strategy provides a rapid approach to analyzing and identifying the chemical composition of Chinese herbal prescriptions. The current study provides basis for further research on the quality control and pharmacological mechanism of GLJ. The integrated approach of UHPLC-MS and 1H NMR techniques coupled with polarity partition strategy has been used for comprehensively characterizing the multiple chemical components of GLJ. A variety of HRMS analytic methods used included self-built compounds database, diagnostic ions filtering, mass defect filtering, and software analysis for rapid identification the chemical components of GLJ. The 163 compounds including flavones, phenolic acids and glycosides, triterpenoid and triterpenoid saponins, coumarin, fatty acids, amino acids, organic acids, organic bases and sugars were rapidly identified, and to clarify the chemical material basis of GLJ. Established an analysis strategy which could be applied to other TCM formula for comprehensive characterization and identification of chemical components.
Collapse
|
29
|
Liu SJ, Hu SQ, Chen YC, Guo J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1961878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Si-Jia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Dong P, Xia L, Hu L, Yang K, Wang H, Ye P. Runjing Decoction alleviated cyclophosphamide-induced oligoasthenospermia rats by inhibiting cell apoptosis via RXFP1/AKT/FOXO1 pathway. Andrologia 2021; 53:e14216. [PMID: 34396564 DOI: 10.1111/and.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Runjing Decoction (RJD) is a prescription of traditional Chinese medicine for the treatment of oligoasthenospermia. However, the molecular mechanism of RJD on oligoasthenospermia still remains unknown. A model of oligoasthenospermia was induced in 30 Sprague Dawley rats by intraperitoneal injection of cyclophosphamide at 35 mg/kg per day for 5 days and treated by intragastric RJD (13.5 g/kg) or L-carnitine (100 mg/kg) for 14 days. The body weight, testis and epididymis weight, grade A spermatozoa, grade B spermatozoa, the percentage of sperm forward motility (PR%), the sperm activity rate and the sperm density of rats were evaluated before and after RJD treatment. The testis apoptosis was determined by TUNEL staining. The expressions of RXFP1, FoxO1, PI3K, Akt, Bax and Bcl-2 were determined by qRT-PCR and Western blot, respectively. After RJD treatment, the grade A spermatozoa, sperm PR%, sperm activity and sperm density were significantly increased relative to those in model rats. Cell apoptosis of testis tissue was reversed by RJD. RJD suppressed cell apoptosis, inhibited the expression of RXFP1, FOXO1, PI3K, AKT and Bax, and promoted the expression levels of Bcl-2 in testicular tissue of oligoasthenospermia rats. RJD could alleviate sperm quality and testis damage in oligoasthenospermia rats by inhibiting RXFP1/AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Panpan Dong
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lei Xia
- Cixi Hospital of Traditional Chinese Medicine, Cixi, China
| | - Lanyawen Hu
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kai Yang
- First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Wang
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Ping Ye
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Xu X, Qu Z, Qian H, Li Z, Sun X, Zhao X, Li H. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate. ENVIRONMENTAL TOXICOLOGY 2021; 36:789-799. [PMID: 33331133 DOI: 10.1002/tox.23081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
With the aggravation of environmental pollution, the incidence of infertility is increasing. Ginsenoside Rg1 is a monomer component extracted from Panax ginseng. It has been found that Ginsenoside Rg1 is able to prevent premature ovarian failure and delay testicular senescence. Therefore, we speculate Ginsenoside Rg1 may have great potential to prevent and treat infertility. The aim of this work is to explore whether Ginsenoside Rg1 plays a protective role in the dinbutyl phthalate (DBP)-induced reproductive function injury mice, and to elucidate the potential mechanism. C57BL/6J male mice were administered by DBP with or without Ginsenoside Rg1 treatment and serum, testis and epididymis were collected for further analysis. Sperm analysis, hematoxylin and eosin staining, and serum hormone detection indicated that Ginsenoside Rg1 treatment improved the sperm density and sperm motility, reduced the testicular tissue damage, increased the serum testosterone and luteinizing hormone levels, and decreased the serum follicle-stimulating hormone level in DBP-induced mice. Furthermore, Ginsenoside Rg1 treatment upregulated expression levels of spermatogenesis-related protein, Cx43, E-cadherin, p-PI3K, p-Akt, and mTOR in the mice treated by DBP, observed by using a immunohistochemistry assay, a real-time quantitative PCR assay, and a western blot analysis. The present study reveals that Ginsenoside Rg1 may exert anti-DBP-induced reproductive function injury in C57BL/6J mice. In addition, the protect role of Ginsenoside Rg1 in spermatogenesis may be associated with the regulation of reproductive hormones, upregulation of spermatogenic associated proteins expression, restoration of the gap junctions, and the activation of PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Zhenting Qu
- Department of Pediatrics, Jilin Combine Traditional Chinese and Western Hospital, Jilin, China
| | - Honghao Qian
- School of Public Health, Beihua University, Jilin, China
| | - Zhongming Li
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Xinrui Zhao
- Department of Iodine Deficiency Disorders, The Second Institue for Endemic Disease Control and Prevention of Jilin Province, Jilin, China
| | - Huan Li
- School of Public Health, Beihua University, Jilin, China
| |
Collapse
|
32
|
Wang JS, Gong XF, Feng JL, Li HS, Li X, Deng S, Ren PZ, Wang JM, Lv MS, Jin RF, Chen QY, Wang B, Cui HS. Study on the Mechanism of Jiawei Shengjiang Powder in Improving Male Asthma-Induced Asthenospermia Based on Network Pharmacology and Bioinformatics. Drug Des Devel Ther 2021; 15:1245-1259. [PMID: 33776422 PMCID: PMC7989703 DOI: 10.2147/dddt.s296901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Jiawei Shengjiang Powder (JWSJP) is a classical Chinese medicinal formula, which has been widely applied in the treatment of asthma and complications for many years due to its curative effect. Aim To verify the effect of JWSJP in improving abnormal sperm motility caused by asthma and to explore its potential mechanism. Materials and Methods The active compounds of JWSJP were obtained from high performance liquid chromatography tandem mass spectrometry and the Traditional Chinese Medicine System Pharmacology. The key active components and targets of JWSJP were predicted based on network pharmacological analysis and bioinformatics research. Rats were randomly divided into normal, model and treatment groups. The rat model of allergic asthma was induced by intraperitoneal injection of ovalbumin solution. The experiment judged improvement of semen quality by evaluating sperm motility, and detected the expression of related proteins in testicular tissue of Sprague-Dawley rats by RT-qPCR and Western blot methods. Hematoxylin and eosin (HE) staining was used to observe the changes in testicular tissue structure in rats. Results Through the analysis of network pharmacology and bioinformatics, it was found that beta-sitosterol, quercetin, gallic acid, pelargonidin and kaempferol were the key active components of Jiawei Shengjiang Powder. Tumor necrosis factor (TNF), interleukin-6 (IL-6) and insulin (INS) genes are crucial targets of JWSJP in the treatment of spermatogenic dysfunction caused by acute asthma. After 8 weeks of intervention, compared with the model group, the treatment group had significantly improved sperm motility (P < 0.05). There were significant differences in TNF, IL6, and INS proteins in the treatment group, and the HE staining of testicular tissue structure in the treatment group was significantly improved. Conclusion JWSJP can improve the abnormal sperm motility induced by asthma, and its mechanism may be related to the expression of related proteins and mRNA of TNF, IL6, and INS.
Collapse
Affiliation(s)
- Ji-Sheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xue-Feng Gong
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun-Long Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Hai-Song Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiao Li
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Pei-Zhong Ren
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jia-Mei Wang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ming-Sheng Lv
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Rui-Feng Jin
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Qiu-Yi Chen
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Hong-Sheng Cui
- Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
33
|
Li Q, Zhang C, Li C, Lin X, Wang M, Wu L, Li H, Ye P, Qin G. The effectiveness and safety of traditional Chinese herbal medicine for the treatment of male infertility associated with sperm DNA fragmentation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24918. [PMID: 33655953 PMCID: PMC7939154 DOI: 10.1097/md.0000000000024918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sperm DNA fragmentation (SDF) may hinder embryonic development and growth, increasing the risk of spontaneous miscarriage, and is considered an important factor affecting male infertility (MI). Traditional Chinese herbal medicine is considered effective in the treatment of MI due to SDF by nourishing kidney essence or promoting blood circulation for removing blood stasis. The objective of this systematic review protocol is to evaluate the effectiveness and safety of traditional Chinese herbal medicine on the treatment of MI associated with SDF. METHODS We searched the PubMed, Embase, Web of Science, Cochrane Library, CNKI, VIP Chinese Science, Technology Journal Database, and Wanfang Database until the end of 2020 for English and Chinese published literature. Randomized controlled trials (RCTs) to evaluate the effectiveness and safety of traditional Chinese herbal medicine for the treatment of MI associated with SDF will be included. Study selection and data extraction were performed independently by 2 reviewers, and the quality evaluation and risk assessment were assessed by the Cochrane collaboration's tool, and use the RevMan 5.3 software for meta-analysis. CONCLUSION This study will evaluate the efficacy and safety of traditional Chinese herbal medicine for the treatment of MI due to SDF, which may provide some help for the clinician's decision. PROSPERO REGISTRATION NUMBER CRD42020221053.
Collapse
Affiliation(s)
- Qingrui Li
- Beijing University of Chinese Medicine, Beijing
| | - Chao Zhang
- Beijing University of Chinese Medicine, Beijing
| | - Chenxi Li
- Yunnan University of Traditional Chinese Medicine
| | - Xuyao Lin
- Yunnan University of Traditional Chinese Medicine
| | - Mingkai Wang
- Yunnan University of Traditional Chinese Medicine
| | - Lin Wu
- Yunnan University of Traditional Chinese Medicine
| | - Hua Li
- Yunnan University of Traditional Chinese Medicine
| | - Pule Ye
- Yunnan University of Traditional Chinese Medicine
| | - Guozheng Qin
- Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
34
|
Jiao W, Sun J, Zhang X, An Q, Fu L, Xu W, Xie H, Tang X, Liu J, Hu W, Gu Y, Zhang K. Improvement of Qilin pills on male reproductive function in tripterygium glycoside-induced oligoasthenospermia in rats. Andrologia 2021; 53:e13923. [PMID: 33583046 DOI: 10.1111/and.13923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022] Open
Abstract
This study established an oligoasthenospermic rat model using tripterygium glycosides (TGs) and investigated the mechanism by which Qilin pills (QLPs) ameliorate reproductive hypofunction. Thirty-two male Sprague Dawley rats were allocated to four equal-sized groups: (1) the control group received continuous physiological levels of saline; (2) the oligoasthenospermia model group was induced with TGs by daily intragastric administration for 28 days; (3 and 4) oligoasthenospermic rats were treated intragastrically with low dose (1.62 g kg-1 d-1 ) and high dose (3.24 g kg-1 d-1 ) of QLPs once daily for 60 days. The QLP-treated rats showed a marked increase (p < .05) in testicular mass, testicular index and semen parameters compared with the untreated rats. Histopathologically, the QLP-treated groups exhibited restored seminiferous tubules in contrast to the model group. Reactive oxygen species and malondialdehyde levels were dramatically decreased (p < .05) in the testes of the QLP-treated rats. QLP treatment partly reverted (p < .05) the circulatory levels of reproductive hormones (FSH, LH, testosterone, prolactin and SHBG) and hepatic and renal function (AST, Cr and urea). Our results showed that oral QLP treatment had a curative effect on the testicular mass, sperm quality, testicular pathomorphology, antioxidants, plasmatic hormones, and liver and renal function of rats.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianling Sun
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Zhang
- Department of Education and Training, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi An
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning, Beijing.,Graduate School of Peking Union Medical College, Beijing, China
| | - Longlong Fu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning, Beijing
| | - Wenbing Xu
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongli Xie
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuming Tang
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Hu
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yiqun Gu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning, Beijing
| | - Kaishu Zhang
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Chen WQ, Ding CF, Yu J, Wang CY, Wan LY, Hu HM, Ma JX. Wuzi Yanzong Pill-Based on Network Pharmacology and In Vivo Evidence-Protects Against Spermatogenesis Disorder via the Regulation of the Apoptosis Pathway. Front Pharmacol 2020; 11:592827. [PMID: 33390971 PMCID: PMC7775606 DOI: 10.3389/fphar.2020.592827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
The crisis of male infertility is an issue of human reproductive health worldwide. The Wuzi Yanzong pill (WZYZP) is a traditional Chinese medicine prescription that shows efficacy in kidney reinforcement and essence benefit to ameliorate male reproductive dysfunctions. However, the pharmacological mechanisms of the WZYZP on male infertility have not been investigated and clarified clearly. This study was designed to investigate the effects of the WZYZP on spermatogenesis disorder and explore its underlying pharmacological mechanisms. First, based on a network pharmacology study, 39 bioactive compounds and 40 targets of the WZYZP associated with spermatogenesis disorder were obtained, forming a tight compound-target network. Molecular docking tests showed tight docking of these compounds with predicted targeted proteins. The protein-protein interaction (PPI) network identified TP53, TNF, AKT1, Bcl-XL, Bcl-2, and IκBA as hub targets. The Kyoto Encyclopedia of Genes and Genomes pathway network and pathway-target-compound network revealed that the apoptosis pathway was enriched by multiple signaling pathways and multiple targets, including the hub targets. Subsequently, the chemical characterization of WZYZP was analyzed using liquid chromatography to quadrupole/time-of-flight mass spectrometry, and 40 compounds in positive ion mode and 41 compounds in negative ion mode in the WZYZP were identified. Furthermore, based on the prediction of a network pharmacology study, a rat model of spermatogenesis disorder was established to evaluate the curative role and underlying mechanisms of the WZYZP. The results showed that WZYZP treatment improved rat sperm quality and attenuated serum hormone levels, reversed histopathological damage of the testis, reduced cell apoptosis in testis tissues, and ameliorated the expression of the predicted hub targets (TP53, TNF-α, AKT1, NFκB, and IκBA) and the apoptosis related proteins (Bcl-XL, Bcl-2, Bax, Caspase 3, and Caspase 9). These results indicated that the WZYZP has a protective effect on spermatogenesis disorder, suggesting that it could be an alternative choice for male infertility therapy.
Collapse
Affiliation(s)
- Wang-qiang Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Cai-fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Jia Yu
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Chen-ye Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Ling-yi Wan
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Hui-min Hu
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Jian-xiong Ma
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Jian-xiong Ma,
| |
Collapse
|
36
|
Guan S, Zhu Y, Wang J, Dong L, Zhao Q, Wang L, Wang B, Li H. A combination of Semen Cuscutae and Fructus Lycii improves testicular cell proliferation and inhibits their apoptosis in rats with spermatogenic dysfunction by regulating the SCF/c-kit--PI3K--Bcl-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112525. [PMID: 31904495 DOI: 10.1016/j.jep.2019.112525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/26/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae is the seed of Cuscuta japonica Choisy, and Fructus Lycii is the mature fruit of Lycium barbarum L. (Solanaceae). Semen Cuscutae and Fructus Lycii (SC-FL) are well-known Chinese medicine which have been used to tonify the kidney and replenish the essence for thousands of years. Chinese physicians prefer to prescribe them for treating male infertility. Recent studies have found that SC-FL repair spermatogenic dysfunction, however, the therapeutic mechanism has yet to be clearly elucidated. AIM OF THE STUDY This study aimed at evaluating the therapeutic effect of SC-FL in glucosides of Tripterygium wilfordii Hook. f (GTW)-induced dyszoospermia rats and elucidating the underlying molecular mechanism. MATERIALS AND METHODS Seventy-eight Sprague-Dauley (SD) rats were randomly divided into five groups: normal control (treated with saline), GTW (treated with saline), GTW + levocarnitine (treated with levocarnitine), GTW + SCFL (treated with SC-FL), and LY (LY294002, the PI3K inhibitor) +SCFL (treated with SC-FL). GTW (40 mg/kg/d) was intragastrically administered for 4 weeks to establish dyszoospermia model. From the start of the study, LY was additionally injected into the tail vein of rats of the LY + SCFL group once a week. After 8 weeks, semen quality and organ coefficient were determined and sex hormone, inhibin B, and epididymal carnitine levels were measured. Testicular tissue and its ultrastructure were observed using H&E (hematoxylin-eosin) staining and electron microscopy. Immunohistochemistry, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to determine the protein and mRNA expression of SCF, c-kit, PI3K, p-Akt, Bad, Bcl-2, and Bax in rat testis. RESULTS Compared with the GTW group, semen quality, the organ coefficient, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and epididymal carnitine levels were significantly improved in the GTW + SCFL group (P < 0.05 or P < 0.01). Histomorphology and testicular ultrastructural evaluation showed that in the GTW + SCFL group, the structure and arrangement of seminiferous tubules were better, the amount of spermatogenic cells increased significantly, the morphology of spermatogenic cells improved, and the mitochondria increased, compared to those in the GTW group. Immunohistochemistry, western blotting, and qRT-PCR results showed that compared with the GTW group, the expression of SCF, c-kit, PI3K, p-Akt, and Bcl-2 in the GTW + SCFL group was increased, while that of Bax and Bad was decreased. The expression of p-Akt and Bcl-2 decreased, while that of Bad and Bax increased in the LY + SCFL group compared with the SCFL group. CONCLUSION SC-FL can effectively inhibit spermatogenic cell apoptosis and promote their proliferation, and the mechanism may be related to the regulation of the SCF/c-kit--PI3K--Bcl-2 pathway.
Collapse
Affiliation(s)
- Siqi Guan
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Yutian Zhu
- Urology Department, Peking University Third Hospital, Beijing, 100191, China.
| | - Jingshang Wang
- TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Lei Dong
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Zhao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lu Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bin Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Haisong Li
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
37
|
Wang M, Wang Q, Du Y, Jiang H, Zhang X. Vitamins combined with traditional Chinese medicine for male infertility: A systematic review and meta-analysis. Andrology 2020; 8:1038-1050. [PMID: 32170803 DOI: 10.1111/andr.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Male infertility is a tough problem in medicine. This article aims to provide the latest evidence for the efficacy and safety of traditional Chinese medicine (TCM) combined with vitamins in the treatment of male infertility. METHOD All randomized controlled trials (RCTs) that used TCM combined with vitamins for male infertility treatment were included in databases of China National Knowledge Infrastructure (CNKI), Wanfang, VIP Database, China Biology Medicine disc (CBM), MEDLINE, EMBASE, and Cochrane Library. The quality of the included articles was evaluated using the Cochrane Reviewer's Handbook 5.3, and meta-analysis was performed using Stata 15. RESULTS A total of 14 eligible studies with 1488 patients were included in this meta-analysis. The results suggested that, compared with vitamin E or vitamin E + C alone, combination of TCM with vitamins increased significantly sperm concentration, sperm motility, sperm viability, liquefaction time of semen, the activity of acrosome enzyme, and the pregnancy rate of patients with male infertility. Three kinds of TCM (Shengjing capsule, Huanshao capsule, and compound Xuanju capsule) showed significant improvement for male infertility in terms of pregnancy rate, sperm concentration, or sperm motility. In addition, the results of the publication bias test demonstrated that no significant bias occurred. CONCLUSION Traditional Chinese medicine combined with vitamins has significant efficacy in the treatment of male infertility with no increase in side effects. The specific implementing regulations still need more long-term, multicenter, randomized, and double-blind clinical trials.
Collapse
Affiliation(s)
- Ming Wang
- Fuyang People's Hospital, Anhui Medical University, Fuyang, China
| | - Qi Wang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Du
- Fuyang People's Hospital, Anhui Medical University, Fuyang, China
| | - Hui Jiang
- The Department of Urology, Peking University Third Hospital, Andrology, Peking, China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Zhang K, Fu L, An Q, Hu W, Liu J, Tang X, Ding Y, Lu W, Liang X, Shang X, Gu Y. Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complement Med Ther 2020; 20:42. [PMID: 32046715 PMCID: PMC7076898 DOI: 10.1186/s12906-019-2799-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Qilin pills (QLPs), a classic Traditional Chinese Medicine (TCM) formula for treating male infertility, effectively improve semen quality in clinical trials. This study was designed to evaluate the effects of QLPs on spermatogenesis, reproductive hormones, oxidative stress, and the testis-specific serinekinase-2 (TSSK2) gene in a rat model of oligoasthenospermia. METHODS Forty adult male Sprague-Dawley (SD) rats were randomly divided into four groups. The rat model with oligoasthenospermia was generated by intragastric administration of tripterygium glycosides (TGs) once daily for 4 weeks. Then, two treatment groups were given different doses (1.62 g/kg and 3.24 g/kg) of QLPs once daily for 60 days. Sperm parameters, testicular histology and reproductive hormone measurements, oxidative stress tests, and TSSK2 expression tests were carried out. RESULTS QLPs effectively improved semen parameters and testicular histology; restored the levels of FSH, LH, PRL, fT, and SHBG; reduced the levels of oxidative stress products (ROS and MDA); increased testicular SOD activity; and restored the expression of spermatogenesis-related gene TSSK2. CONCLUSION QLPs have a therapeutic effect on a rat model of oligoasthenospermia, and this effect is manifested as improvement of semen quality and testis histology, gonadal axis stability, decreased oxidative stress, and the regulation of testis-specific spermatogenesis-related gene TSSK2.
Collapse
Affiliation(s)
- Kaishu Zhang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Longlong Fu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Qi An
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730 China
| | - Weihong Hu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Jianxin Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Xiuming Tang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Yu Ding
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Wenhong Lu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Xiaowei Liang
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital Affiliated to Southern Medical University, Nanjing, 210002 China
| | - Yiqun Gu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
39
|
Dong L, Zhang X, Yan X, Shen Y, Yu X, Li Y. Effect of phosphodiesterase-5 inhibitors (PDE5is) on the treatment of male infertility: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18317. [PMID: 31852117 PMCID: PMC6922501 DOI: 10.1097/md.0000000000018317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Male infertility is a worldwide problem with limitations in the treatment. Phosphodiesterase-5 inhibitors (PDE5is) is the first choice for the treatment of erectile dysfunction (ED), but more and more studies show that it has a certain effect on male infertility in recent years. The literatures of PDE5is related to male infertility have shown inconsistent results, and there is currently no high quality of systematic review to evaluate the effects of PDE5is on semen quality in male infertility patients. METHODS The electronic databases of MEDLINE, PubMed, Web of Science, EMBASE, Clinicaltrials.org, China National Knowledge Infrastructure Database (CNKI), Wan fang Database, China Biology Medicine Database (CBM), VIP Science Technology Periodical Database, Chinese Clinical Trial Registry and Cochrane Library were retrieved. Grey literature will be searched in Open Grey. Related Randomized controlled trials (RCTs) were collected and selected before October 20, 2019. We will search English literature and Chinese literature with search terms "male infertility", "phosphodiesterase-5 inhibitors", "PDE5i", "Tadalafil", "Sildenafil", "Vardenafil", "Udenafil", "Avanafil", "semen" and "sperm". Sperm concentration, motility and morphology, sperm DNA fragmentation index, number of per ejaculate, sperm viability and adverse events will be evaluated. RevMan 5.3 and Stata 14.0 will be used for Systematic review and Meta-analysis. This protocol reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement, and we will report the systematic review by following the PRISMA statement. CONCLUSION AND DISSEMINATION Efficacy and safety of PDE5is on male sperm quality in infertile men will be assessed. The results will be published in a public issue journal to provide evidence-based medical evidence for urologists and andrologists to make clinical decisions. REGISTRATION INFORMATION PROSPERO CRD42019142980.
Collapse
Affiliation(s)
- Liang Dong
- Department of Andrology, The Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
| | | | - Xuhong Yan
- Chengdu University of Traditional Chinese Medicine
| | - Yifeng Shen
- Chengdu University of Traditional Chinese Medicine
| | - Xujun Yu
- Chengdu University of Traditional Chinese Medicine
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yulin Li
- Chengdu University of Traditional Chinese Medicine
| |
Collapse
|