1
|
Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid G. Probiotics/prebiotics effect on chicken gut microbiota and immunity in relation to heat-stress and climate-change mitigation. J Therm Biol 2025; 129:104097. [PMID: 40186955 DOI: 10.1016/j.jtherbio.2025.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Heat stress is a serious hazard that threatens world poultry production. The avian gut microbiome plays a critical role in improving nutrient utilization, competing with pathogens, stimulating an immune response, and reducing inflammatory reactions. Hence, the gut microbiome has a positive impact on the host's health which appears in the shape of improved body weight, feed conversion rate, and increased birds' productivity (meat or eggs). Accordingly, this review shed light on the chicken gut microbiome, its correlation with the immunity of chicken, and how this affects the general health condition of the bird as well as, the role of prebiotics and probiotics in improving the gut health and increasing birds' productivity, especially under climate change and heat stress condition. The review aims to focus on the significance of maintaining healthy chickens in order to increase the production of poultry meat to satisfy human needs. A robust microbiota and a well-functioning immune system synergistically contribute to the optimal health and productivity of chickens.
Collapse
Affiliation(s)
- Yara Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, 43511, Suez, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Kasr El-Aini Street, Cairo, 11562, Cairo, Egypt.
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gamal Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Lecoeur A, Blanc F, Gourichon D, Bruneau N, Burlot T, Pinard-van der Laan MH, Calenge F. Host genetics drives differences in cecal microbiota composition and immune traits of laying hens raised in the same environment. Poult Sci 2024; 103:103609. [PMID: 38547541 PMCID: PMC11000118 DOI: 10.1016/j.psj.2024.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.
Collapse
Affiliation(s)
- Alexandre Lecoeur
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France.
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| | | | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| | | | | | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| |
Collapse
|
3
|
Wickramasuriya SS, Park I, Lee Y, Richer LM, Przybyszewski C, Gay CG, van Oosterwijk JG, Lillehoj HS. Orally delivered Bacillus subtilis expressing chicken NK-2 peptide stabilizes gut microbiota and enhances intestinal health and local immunity in coccidiosis-infected broiler chickens. Poult Sci 2023; 102:102590. [PMID: 36940653 PMCID: PMC10033313 DOI: 10.1016/j.psj.2023.102590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
We recently reported a stable Bacillus subtilis-carrying chicken NK-lysin peptide (B. subtilis-cNK-2) as an effective oral delivery system of an antimicrobial peptide to the gut with therapeutic effect against Eimeria parasites in broiler chickens. To further investigate the effects of a higher dose of an oral B. subtilis-cNK-2 treatment on coccidiosis, intestinal health, and gut microbiota composition, 100 (14-day-old) broiler chickens were allocated into 4 treatment groups in a randomized design: 1) uninfected control (CON), 2) infected control without B. subtilis (NC), 3) B. subtilis with empty vector (EV), and 4) B. subtilis with cNK-2 (NK). All chickens, except the CON group, were infected with 5,000 sporulated Eimeria acervulina (E. acervulina) oocysts on d 15. Chickens given B. subtilis (EV and NK) were orally gavaged (1 × 1012 cfu/mL) daily from d 14 to 18. Growth performances were measured on d 6, 9, and 13 postinfection (dpi). Spleen and duodenal samples were collected on 6 dpi to assess the gut microbiota, and gene expressions of gut integrity and local inflammation makers. Fecal samples were collected from 6 to 9 dpi to enumerate oocyst shedding. Blood samples were collected on 13 dpi to measure the serum 3-1E antibody levels. Chickens in the NK group showed significantly improved (P < 0.05) growth performance, gut integrity, reduced fecal oocyst shedding and mucosal immunity compared to NC. Interestingly, there was a distinct shift in the gut microbiota profile in the NK group compared to that of NC and EV chickens. Upon challenge with E. acervulina, the percentage of Firmicutes was reduced and that of Cyanobacteria increased. In NK chickens, however, the ratio between Firmicutes and Cyanobacteria was not affected and was similar to that of CON chickens. Taken together, NK treatment restored dysbiosis incurred by E. acervulina infection and showed the general protective effects of orally delivered B. subtilis-cNK-2 on coccidiosis infection. This includes reduction of fecal oocyst shedding, enhancement of local protective immunity, and maintenance of gut microbiota homeostasis in broiler chickens.
Collapse
Affiliation(s)
- Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | | - Cyril G Gay
- Office of National Program-Animal Health, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
4
|
Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics (Basel) 2022; 11:antibiotics11081093. [PMID: 36009962 PMCID: PMC9404867 DOI: 10.3390/antibiotics11081093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The enormous and diverse population of microorganisms residing in the digestive tracts of humans and animals influence the development, regulation, and function of the immune system. Recently, the understanding of the association between autoimmune diseases and gut microbiota has been improved due to the innovation of high-throughput sequencing technologies with high resolutions. Several studies have reported perturbation of gut microbiota as one of the factors playing a role in the pathogenesis of many diseases, such as inflammatory bowel disease, recurrent diarrhea due to Clostridioides difficile infections. Restoration of healthy gut microbiota by transferring fecal material from a healthy donor to a sick recipient, called fecal microbiota transplantation (FMT), has resolved or improved symptoms of autoimmune diseases. This (re)emerging therapy was approved for the treatment of drug-resistant recurrent C. difficile infections in 2013 by the U.S. Food and Drug Administration. Numerous human and animal studies have demonstrated FMT has the potential as the next generation therapy to control autoimmune and other health problems. Alas, this new therapeutic method has limitations, including the risk of transferring antibiotic-resistant pathogens or transmission of genes from donors to recipients and/or exacerbating the conditions in some patients. Therefore, continued research is needed to elucidate the mechanisms by which gut microbiota is involved in the pathogenesis of autoimmune diseases and to improve the efficacy and optimize the preparation of FMT for different disease conditions, and to tailor FMT to meet the needs in both humans and animals. The prospect of FMT therapy includes shifting from the current practice of using the whole fecal materials to the more aesthetic transfer of selective microbial consortia assembled in vitro or using their metabolic products.
Collapse
|
5
|
Broom LJ, Kogut MH. The role of the gut microbiome in shaping the immune system of chickens. Vet Immunol Immunopathol 2018; 204:44-51. [PMID: 30596380 DOI: 10.1016/j.vetimm.2018.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
Most animals are colonised by at least as many microbial cells as somatic cells, potentially comprising at least 100 times more genes within just the gut microbiota than the host itself. It is, therefore, evident that such a conglomeration can have a profound effect on various bodily systems, particularly the (gut) immune system. Chickens are major providers of efficiently produced protein for humans but also harbour common foodborne pathogens and are susceptible to significant and costly diseases, making a thorough understanding of the influence of the gut microbiome on the immune system very pertinent. Major colonisation of the chicken intestine occurs after hatch and this, along with subsequent microbiota composition and activity, are influenced by numerous host and environmental factors, such that each individual has a unique microbiome signature. However, both extreme (e.g. germ free) and more subtle (e.g. diet changes) microbiome modifications can profoundly impact the development of the gut immune system, particularly adaptive immune apparatus and function. This review will consider the influence of the chicken gut microbiome on immune system development, the implications of this relationship in terms of disease susceptibility, vaccine response, optimal health and productivity, and thus exogenous approaches to positively shape microbiome-immune system interactions.
Collapse
Affiliation(s)
- Leon J Broom
- Gut Health Consultancy, Exeter, Devon, United Kingdom; Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845, United States of America
| |
Collapse
|
6
|
Shang Y, Regassa A, Kim JH, Kim WK. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poult Sci 2015; 94:2887-97. [DOI: 10.3382/ps/pev275] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022] Open
|
7
|
Lee KW, Lillehoj HS, Lee SH, Jang SI, Park MS, Bautista DA, Ritter GD, Hong YH, Siragusa GR, Lillehoj EP. Effect of dietary antimicrobials on immune status in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:382-92. [PMID: 25049577 PMCID: PMC4092964 DOI: 10.5713/ajas.2011.11259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/02/2011] [Indexed: 12/16/2022]
Abstract
This study evaluated the effects of dietary anticoccidial drugs plus antibiotic growth promoters (AGPs) on parameters of immunity in commercial broiler chickens. Day-old chicks were raised on used litter from a farm with endemic gangrenous dermatitis to simulate natural pathogen exposure and provided with diets containing decoquinate (DECX) or monensin (COBN) as anticoccidials plus bacitracin methylene disalicylate and roxarsone as AGPs. As a negative control, the chickens were fed with a non-supplemented diet. Immune parameters examined were concanavalin A (ConA)-stimulated spleen cell proliferation, intestine intraepithelial lymphocyte (IEL) and spleen cell subpopulations, and cytokine/chemokine mRNA levels in IELs and spleen cells. ConA-induced proliferation was decreased at 14 d post-hatch in DECX-treated chickens, and increased at 25 and 43 d in COBN-treated animals, compared with untreated controls. In DECX-treated birds, increased percentages of MHC2(+) and CD4(+) IELS were detected at 14 d, but decreased percentages of these cells were seen at 43 d, compared with untreated controls, while increased TCR2(+) IELs were evident at the latter time. Dietary COBN was associated with decreased fractions of MHC2(+) and CD4(+) IELs and reduced percentages of MHC2(+), BU1(+), and TCR1(+) spleen cells compared with controls. The levels of transcripts for interleukin-4 (IL-4), IL-6, IL-17F, IL-13, CXCLi2, interferon-γ (IFN-γ), and transforming growth factorβ4 were elevated in IELs, and those for IL-13, IL-17D, CXCLi2, and IFN-γ were increased in spleen cells, of DECX- and/or COBN-treated chickens compared with untreated controls. By contrast, IL-2 and IL-12 mRNAs in IELs, and IL-4, IL-12, and IL-17F transcripts in spleen cells, were decreased in DECX- and/or COBN-treated chickens compared with controls. These results suggest that DECX or COBN, in combination with bacitracin and roxarsone, modulate the development of the chicken post-hatch immune system.
Collapse
Affiliation(s)
- K W Lee
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - H S Lillehoj
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - S H Lee
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - S I Jang
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - M S Park
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - D A Bautista
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - G D Ritter
- Mountaire Farms Inc., Millsboro, DE 19966, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - G R Siragusa
- Danisco, W227 N752 Westmound Drive, Waukesha, WI 53186, USA
| | - E P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Lee SH, Lillehoj HS, Tuo W, Murphy CA, Hong YH, Lillehoj EP. Parasiticidal activity of a novel synthetic peptide from the core α-helical region of NK-lysin. Vet Parasitol 2013; 197:113-21. [PMID: 23664157 DOI: 10.1016/j.vetpar.2013.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/10/2013] [Accepted: 04/13/2013] [Indexed: 11/26/2022]
Abstract
NK-lysin is an anti-microbial peptide that plays a critical role in innate immunity against infectious pathogens through its selective membrane disruptive property. We previously expressed and purified a full-length chicken NK-lysin (cNKL) recombinant protein, and demonstrated its in vitro anti-parasitic activity against the apicomplexan protozoan, Eimeria, the etiologic agent of avian coccidiosis. This study evaluated the in vitro and in vivo anti-parasitic properties of a synthetic peptide (cNK-2) incorporating a predicted membrane-permeating, amphipathic α-helix of the full-length cNKL protein. The cNK-2 peptide exhibited dose- and time-dependent in vitro cytotoxic activity against E. acervulina and E. tenella sporozoites. The cytotoxic activity of 1.5 μM of cNK-2 peptide against E. acervulina following 6h incubation was equal to that of 2.5 μM of melittin, the principal active component of apitoxin (bee venom) that also exhibits anti-microbial activity. Even greater activity was detected against E. tenella, where 0.3 μM of cNK-2 peptide was equivalent to 2.5 μM of melittin. Against Neospora caninum tacyzoites, however, the cytotoxic activity of cNK-2 peptide was inferior to that of melittin. Transmission electron microscopy of peptide-treated E. tenella sporozoites revealed disruption of the outer plasma membrane and loss of intracellular contents. In vivo administration of 1.5 μM of cNK-2 peptide increased protection against experimental E. acervulina infection, as measured by greater body weight gain and reduced fecal oocyst shedding, compared with saline controls. These results suggest that the cNK-2 synthetic peptide is a novel anti-infective peptide that can be used for protection against avian coccidiosis during commercial poultry production.
Collapse
Affiliation(s)
- Sung Hyen Lee
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lee KW, Ho Hong Y, Lee SH, Jang SI, Park MS, Bautista DA, Ritter GD, Jeong W, Jeoung HY, An DJ, Lillehoj EP, Lillehoj HS. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res Vet Sci 2012; 93:721-8. [PMID: 22301016 DOI: 10.1016/j.rvsc.2012.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/28/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022]
Abstract
This study investigated the effects of various coccidiosis control programs in combination with antibiotic growth promoters (AGPs) on growth performance and host immune responses in broiler chickens. The coccidiosis programs that were investigated included in ovo coccidiosis vaccination (CVAC) with Inovocox or in-feed medication with diclazuril as Clinacox (CLIN) or salinomycin (SAL). The AGPs were virginiamycin or bacitracin methylene disalicylate plus roxarsone. As a negative control, chickens were non-vaccinated and fed with non-supplemented diets (NONE). All animals were exposed to used litter from a commercial broiler farm with confirmed contamination by Eimeria parasites to simulate in-field exposure to avian coccidiosis. Broiler body weights in the CVAC group were greater at 14 and 32 days of age, but not at day 42, compared with the NONE, CLIN, and SAL groups. At day 14, the SAL group showed decreased body weight and reduced ConA-stimulated spleen cell proliferation compared with the CLIN and SAL groups. In contrast, at days 34 and 43, splenocyte proliferation was greater in the CVAC and CLIN groups compared with the NONE and SAL groups. Lymphocyte subpopulations and cytokine mRNA expression levels in the intestine and spleen were also altered by the denoted treatments. Collectively, these results suggest that in ovo coccidiosis vaccination or coccidiostat drug medication programs in combination with AGPs influences chicken growth and immune status in an Eimeria-contaminated environment.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|