1
|
Han F, Guo H, Zhang H, Zheng Y. hs-CRP/HDL-C can predict the risk of all cause mortality in cardiovascular-kidney-metabolic syndrome stage 1-4 patients. Front Endocrinol (Lausanne) 2025; 16:1552219. [PMID: 40276550 PMCID: PMC12018248 DOI: 10.3389/fendo.2025.1552219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Background The precise function of the hs-CRP/HDL-C ratio in forecasting the long-term mortality risk of patients with stages 1-4 of Cardiovascular-Kidney-Metabolic (CKM) syndrome remains inadequately delineated. This study investigates the potential correlation between the hs-CRP/HDL-C ratio and long-term mortality risk in individuals with CKM syndrome stages 1-4. Methods This prospective cohort study utilises data from the China Health and Retirement Longitudinal Study (CHARLS) project, encompassing 6,719 people who satisfied stringent criteria. We developed three Cox proportional hazards regression models to investigate the potential relationship between the hs-CRP/HDL-C ratio and long-term mortality risk in patients with CKM stages 1-4. We employed Restricted Cubic Spline (RCS) curves for analysis to identify any potential nonlinear correlations. Furthermore, we performed Receiver Operating Characteristic (ROC) curve analysis to evaluate predictive performance and identify the appropriate cut-off value. To enhance the research findings, we conducted a stratified analysis to investigate the influence of various sociodemographic factors on this association. Results In individuals with CKM syndrome stages 1-4, the 10-year incidence of all-cause mortality was 14.1%. Upon controlling for additional potential confounding variables, the outcomes of the Cox proportional hazards regression model distinctly demonstrated a statistically significant linear positive association between the hs-CRP/HDL-C ratio and the long-term mortality risk in patients. For each quartile increase in the hs-CRP/HDL-C ratio, the probability of poor outcomes (i.e., mortality) escalated by 15% (Hazard Ratio, HR = 1.15, 95% Confidence Interval, CI: 1.09-1.22, p-value < 0.001). Moreover, the integration of the hs-CRP/HDL-C ratio into the baseline risk prediction model, with all pertinent factors thoroughly adjusted, markedly enhanced the model's predictive capacity, facilitating a more precise assessment of long-term mortality risk in patients with CKM syndrome stages 1-4. Conclusion This study identified a positive linear association between the hs-CRP/HDL-C ratio and long-term mortality risk in patients with stages 1 to 4 of CKM syndrome. This remarkable discovery not only offers a crucial reference for enhancing early individualised treatment options but also greatly aids in the early identification of patients with poor prognoses, hence presenting a novel perspective for improving clinical management pathways for these individuals.
Collapse
Affiliation(s)
| | | | | | - Yang Zheng
- First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
3
|
Ronda N, Zimetti F, Adorni MP, Palumbo M, Karpouzas GA, Bernini F. Role of Lipoprotein Levels and Function in Atherosclerosis Associated with Autoimmune Rheumatic Diseases. Rheum Dis Clin North Am 2023; 49:151-163. [PMID: 36424022 DOI: 10.1016/j.rdc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune and inflammatory mediators in autoimmune rheumatic diseases induce modification in the activity of enzymes pivotal for lipid metabolism and promote a proatherogenic serum lipid profile. However, disturbances in low- and high-density lipoprotein composition and increased lipid oxidation also occur. Therefore, lipoprotein dysfunction causes intracellular cholesterol accumulation in macrophages, smooth muscle cells, and platelets. Overall, both plaque progression and acute cardiovascular events are promoted. Single rheumatic diseases may present a particular pattern of lipid disturbances so that standard methods to evaluate cardiovascular risk may not be accurate enough. In general, antirheumatic drugs positively affect lipid metabolism in these patients.
Collapse
Affiliation(s)
- Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy.
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39/F, Parma 43125, Italy
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| | - George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute, Torrance, CA, USA
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| |
Collapse
|
4
|
Dong H, Wang J, Hu P, Lu N. Association of Apolipoprotein A1, High Density Lipoprotein Cholesterol, and Their Ratio with Inflammatory Marker in Chinese Adults with Coronary Artery Disease. Angiology 2022:33197221121002. [PMID: 36065748 DOI: 10.1177/00033197221121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sparse data assessed the association of apolipoprotein A1 (ApoA1) and high density lipoprotein cholesterol (HDL-C) with inflammation. We investigated this association in a hospital-based cross-sectional pilot study that included 7296 patients with coronary artery disease (CAD). In multivariate analysis, negative associations of ApoA1 and HDL-C with C-reactive protein (CRP), high sensitivity CRP (hsCRP), and tumor necrosis factor-α (TNF-α) were shown. The corresponding CRP, hsCRP, and TNF-α values were 5.28 (vs 11.70 mg/L), 4.50 (vs 11.50 mg/L), and 7.68 (vs 10.90 pg/mL) for ApoA1, and 7.13 (vs 10.60 mg/L), 6.27 (vs 9.19 mg/L), and 8.11 (vs 11.86 pg/mL) for HDL-C in the fourth quartiles compared with the first quartiles. ApoA1/HDL-C ratio was inversely associated with hsCRP and interleukin-6 (IL-6). No significant associations of ApoA1 and HDL-C with IL-6 and IL-8, and of ApoA1/HDL-C ratio with CRP, IL-8, and TNF-α were observed. In path analyses, there was no evidence of mediating effects of body mass index on the "ApoA1 and HDL-C-inflammation" relationship. Generally, our study of CAD patients identified graded and inverse associations of ApoA1, HDL-C, and ApoA1/HDL-C ratio with inflammatory marker (CRP, hsCRP, IL-6, IL-8, or TNF-α) levels.
Collapse
Affiliation(s)
- Hongli Dong
- Scientific Education Section and Department of Child Healthcare, Affiliated Maternal & Child Care Hospital of Nantong University, Nantong, China
| | - Jie Wang
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| | - Ping Hu
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| | - Nan Lu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Effect of Low High-Density Lipoprotein Level on Endothelial Activation and Prothrombotic Processes in Coronary Artery Disease-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148637. [PMID: 35886486 PMCID: PMC9316205 DOI: 10.3390/ijerph19148637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
High-density lipoproteins (HDL) play an important role in the prevention of atherosclerosis. The aim of the study was to assess the relationship between serum HDL-C concentration and proinflammatory/prothrombic activation in coronary artery disease (CAD) patients. The study group included 27 acute myocardial infarction (AMI) patients and 30 stable angina pectoris (SA) patients. The control group consisted of 23 people without cardiac symptoms. In the AMI and SA groups, a lower HDL-C and a higher LDL-C/HDL-C index were observed. The SA patients had lower total cholesterol, LDL-C, sE-selectin ligand, as well as higher triglycerides and CD40 concentration in comparison with both the control and AMI groups. A higher von Willebrand Factor and intercellular adhesion molecule-1 were found in both study groups. Low HDL-C concentration in the CAD patients may intensify pro-inflammatory endothelial activation and prothrombotic processes. A low concentration of HDL-C and a high value of the LDL-C/HDL-C index seem to be better indices of atherogenic processes than the LDL-C concentration alone.
Collapse
|
6
|
Zhou M, Li R, Venkat P, Qian Y, Chopp M, Zacharek A, Landschoot-Ward J, Powell B, Jiang Q, Cui X. Post-Stroke Administration of L-4F Promotes Neurovascular and White Matter Remodeling in Type-2 Diabetic Stroke Mice. Front Neurol 2022; 13:863934. [PMID: 35572941 PMCID: PMC9100936 DOI: 10.3389/fneur.2022.863934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic stroke with worse post-stroke neurovascular and white matter (WM) prognosis than the non-diabetic population. In the central nervous system, the ATP-binding cassette transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in maintaining neurovascular stability and WM integrity. Our previous study shows that L-4F, an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective effects via alleviating neurovascular and WM impairments in the brain of db/db-T2DM stroke mice. To further investigate whether L-4F has neurorestorative benefits in the ischemic brain after stroke in T2DM and elucidate the underlying molecular mechanisms, we subjected middle-aged, brain-ABCA1 deficient (ABCA1-B/-B), and ABCA1-floxed (ABCA1fl/fl) T2DM control mice to distal middle cerebral artery occlusion. L-4F (16 mg/kg, subcutaneous) treatment was initiated 24 h after stroke and administered once daily for 21 days. Treatment of T2DM-stroke with L-4F improved neurological functional outcome, and decreased hemorrhage, mortality, and BBB leakage identified by decreased albumin infiltration and increased tight-junction and astrocyte end-feet densities, increased cerebral arteriole diameter and smooth muscle cell number, and increased WM density and oligodendrogenesis in the ischemic brain in both ABCA1-B/-B and ABCA1fl/fl T2DM-stroke mice compared with vehicle-control mice, respectively (p < 0.05, n = 9 or 21/group). The L-4F treatment reduced macrophage infiltration and neuroinflammation identified by decreases in ED-1, monocyte chemoattractant protein-1 (MCP-1), and toll-like receptor 4 (TLR4) expression, and increases in anti-inflammatory factor Insulin-like growth factor 1 (IGF-1) and its receptor IGF-1 receptor β (IGF-1Rβ) in the ischemic brain (p < 0.05, n = 6/group). These results suggest that post-stroke administration of L-4F may provide a restorative strategy for T2DM-stroke by promoting neurovascular and WM remodeling. Reducing neuroinflammation in the injured brain may contribute at least partially to the restorative effects of L-4F independent of the ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
7
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
8
|
Chen W, Wang S, Xing D. New Horizons for the Roles and Association of APE1/Ref-1 and ABCA1 in Atherosclerosis. J Inflamm Res 2021; 14:5251-5271. [PMID: 34703267 PMCID: PMC8526300 DOI: 10.2147/jir.s330147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide. APE1/Ref-1 and ABCA1 play key roles in the progression of atherosclerosis. APE1/Ref-1 suppresses atherosclerosis via multiple mechanisms, including reducing the IL-6-, TNF-α-, and IL-1β-mediated proinflammatory responses, suppressing ROS-mediated oxidant activity and Bax/Bcl-2-mediated vascular calcification and apoptosis, and reducing LOX-1-mediated cholesterol uptake. However, APE1/Ref-1 also promotes atherosclerosis by increasing the activity of the NK-κB and S1PR1 pathways. APE1/Ref-1 localizes to the nucleus, cytoplasm, and mitochondria and can be secreted from the cell. APE1/Ref-1 localization is dynamically regulated by the disease state and may be responsible for its proatherogenic and antiatherogenic effects. ABCA1 promotes cholesterol efflux and anti-inflammatory responses by binding to apoA-I and regulates apoptotic cell clearance and HSPC proliferation to protect against inflammatory responses. Interestingly, in addition to mediating these functions, ABCA1 promotes the secretion of acetylated APE1/Ref-1 (AcAPE1/Ref-1), a therapeutic target, which protects against atherosclerosis development. The APE1/Ref-1 inhibitor APX3330 is being evaluated in a phase II clinical trial. The LXR agonist LXR-623 (WAY-252623) is an agonist of ABCA1 and the first LXR-targeting compound to be evaluated in clinical trials. In this article, we review the roles of ABCA1 and APE1/Ref-1 in atherosclerosis and focus on new insights into the ABCA1-APE1/Ref-1 axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
9
|
Fernandes das Neves M, Batuca JR, Delgado Alves J. The role of high-density lipoprotein in the regulation of the immune response: implications for atherosclerosis and autoimmunity. Immunology 2021; 164:231-241. [PMID: 33934336 PMCID: PMC8442240 DOI: 10.1111/imm.13348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation and immune dysfunction have been increasingly recognized as crucial mechanisms in atherogenesis. Modifications in cell lipid metabolism, plasma dyslipidaemia and particularly low high-density lipoprotein (HDL) levels occur both in atherosclerosis and in autoimmune rheumatic diseases (which are strongly associated with an increased risk of atherosclerosis), suggesting the presence of a crucial link. HDL, the plasma lipoprotein responsible for reverse cholesterol transport, is known for its several protective effects in the context of atherosclerosis. Among these, HDL immunomodulatory effects are possibly the less understood. Through the efflux of cholesterol from plasma cell membranes with the consequent disruption of lipid rafts and the interaction with the cholesterol transporters present in the plasma membrane, HDL affects both the innate and adaptive immune responses. Animal and human studies have demonstrated a predominance of HDL anti-inflammatory effects, despite some pro-inflammatory actions having also been reported. The HDL role on the modulation of the immune response is further suggested by the detection of low levels together with a dysfunctional HDL in patients with autoimmune diseases. Here, we review the current knowledge of the immune mechanisms of atherosclerosis and the modulatory effects HDL may have on them.
Collapse
Affiliation(s)
- Marisa Fernandes das Neves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| | - Joana R. Batuca
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
| | - José Delgado Alves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| |
Collapse
|
10
|
Liu Y, Pan Y, Yin Y, Chen W, Li X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): a meta-analysis. Virol J 2021; 18:157. [PMID: 34315474 PMCID: PMC8314261 DOI: 10.1186/s12985-021-01604-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
Background The numbers of confirmed cases of coronavirus disease 2019 (COVID-19) and COVID-19 related deaths are still increasing, so it is very important to determine the risk factors of COVID-19. Dyslipidemia is a common complication in patients with COVID-19, but the association of dyslipidemia with the severity and mortality of COVID-19 is still unclear. The aim of this study is to analyze the potential association of dyslipidemia with the severity and mortality of COVID-19. Methods We searched the PubMed, Embase, MEDLINE, and Cochrane Library databases for all relevant studies up to August 24, 2020. All the articles published were retrieved without language restriction. All analysis was performed using Stata 13.1 software and Mantel–Haenszel formula with fixed effects models was used to compare the differences between studies. The Newcastle Ottawa scale was used to assess the quality of the included studies. Results Twenty-eight studies involving 12,995 COVID-19 patients were included in the meta-analysis, which was consisted of 26 cohort studies and 2 case–control studies. Dyslipidemia was associated with the severity of COVID-19 (odds ratio [OR] = 1.27, 95% confidence interval [CI] 1.11–1.44, P = 0.038, I2 = 39.8%). Further, patients with dyslipidemia had a 2.13-fold increased risk of death compared to patients without dyslipidemia (95% CI 1.84–2.47, P = 0.001, I2 = 66.4%). Conclusions The results proved that dyslipidemia is associated with increased severity and mortality of COVID-19. Therefore, we should monitor blood lipids and administer active treatments in COVID-19 patients with dyslipidemia to reduce the severity and mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01604-1.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yuyao Yin
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Wenhao Chen
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
11
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
12
|
Chen W, Li L, Wang J, Zhang R, Zhang T, Wu Y, Wang S, Xing D. The ABCA1-efferocytosis axis: A new strategy to protect against atherosclerosis. Clin Chim Acta 2021; 518:1-8. [PMID: 33741356 DOI: 10.1016/j.cca.2021.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a disease process characterized by lipid accumulation and inflammation, is the main cause of coronary heart disease (CHD) and myocardial infarction (MI). Efferocytosis involves the clearance of apoptotic cells by phagocytes. Successful engulfment triggers the release of anti-inflammatory cytokines to suppress atherosclerosis. ABCA1 is a key mediator of cholesterol efflux to apoA-I for the generation of HDL-C in reverse cholesterol transport (RCT). Intriguingly, ABCA1 promotes not only cholesterol efflux but also efferocytosis. ABCA1 promotes efferocytosis by regulating the release of "find-me" ligands, including LPC, and the exposure, release, and expression of "eat-me" ligands, including PtdSer, ANXA1, ANXA5, MEGF10, and GULP1. ABCA1 has a pathway similar to TG2, which is an "eat-me" ligand. ABCA1 has the highest known homology to ABCA7, which controls efferocytosis as the engulfment and processing ligand. In addition, ABCA1 can form several regulatory feedback axes with ANXA1, MEGF10, GULP1, TNFα, and IL-6. Therefore, ABCA1 is the central factor that links cholesterol efflux and apoptotic cell clearance. Several drugs have been studied or approved for apoptotic cell clearance, such as CD47 antibody and PD1-/PD-L1 antibody. In this article, we review the role and mechanism of action of ABCA1 in efferocytosis and focus on new insights into the ABCA1-efferocytosis axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
14
|
Kudinov VA, Alekseeva OY, Torkhovskaya TI, Baskaev KK, Artyushev RI, Saburina IN, Markin SS. High-Density Lipoproteins as Homeostatic Nanoparticles of Blood Plasma. Int J Mol Sci 2020; 21:E8737. [PMID: 33228032 PMCID: PMC7699323 DOI: 10.3390/ijms21228737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)-cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.
Collapse
Affiliation(s)
- Vasily A. Kudinov
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Olga Yu. Alekseeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University (RUDN University), 117198 Moscow, Russia
| | - Tatiana I. Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Konstantin K. Baskaev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Rafael I. Artyushev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Irina N. Saburina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
| | - Sergey S. Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
15
|
Shen X, Zhang S, Guo Z, Xing D, Chen W. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26:84. [PMID: 32894039 PMCID: PMC7487582 DOI: 10.1186/s10020-020-00213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCA1 promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXA1, which plays a critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic cell clearance. ApoA-I increases ANXA1 expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-I regulates the signaling pathways by binding to ABCA1, suggesting that apoA-I increases ANXA1 expression by binding to ABCA1. Furthermore, ANXA1 may increase ABCA1 expression. ANXA1 increases PPARγ expression by modulating STAT6 phosphorylation. PPARγ also increases ANXA1 expression by binding to the promoter of ANXA1. Therefore, ABCA1, PPARγ, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXA1 needs to be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory properties. ABCA1 transports ANXA1 from the cytoplasm to the cell membrane by regulating lipidization and serine phosphorylation, thereby mediating ANXA1 efflux, likely by promoting microparticle and exosome release. The direct role of ABCA1 expression and ANXA1 release in atherosclerosis has been unclear. In this review, we focus on the role of ANXA1 in atheroprogression and its novel interaction with ABCA1, which may be useful for providing basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Shen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Zhu Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| |
Collapse
|
16
|
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:676-686. [PMID: 33715815 PMCID: PMC7193959 DOI: 10.1194/jlr.tr119000383] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael J Thomas
- Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mary G Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226. mailto:
| |
Collapse
|
17
|
Chen W, Wu Y, Lu Q, Wang S, Xing D. Endogenous ApoA-I expression in macrophages: A potential target for protection against atherosclerosis. Clin Chim Acta 2020; 505:55-59. [PMID: 32092318 DOI: 10.1016/j.cca.2020.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
ApoA-I is a major protein component of high-density lipoprotein (HDL) that is widely known for regulating cholesterol trafficking and inflammatory and immune responses and for protecting against atherosclerosis. ApoA-I is generally considered to be synthesized in the liver (hepatocytes) and small intestine (enterocytes). However, computer analysis of ApoA-I has shown that the ApoA-I gene may be expressed in not only hepatocytes and enterocytes but also monocyte-macrophage cells, dendritic cells (DCs) and T cells. ApoA-I expression has been detected in THP-1 monocytes and macrophages, peripheral blood mononuclear cells (PBMCs) from postmenopausal women, human PBMC-derived monocytes and macrophages, mouse peritoneal macrophages, etc. Endogenous ApoA-I in macrophages has anti-inflammatory and cholesterol efflux effects. However, our understanding of the detailed roles of macrophage-synthesized ApoA-I is still at an early stage and very limited. More experiments are needed to elucidate the exact roles of endogenous ApoA-I in macrophages. Several lines of evidence indicate that recombinant exogenous human ApoA-I in mouse macrophages increases cholesterol efflux and thus reduces atherosclerosis development. Considering the antiatherogenic effect of exogenous ApoA-I overexpression in mouse macrophages, better understanding the role and mechanisms underlying macrophage-synthesized ApoA-I in atherosclerosis will enable macrophage-synthesized ApoA-I therapy to open new avenues for reducing the risk of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Qi Lu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
19
|
Kim SY, Yu M, Morin EE, Kang J, Kaplan MJ, Schwendeman A. High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis Rheumatol 2020; 72:20-30. [PMID: 31350818 PMCID: PMC6935404 DOI: 10.1002/art.41059] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) patients exhibit accelerated development of atherosclerosis and increased incidents of cardiovascular disease (CVD) that cannot be explained by traditional risk factors alone. Accumulating evidence suggests that reduced levels of high-density lipoproteins (HDLs), along with altered HDL composition and function, may contribute to the accelerated atherosclerosis in SLE patients. Normally, HDLs play various atheroprotective roles through facilitating cholesterol efflux, inhibiting vascular inflammation, and scavenging oxidative species. However, systemic inflammation, oxidative stress, and autoimmunity in SLE patients induce changes in HDL size distribution and proteomic and lipidomic signatures. These compositional changes in HDLs result in the formation of proinflammatory, dysfunctional HDL. These lupus-altered HDLs have impaired antiatherogenic function with reduced cholesterol efflux capacities, impaired antioxidation abilities, and diminished antiinflammatory properties. In fact, dysfunctional HDL may promote atherogenesis by inducing inflammation. Thus, dysfunctional HDLs could be an important biomarker of accelerated atherosclerosis in lupus. Additionally, HDL-targeted therapies, especially infusion of reconstituted HDLs, may serve as a potential therapeutic intervention for SLE patients with CVD.
Collapse
Affiliation(s)
- Sang Yeop Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily E. Morin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jukyung Kang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Duarte-Delgado NP, Lujan TP, Arbeláez-Cortés Á, García-Valencia J, Zapata A, Rojas M, Restrepo-Escobar M, Vásquez G, Ortiz-Reyes BL. Identification of Levels of Serum Amyloid A and Apolipoprotein A1 in Serum Proteomic Analysis of Neuropsychiatric Systemic Lupus Erythematosus Patients. Autoimmune Dis 2018; 2018:6728541. [PMID: 30584474 PMCID: PMC6280257 DOI: 10.1155/2018/6728541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric Systemic Lupus Erythematosus (NPSLE) has multiple pathogenic mechanisms that cause diverse manifestations and whose diagnosis is challenging because of the absence of appropriate diagnostic tests. In the present study the application of proteomics using two-dimensional electrophoresis (2D) and mass spectrometry (MS) allowed the comparison of the protein profile of the serum low and high abundance protein fractions of NPSLE patients (NPSLE group) and SLE without neuropsychiatric syndromes (SLE group), Neuropsychiatric syndromes not associated with SLE (NPnoSLE groups), and healthy controls (CTRL group). The gels obtained were digitalized and analyzed with the PDQuest software. The statistical analysis of the spots was performed using the nonparametric Kruskal Wallis and Dunn's multiple comparison tests. Two spots showed significant differences and were identified by MS. Spot 4009 was significantly lower in NPSLE with regard to NPnoSLE (p= 0,004) and was identified as apolipoprotein A1 (APOA1) (score 809-1132). Spot 8001 was significantly higher in NPSLE regarding CTRL and NPnoSLE (p= 0,01 y 0,03, respectively) and was identified as serum amyloid A (SAA) (score 725-2488). The proinflammatory high density lipoproteins (HDL) have been described in SLE. In this HDL the decrease of APOA1 is followed by an increase in SAA. This altered level of both proteins may be related to the inflammatory state that is characteristic of an autoimmune disease like SLE, but this is not specific for NPSLE.
Collapse
Affiliation(s)
| | | | | | - Jenny García-Valencia
- Universidad de Antioquia, Facultad de Medicina, Grupo Académico en Epidemiología Clínica (GRAEPIC), Medellín, Colombia
- Clínica de Salud Mental Integral S.A.S.-SAMEIN, Medellín, Colombia
| | - Adriana Zapata
- Clínica de Salud Mental Integral S.A.S.-SAMEIN, Medellín, Colombia
| | - Mauricio Rojas
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
| | - Mauricio Restrepo-Escobar
- Universidad de Antioquia, Facultad de Medicina, Grupo de Reumatología Universidad de Antioquia (GRUA), Medellín, Colombia
| | - Gloria Vásquez
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Universidad de Antioquia, Facultad de Medicina, Grupo de Reumatología Universidad de Antioquia (GRUA), Medellín, Colombia
| | - Blanca L. Ortiz-Reyes
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
| |
Collapse
|
21
|
Haas MJ, Jurado-Flores M, Hammoud R, Plazarte G, Onstead-Haas L, Wong NC, Mooradian AD. Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sci 2018; 208:102-110. [DOI: 10.1016/j.lfs.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
|
22
|
Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat Commun 2018; 9:3083. [PMID: 30082772 PMCID: PMC6079066 DOI: 10.1038/s41467-018-05322-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/24/2018] [Indexed: 01/06/2023] Open
Abstract
Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3–ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3–ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases. Cholesterol homeostasis can modulate immunity via multiple pathways. Here the authors show that apolipoprotein E, an important regulator of cholesterol, produced by myeloid cells can regulate T cell activation by controlling the antigen presentation activity of dendritic cells in both humans and mice.
Collapse
|
23
|
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev 2018; 34:e2993. [PMID: 29475214 DOI: 10.1002/dmrr.2993] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
The accumulation and pro-inflammatory polarization of immune cells, mainly macrophages, in adipose tissue (AT) are considered crucial factors for obesity-induced chronic inflammatory diseases. In this review, we highlighted the role of adipose tissue macrophage (ATM) polarization on AT function in the obese state and the effect of the micro-environment and intracellular metabolism on the dynamic switch of ATMs into their pro-inflammatory or anti-inflammatory phenotypes, which may have distinct influences on obesity-related chronic inflammatory diseases. Obesity-associated metabolic dysfunctions, including those of glucose, fatty acid, cholesterol, and other nutrient substrates such as vitamin D and iron in AT, promote the pro-inflammatory polarization of ATMs and AT inflammation via regulating the interaction between ATMs and adipocytes and intracellular metabolic pathways, including glycolysis, fatty acid oxidation, and reverse cholesterol transportation. Focusing on the regulation of ATM metabolism will provide a novel target for the treatment of obesity-related chronic inflammatory diseases, including insulin resistance, cardiovascular diseases, and cancers.
Collapse
Affiliation(s)
- Xiao Zhu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yixuan Tu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Ampadu O Jackson
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
24
|
Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK. Apolipoprotein A-1 Binding Protein Inhibits Inflammatory Signaling Pathways by Binding to Apolipoprotein A-1 in THP-1 Macrophages. Circ J 2018; 82:1396-1404. [PMID: 29618705 DOI: 10.1253/circj.cj-17-0877] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND It has previously been demonstrated that apolipoprotein A-1 (apoA-1) binding protein (AIBP) promotes apoA-1 binding to ATP-binding cassette transporter A1 (ABCA1) and prevents ABCA1 protein degradation so as to inhibit foam cell formation. Because apoA-1 inhibits inflammatory signaling pathways, whether AIBP has an inhibitory effect on inflammatory signaling pathways in THP-1-derived macrophages is investigated. METHODS AND RESULTS Analysis of inflammation-related gene expression indicated that AIBP decreased lipopolysaccharide (LPS)-mediated macrophage inflammation. AIBP significantly prevented NF-κB nuclear translocation. Further, AIBP prevented the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular-signal regulated kinase and c-Jun N-terminal kinase. AIBP decreased MyD88 expression at both mRNA and protein levels, but did not have any effect on TLR4 expression. Moreover, treatment with both AIBP and apoA-1 decreased the abundance of TLR4 in the lipid raft fraction. AIBP lacking 115-123 amino acids (∆115-123), however, did not have such effects as described for intact AIBP. In addition, knockdown of ABCA1 inhibited the effects of AIBP on inflammatory factor secretion. CONCLUSIONS These results suggest that AIBP inhibits inflammatory signaling pathways through binding to apoA-1 and stabilizing ABCA1, and subsequent alteration of lipid rafts and TLR4 in the cell membrane.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Guo-Jun Zhao
- Department of Histology and Embryology, Guilin Medical University
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Duo Gong
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center
- Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University
| | - Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| |
Collapse
|
25
|
Cheng HP, Gong D, Zhao ZW, He PP, Yu XH, Ye Q, Huang C, Zhang X, Chen LY, Xie W, Zhang M, Li L, Xia XD, Ouyang XP, Tan YL, Wang ZB, Tian GP, Zheng XL, Yin WD, Tang CK. MicroRNA-182 Promotes Lipoprotein Lipase Expression and Atherogenesisby Targeting Histone Deacetylase 9 in Apolipoprotein E-Knockout Mice. Circ J 2017; 82:28-38. [PMID: 28855441 DOI: 10.1253/circj.cj-16-1165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis. METHODS AND RESULTS Using bioinformatics analyses and a dual-luciferase reporter assay, we identified histone deacetylase 9 (HDAC9) as a target gene of miR-182. Moreover, miR-182 upregulated LPL expression by directly targetingHDAC9in THP-1 macrophages. Hematoxylin-eosin (H&E), Oil Red O and Masson's trichrome staining showed that apolipoprotein E (ApoE)-knockout (KO) mice treated with miR-182 exhibited more severe atherosclerotic plaques. Treatment with miR-182 increased CD68 and LPL expression in atherosclerotic lesions in ApoE-KO mice, as indicated by double immunofluorescence staining in the aortic sinus. Increased miR-182-induced increases in LPL expression in ApoE-KO mice was confirmed by real-time quantitative polymerase chain reaction and western blotting analyses. Treatment with miR-182 also increased plasma concentrations of proinflammatory cytokines and lipids in ApoE-KO mice. CONCLUSIONS The results of the present study suggest that miR-182 upregulates LPL expression, promotes lipid accumulation in atherosclerotic lesions, and increases proinflammatory cytokine secretion, likely through targetingHDAC9, leading to an acceleration of atherogenesis in ApoE-KO mice.
Collapse
Affiliation(s)
- Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Qiong Ye
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xin Zhang
- School of Pharmacy and Life Science College, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Ling-Yan Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xiao-Dan Xia
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Zong-Bao Wang
- School of Pharmacy and Life Science College, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Guo-Ping Tian
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| |
Collapse
|
26
|
Chengmao X, Li L, Yan L, Jie Y, Xiaoju W, Xiaohui C, Huimin G. ABCA1 affects placental function via trophoblast and macrophage. Life Sci 2017; 191:150-156. [DOI: 10.1016/j.lfs.2017.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
27
|
Feng J, Zhang J, Jackson AO, Zhu X, Chen H, Chen W, Gui Q, Yin K. Apolipoprotein A1 Inhibits the TGF-β1-Induced Endothelial-to-Mesenchymal Transition of Human Coronary Artery Endothelial Cells. Cardiology 2017; 137:179-187. [PMID: 28434000 DOI: 10.1159/000464321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Transforming growth factor β1 (TGF-β1) is the major cytokine for stimulating endothelial cells (ECs) to transdifferentiate to mesenchymal cells (MCs) in the process known as endothelial-to-mesenchymal transition (EndMT). Recently, TGF-β1-induced EndMT has been implicated in the pathogenesis of atherosclerosis (AS). It has been identified that apolipoprotein A1 (ApoA-I) obstructs TGF-β1-induced endothelial dysfunction, providing a protective effect for ECs and also anti-AS activity. However, the exact role of ApoA-I in TGF-β1-induced EndMT is not clear. In this study, we aimed to investigate whether ApoA-I can modulate TGF-β1-induced EndMT in human coronary artery ECs (HCAECs). METHODS AND RESULTS The HCAECs were treated with TGF-β1 with or without ApoA-I. Morphological changes in HCAECs and the expression of EndMT-related markers were evaluated. HCAECs treated with TGF-β1 were found to transform to MC morphology, with inconspicuous expression of EC markers such as vascular endothelial cadherin and CD31, and conspicuous expression of fibroblast-specific protein 1 (FSP-1) and α-smooth muscle actin. The treatment of HCAECs with ApoA-I inhibited the TGF-β1-induced EndMT, and elevated expression of EC markers was observed but reduced expression of MC markers. Moreover, ApoA-I impeded the expression level of Slug and Snail, crucial transcriptional factors of EndMT, and it inhibited the TGF-β1-induced phosphorylation of Smad2 and Smad3 which affected the EC morphology. In addition, the knockdown of ABCA1 by RNA interference eliminated the inhibition effect of ApoA-I on TGF-β1-induced EndMT. CONCLUSIONS Our findings revealed a novel mechanism for the ApoA-I protective effect on endothelium function via the inhibition of TGF-β1-induced EndMT. This might provide new insights for developing strategies for modulating AS and vascular remodeling.
Collapse
Affiliation(s)
- Juling Feng
- Research Lab of Translational Medicine, Medical School, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Feng X, Gao X, Yao Z, Xu Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: a cross-sectional study. Lipids Health Dis 2017; 16:69. [PMID: 28372564 PMCID: PMC5379622 DOI: 10.1186/s12944-017-0446-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background Low apolipoprotein A-I (apoA-I) is an independent risk factor for atherosclerotic cardiovascular diseases. Insulin resistance predicts the progression of abnormal glucose metabolism, which is the main cause of atherosclerotic cardiovascular disease. In this study, we assessed the potential association between apoA-I levels and insulin resistance in patients with impaired glucose tolerance (IGT) and the possible link between apoA-I and IGT. Methods This study evaluated a cross-sectional study of 108 participants with impaired glucose tolerance (IGT group) and 84 controls (control group). ApoA-I and clinical characteristics were measured, and a homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. Results The IGT group exhibited significantly lower apoA-I and higher HOMA-IR levels than the control group (apoA-I: 1.37 ± 0.36 vs 1.57 ± 0.39 g/L; HOMA-IR: 4.21 ± 1.56 vs 2.15 ± 0.99; P < 0.001 for both). ApoA-I was negatively correlated with HOMA-IR in both the IGT and control groups (IGT group: r = −0.269, P = 0.005; control group: r = −0.262, P = 0.016). Multiple stepwise regression analysis showed that low apoA-I levels (β = −1.470, P = 0.002) were independently correlated with high HOMA-IR levels in the IGT group. Moreover, logistic regression analysis identified that low apoA-I was an independent influencing factor for IGT (β = −1.170, OR = 0.310, P = 0.007). Conclusions ApoA-I is inversely associated with insulin resistance in patients with impaired glucose tolerance, and low apoA-I is an independent risk factor for impaired glucose tolerance. These results indicate that apoA-I plays an important role in regulating insulin sensitivity and glucose metabolism in patients with IGT.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Zhi Yao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
29
|
HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci Rep 2017; 7:43728. [PMID: 28287093 PMCID: PMC5347119 DOI: 10.1038/srep43728] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
The goal of this pilot study was to determine whether HDL glycoprotein composition affects HDL’s immunomodulatory function. HDL were purified from healthy controls (n = 13), subjects with metabolic syndrome (MetS) (n = 13), and diabetic hemodialysis (HD) patients (n = 24). Concentrations of HDL-bound serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), apolipoprotein A-I (ApoA-I), apolipoprotein C-III (ApoC-III), α-1-antitrypsin (A1AT), and α-2-HS-glycoprotein (A2HSG); and the site-specific glycovariations of ApoC-III, A1AT, and A2HSG were measured. Secretion of interleukin 6 (IL-6) in lipopolysaccharide-stimulated monocytes was used as a prototypical assay of HDL’s immunomodulatory capacity. HDL from HD patients were enriched in SAA, LBP, ApoC-III, di-sialylated ApoC-III (ApoC-III2) and desialylated A2HSG. HDL that increased IL-6 secretion were enriched in ApoC-III, di-sialylated glycans at multiple A1AT glycosylation sites and desialylated A2HSG, and depleted in mono-sialylated ApoC-III (ApoC-III1). Subgroup analysis on HD patients who experienced an infectious hospitalization event within 60 days (HD+) (n = 12), vs. those with no event (HD−) (n = 12) showed that HDL from HD+ patients were enriched in SAA but had lower levels of sialylation across glycoproteins. Our results demonstrate that HDL glycoprotein composition, including the site-specific glycosylation, differentiate between clinical groups, correlate with HDL’s immunomodulatory capacity, and may be predictive of HDL’s ability to protect from infection.
Collapse
|
30
|
Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg 2016; 50:107-18. [PMID: 26983667 DOI: 10.1177/1538574416628654] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dyslipidemia, more specifically, high-serum low-density lipoproteins and low-serum high-density lipoproteins, are known risk factors for cardiovascular disease. The current clinical treatment of dyslipidemia represents the outcome of a large body of fundamental basic science research on lipids, lipid metabolism, and the effects of different lipids on cellular components of the artery, inflammatory cells, and platelets. In general, lower density lipids activate intracellular pathways to increase local and systemic inflammation, monocyte adhesion, endothelial cell dysfunction and apoptosis, and smooth muscle cell proliferation, resulting in foam cell formation and genesis of atherosclerotic plaque. In contrast, higher density lipids prevent or attenuate atherosclerosis. This article is part 1 of a 2-part review, with part 1 focusing on lipid metabolism and the downstream effects of lipids on the development of atherosclerosis, and part 2 on the clinical treatment of dyslipidemia and the role of these drugs for patients with arterial disease exclusive of the coronary arteries.
Collapse
Affiliation(s)
- Alex Helkin
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffery J Stein
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stacey Lin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sufyan Siddiqui
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kristopher G Maier
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Vivian Gahtan
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
31
|
Kaul S, Xu H, Zabalawi M, Maruko E, Fulp BE, Bluemn T, Brzoza-Lewis KL, Gerelus M, Weerasekera R, Kallinger R, James R, Zhang YS, Thomas MJ, Sorci-Thomas MG. Lipid-Free Apolipoprotein A-I Reduces Progression of Atherosclerosis by Mobilizing Microdomain Cholesterol and Attenuating the Number of CD131 Expressing Cells: Monitoring Cholesterol Homeostasis Using the Cellular Ester to Total Cholesterol Ratio. J Am Heart Assoc 2016; 5:JAHA.116.004401. [PMID: 27821400 PMCID: PMC5210328 DOI: 10.1161/jaha.116.004401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 μg of lipid-free human apoA-I 3 times a week, while the other subset received 200 μg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common β subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.
Collapse
Affiliation(s)
- Sushma Kaul
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Manal Zabalawi
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elisa Maruko
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian E Fulp
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Theresa Bluemn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kristina L Brzoza-Lewis
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark Gerelus
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Rachel Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Roland James
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yi Sherry Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
32
|
Tani S, Nagao K, Hirayama A. Association of systemic inflammation with the serum apolipoprotein A-1 level: A cross-sectional pilot study. J Cardiol 2016; 68:168-77. [DOI: 10.1016/j.jjcc.2015.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022]
|
33
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
34
|
Qin L, Yang YB, Yang YX, Zhu N, Liu Z, Ni YG, Li SX, Zheng XL, Liao DF. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway. Clin Exp Pharmacol Physiol 2016; 43:182-92. [DOI: 10.1111/1440-1681.12524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/13/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Li Qin
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Yun-Bo Yang
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
- Matthew Mailing Centre for Translational Transplantation Studies; London Health Sciences Centre; Western University; London Canada
| | - Yi-Xin Yang
- Matthew Mailing Centre for Translational Transplantation Studies; London Health Sciences Centre; Western University; London Canada
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine; Changsha Hunan China
| | - Zheng Liu
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Ya-Guang Ni
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Shun-Xiang Li
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Xi-Long Zheng
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
- Department of Biochemistry & Molecular Biology; Libin Cardiovascular Institute of Alberta; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Duan- Fang Liao
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| |
Collapse
|
35
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
36
|
Ho TC, Yang SF, Wang PH, Lin LY, Tee YT, Liao WC, Chang HJ, Tsai HT. Increased plasma soluble CD40 ligand concentration in pelvic inflammatory disease. Clin Chim Acta 2015; 438:236-40. [PMID: 25192781 DOI: 10.1016/j.cca.2014.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The role of soluble CD40 ligand (sCD40L) in pelvic inflammatory disease (PID) remains unclear. We sought to determine whether sCD40L was an efficient serum marker as with WBC and CRP in PID patients. METHODS Enzyme-linked immunosorbent assay was used to measure the plasma levels of sCD40L before and after routine protocol treatments in sixty-four PID patients and seventy healthy controls. RESULTS The level of plasma sCD40L (pg/ml) was significantly elevated in PID patients (1632.83±270.91) compared to that in normal controls (700.33±58.77; p=0.001) and decreased significantly as compared to that in the same patients (928.77±177.25; p=0.0001) after they received treatment. The concentration of sCD40L was significantly correlated with the level of plasma C-reactive protein (CRP) in the blood (r=0.202, p=0.01, n=134). When the cutoff level of plasma sCD40L levels was determined to be 1612.26pg/ml based on ROC, the sensitivity, specificity, and the area under the curve of plasma sCD40L level for predicting PID were 0.26, 0.97, and 0.58 (95% confidence interval: 0.48-0.68), respectively, while the adjusted odds ratio (AOR) with their 95% CI of plasma sCD40L for PID risk was 7.09 (95% CI=1.14-43.87, p=0.03). CONCLUSIONS The expression of plasma sCD40L was increased in patients with PID and detection of plasma sCD40L could be useful for the diagnosis of PID.
Collapse
Affiliation(s)
- Tsung-chin Ho
- Obstetric and Gynecologic Department, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Long-Yau Lin
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Torng Tee
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chun Liao
- School of Nursing, Chung Shan Medical University, Taichung, Taiwan; Department of Nursing, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Ju Chang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Ting Tsai
- School of Nursing, Chung Shan Medical University, Taichung, Taiwan; Department of Nursing, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Abstract
Numerous epidemiologic studies revealed that high-density lipoprotein (HDL) is an important risk factor for coronary heart disease. There are several well-documented HDL functions such as reversed cholesterol transport, inhibition of inflammation, or inhibition of platelet activation that may account for the atheroprotective effects of this lipoprotein. Mechanistically, these functions are carried out by a direct interaction of HDL particle or its components with receptors localized on the cell surface followed by generation of intracellular signals. Several HDL-associated receptor ligands such as apolipoprotein A-I (apoA-I) or sphingosine-1-phosphate (S1P) have been identified in addition to HDL holoparticles, which interact with surface receptors such as ATP-binding cassette transporter A1 (ABCA1); S1P receptor types 1, 2, and 3 (S1P1, S1P2, and S1P3); or scavenger receptor type I (SR-BI) and activate intracellular signaling cascades encompassing kinases, phospholipases, trimeric and small G-proteins, and cytoskeletal proteins such as actin or junctional protein such as connexin43. In addition, depletion of plasma cell cholesterol mediated by ABCA1, ATP-binding cassette transporter G1 (ABCG1), or SR-BI was demonstrated to indirectly inhibit signaling over proinflammatory or proliferation-stimulating receptors such as Toll-like or growth factor receptors. The present review summarizes the current knowledge regarding the HDL-induced signal transduction and its relevance to athero- and cardioprotective effects as well as other physiological effects exerted by HDL.
Collapse
|
38
|
He PP, Ouyang XP, Tang YY, Liao L, Wang ZB, Lv YC, Tian GP, Zhao GJ, Huang L, Yao F, Xie W, Tang YL, Chen WJ, Zhang M, Li Y, Wu JF, Peng J, Liu XY, Zheng XL, Yin WD, Tang CK. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 2014; 106:81-90. [PMID: 25149060 DOI: 10.1016/j.biochi.2014.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microRNA-590 (miR-590) has protective effects on cardiovascular diseases, but the mechanism is unknown. Interestingly, previous studies from our laboratory and others have shown that macrophage-derived lipoprotein lipase (LPL) might accelerate atherosclerosis by promoting lipid accumulation and inflammatory response. However, the regulation of LPL at the post-transcriptional level by microRNAs has not been fully understood. In this study, we explored whether miR-590 affects the expression of LPL and its potential subsequent effects on lipid accumulation and pro-inflammatory cytokine secretion in human THP-1 macrophages. METHODS AND RESULTS Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-590 directly inhibited LPL protein and mRNA expression by targeting LPL 3'UTR. LPL Activity Assays showed that miR-590 reduced LPL activity in the culture media. Oil Red O staining and high-performance liquid chromatography assays showed that miR-590 had inhibitory effects on the lipid accumulation in human THP-1 macrophages. We also illustrated that miR-590 alleviated pro-inflammatory cytokine secretion in human THP-1 macrophages as measured by ELISA. With the method of small interfering RNA, we found that LPL siRNA can inhibit the miR-590 inhibitor-induced increase in lipid accumulation and secretion of pro-inflammatory cytokines in oxLDL-treated human THP-1 macrophages. CONCLUSIONS MiR-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting LPL gene in human THP-1 macrophages. Therefore, targeting miR-590 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Li Liao
- School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Zong-Bao Wang
- Pharmacy and Biological Science College, University of South China, Hengyang, Hunan 421001, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Guo-Ping Tian
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Liang Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yu Lin Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Jian-Feng Wu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Juan Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Yu Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Pharmacy and Biological Science College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
39
|
Tani S, Takahashi A, Nagao K, Hirayama A. Contribution of apolipoprotein A-I to the reduction in high-sensitivity C-reactive protein levels by different statins: comparative study of pitavastatin and atorvastatin. Heart Vessels 2014; 30:762-70. [DOI: 10.1007/s00380-014-0554-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/04/2014] [Indexed: 01/03/2023]
|
40
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
41
|
Abstract
During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy IRCCS Multimedica, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| |
Collapse
|
42
|
Dolganova OM, Rudina MI, Chrapova MV, Dushkin MI. The effect of cholesterol on macrophage-foam-cell generation upon zymosan-induced inflammation in mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis 2014; 235:519-25. [PMID: 24953492 DOI: 10.1016/j.atherosclerosis.2014.05.943] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. This study was to determine the effects and potential mechanisms of Chlamydia pneumoniae (C. pneumoniae) on ABCA1 expression and cellular cholesterol efflux in THP-1 macrophage-derived foam cells. METHODS AND RESULTS C. pneumoniae significantly decreased the expression of ABCA1 and reduced cholesterol efflux. Furthermore, we found that C. pneumoniae suppressed ABCA1 expression via up-regulation of miR-33s. The inhibition of C. pneumoniae-induced NF-κB activation decreased miR-33s expression and enhanced ABCA1 expression. In addition, C. pneumoniae increased Toll-like receptor 2 (TLR2) expressions, inhibition of which by siRNA could also block NF-κB activation and miR-33s expression, and promot the expression of ABCA1. CONCLUSION Taken together, these results reveal that C. pneumoniae may negatively regulate ABCA1 expression via TLR2-NF-κB and miR-33 pathways in THP-1 macrophage-derived foam cells, which may provide new insights for understanding the effects of C. pneumoniae on the pathogenesis of atherosclerosis.
Collapse
|
44
|
Abstract
This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The "functionality" of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C.
Collapse
|
45
|
An integrative view on the physiology of human early placental villi. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 114:33-48. [PMID: 24291663 DOI: 10.1016/j.pbiomolbio.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
The placenta is an indispensable organ for intrauterine protection, development and growth of the embryo and fetus. It provides tight contact between mother and conceptus, enabling the exchange of gas, nutrients and waste products. The human placenta is discoidal in shape, and bears a hemo-monochorial interface as well as villous materno-fetal interdigitations. Since Peter Medawar's astonishment to the paradoxical nature of the mother-fetus relationship in 1953, substantial knowledge in the domain of placental physiology has been gathered. In the present essay, an attempt has been made to build an integrated understanding of morphological dynamics, cell biology, and functional aspects of genomic and proteomic expression of human early placental villous trophoblast cells followed by a commentary on the future directions of research in this field.
Collapse
|
46
|
Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One 2013; 8:e74782. [PMID: 24086374 PMCID: PMC3783495 DOI: 10.1371/journal.pone.0074782] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/06/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. The purpose of this study was to investigate the effects of betulinic acid (BA), a pentacyclic triterpenoid, on ABCA1 expression and cholesterol efflux, and to further determine the underlying mechanism. BA promoted ABCA1 expression and cholesterol efflux, decreased cellular cholesterol and cholesterol ester content in LPS-treated macrophages. Furthermore, we found that BA promoted ABCA1 expression via down-regulation of miR-33s. The inhibition of LPS-induced NF-κB activation further decreased miR-33s expression and enhanced ABCA1 expression and cholesterol efflux when compared with BA only treatment. In addition, BA suppressed IκB phosphorylation, p65 phosphorylation and nuclear translocation, and the transcription of NF-κB-dependent related gene. Moreover, BA reduced atherosclerotic lesion size, miR-33s levels and NF-κB activation, and promoted ABCA1 expression in apoE−/− mice. Taken together, these results reveal a novel mechanism for the BA-mediated ABCA1 expression, which may provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Department of Histology and Embryology, University of South China, Hengyang, Hunan, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Qian Lu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- * E-mail: (KY); (C-KT)
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- * E-mail: (KY); (C-KT)
| |
Collapse
|
47
|
Kaysen GA, Dalrymple LS, Grimes B, Chertow GM, Kornak J, Johansen KL. Changes in serum inflammatory markers are associated with changes in apolipoprotein A1 but not B after the initiation of dialysis. Nephrol Dial Transplant 2013; 29:430-7. [PMID: 24009290 DOI: 10.1093/ndt/gft370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have examined the changes in lipoproteins over time and how inflammation is associated with lipoprotein concentrations among patients with end-stage renal disease on dialysis. One possible explanation for the association of low LDL cholesterol concentration and adverse outcomes is that inflammation reduces selected apolipoprotein concentrations. METHODS Serum samples were collected from a subsample of patients enrolled into the Comprehensive Dialysis Study every 3 months for up to 1 year. We examined the relation between temporal patterns in levels of inflammatory markers and changes in apolipoproteins (apo) A1 and B and the apo B/A1 ratio using linear mixed effects modeling and adjusting for potential confounders. RESULTS We enrolled 266 participants from 56 dialysis facilities. The mean age was 62 years, 45% were women and 26% were black. Apo A1 was lower among patients with higher Quetelet's (body mass) index (BMI), diabetes mellitus and atherosclerosis. Apo B was lower among older patients, patients with higher serum creatinine and patients with lower BMI. Over the course of a year, apo A1 changed inversely with serum concentrations of the acute phase proteins C-reactive protein (CRP) and α1 acid glycoprotein (α1AG), while apo B did not. Changes in α1AG were more strongly associated with changes in apolipoprotein concentrations than were changes in CRP; increases in α1AG were associated with decreases in apo A1 and increases in the apo B/A1 ratio. CONCLUSIONS Changes in inflammatory markers were associated with changes in apo A1, but not apo B over 1 year, suggesting that reductions in high-density lipoprotein cholesterol are associated with inflammation, either of which could mediate cardiovascular risk, but not supporting a hypothesis linking increased risk of low levels of apo B containing lipoproteins to the risk associated with inflammation.
Collapse
Affiliation(s)
- George A Kaysen
- Department of Medicine, University of California Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hermsdorff HH, Mansego ML, Campión J, Milagro FI, Zulet MA, Martínez JA. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFα, truncal fat and n-6 PUFA intake in young women. Cytokine 2013; 64:265-71. [PMID: 23796695 DOI: 10.1016/j.cyto.2013.05.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 12/27/2022]
Abstract
The aim of this article is to assess the potential relationships between TNFα gene promoter methylation in peripheral white blood cells and central adiposity (truncal fat), metabolic features and dietary fat intake. A group of 40 normal-weight young women (21 ± 3y; BMI 21.0 ± 1.7 kg/m(2)) was included in this cross-sectional study. Anthropometric, biochemical and dietary data were assessed using validated procedures. DNA from white blood cells was isolated and 5-methylcytosine levels of the CpGs sites present in TNFα gene promoter (from -170 to +359 pb) were analyzed by Sequenom EpiTyper. Those women with high truncal fat (≥52.3%) showed lower 5-methylcytosine levels (P<0.05) in the site CpG13 (at position +207) and CpG19 (+317 pb) of the TNFα gene promoter when were compared to women with lower truncal adiposity. The methylation levels of CpG13 were also correlated with circulating TNFα levels, which were higher in those women with greater truncal adiposity. In a linear regression model, truncal fat, HDL-cholesterol, insulin, plasma TNFα, and daily n-6 PUFA intake explained the methylation levels of CpG13 site +207 by 48% and the average of CpG13 and CpG19 by 43% (P<0.001). In conclusion, women with higher truncal fat showed lower methylation levels of TNFα promoter in peripheral white blood cells and higher plasma TNFα concentrations. DNA methylation levels of TNFα promoter were associated with some metabolic features and with n-6 PUFA intake, suggesting a complex nutriepigenomic network in the regulation of this recognized pro-inflammatory marker.
Collapse
Affiliation(s)
- H H Hermsdorff
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol 2012; 32:2561-5. [PMID: 23077142 DOI: 10.1161/atvbaha.112.300135] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review provides a summary of recent research on the role of high-density lipoprotein (HDL)/apolipoprotein A-I cholesterol efflux and immune cell function. Plasma concentrations of HDL have been known to inversely correlate with risk for coronary vascular disease. Bulk transport of HDL cholesterol from the peripheral tissues to the liver is a major pathway, termed reverse cholesterol transport, responsible for maintaining whole body cholesterol homeostasis. In addition to participating in this pathway, HDL and apolipoprotein A-I exert anti-inflammatory effects through different pathways. One pathway that seems to be important in atherosclerosis and autoimmunity is its role in modulation of T cell activation. HDL/apolipoprotein A-I helps regulate cell signaling by accepting membrane cholesterol from ATP binding cassette transporter A1 on immune cells and, thereby, fine tuning the amount of cholesterol present in plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1016, USA.
| | | |
Collapse
|